
AIMS Mathematics, 2020, 5(4): 32013222. doi: 10.3934/math.2020206.
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
A comparative study for fractional chemical kinetics and carbon dioxide CO_{2} absorbed into phenyl glycidyl ether problems
1 Department of Mathematics, National Institute of Technology, Jamshedpur, 831014, Jharkhand, India
2 Department of Mathematics, JECRC University, Jaipur303905, Rajasthan, India
3 Department of Basic Engineering Sciences, College of Engineering, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
Received: , Accepted: , Published:
Keywords: Haar wavelet method; Adam Bashforth’s Moulton method; fractional model of chemical kinetics problems; carbon dioxide; operational matrix
Citation: Ranbir Kumar, Sunil Kumar, Jagdev Singh, Zeyad AlZhour. A comparative study for fractional chemical kinetics and carbon dioxide CO_{2} absorbed into phenyl glycidyl ether problems. AIMS Mathematics, 2020, 5(4): 32013222. doi: 10.3934/math.2020206
References:
 1. M. A. AlJawary, R. K. Raham, A semianalytical iterative technique for solving chemistry problems, J. King Saud Univ. Sci., 29 (2017), 320332.
 2. S. Abbasbandy, A. Shirzadi, Homotopy analysis method for a nonlinear chemistry problem, Studies in Nonlinear Sciences, 1 (2010), 127132.
 3. M. ALJawary, R. Raham, G. Radhi, An iterative method for calculating carbon dioxide absorbed into phenyl glycidyl ether, Journal of Mathematical and Computational Science, 6 (2016), 620632.
 4. Y. S. Choe, S. W. Park, D. W. Park, et al. Reaction kinetics of carbon dioxide with phenyl glycidyl ether by TEACPMS41 catalyst, J. JPN Petrol. Inst., 53 (2010), 160166.
 5. R. Singha, A. M. Wazwaz, Steadystate concentrations of carbon dioxide absorbed into phenyl glycidyl ether: An optimal homotopy analysis method, MatchCommun Math. Co., 81 (2019), 800812.
 6. H. Robertson, The solution of a set of reaction rate equations, Numerical analysis: an introduction, 178182.
 7. M. Matinfar, M. Saeidy, B. Gharahsuflu, et al. Solutions of nonlinear chemistry problems by homotopy analysis, Comput. Math. Model., 25 (2014), 103114.
 8. D. Ganji, M. Nourollahi, E. Mohseni, Application of he's methods to nonlinear chemistry problems, Comput. Math. Appl., 54 (2007), 11221132.
 9. A. Dokoumetzidis, R. Magin, P. Macheras, Fractional kinetics in multicompartmental systems, J. Pharmacokinet. Phar., 37 (2010), 507524.
 10. F. Mainardi, Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models, World Scientific, 2010.
 11. I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Vol. 198, Elsevier, 1998.
 12. K. Diethelm, The analysis of fractional differential equations: An applicationoriented exposition using differential operators of Caputo type, Springer Science & Business Media, 2010.
 13. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, Elsevier Science Limited, 2006.
 14. S. Das, Functional fractional calculus for system identification and controls, SpringerVerlag, 2008.
 15. J. S. Walker, A primer on wavelets and their scientific applications, CRC press, 2002.
 16. J. J. Benedetto, Wavelets: mathematics and applications, Vol. 13, CRC press, 1993.
 17. C. K. Chui, Wavelets: a mathematical tool for signal analysis, Vol. 1, Siam, 1997.
 18. S. Gopalakrishnan, M. Mitra, Wavelet methods for dynamical problems: with application to metallic, composite, and nanocomposite structures, CRC Press, 2010.
 19. Y. Wang, Q. Fan, The second kind chebyshev wavelet method for solving fractional differential equations, Appl. Math. Comput., 218 (2012), 85928601.
 20. J.L. Wu, A wavelet operational method for solving fractional partial differential equations numerically, Appl. Math. Comput., 214 (2009), 3140.
 21. M. Heydari, M. Hooshmandasl, F. Mohammadi, et al. Wavelets method for solving systems of nonlinear singular fractional volterra integrodifferential equations, Commun. Nonlinear Sci., 19 (2014), 3748.
 22. S. Balaji, Legendre wavelet operational matrix method for solution of fractional order riccati differential equation, Journal of the Egyptian Mathematical Society, 23 (2015), 263270.
 23. M. ur Rehman, R. A. Khan, The legendre wavelet method for solving fractional differential equations, Commun. Nonlinear Sci., 16 (2011), 41634173.
 24. M. Hosseininia, M. Heydari, F. M. Ghaini, et al. A wavelet method to solve nonlinear variableorder time fractional 2d kleingordon equation, Comput. Math. Appl., 78 (2019), 37133730.
 25. P. Pirmohabbati, A. R. Sheikhani, H. S. Najafi, et al. Numerical solution of fractional mathieu equations by using blockpulse wavelets, Journal of Ocean Engineering and Science, 4 (2019), 299307.
 26. M. Hosseininia, M. Heydari, R. Roohi, et al. A computational wavelet method for variableorder fractional model of dual phase lag bioheat equation, J. Comput. Phys., 395 (2019), 118.
 27. M. H. Heydari, Z. Avazzadeh, Legendre wavelets optimization method for variableorder fractional poisson equation, Chaos, Solitons & Fractals, 112 (2018), 180190.
 28. S. Kumar, R. Kumar, J. Singh, et al. An efficient numerical scheme for fractional model of hiv1 infection of cd4+ tcells with the effect of antiviral drug therapy, Alexandria Engineering Journal, 2020.
 29. S. S. Ray, A. Patra, Numerical simulation for fractional order stationary neutron transport equation using haar wavelet collocation method, Nucl. Eng. Des., 278 (2014), 7185.
 30. A. Patra, S. S. Ray, A numerical approach based on haar wavelet operational method to solve neutron point kinetics equation involving imposed reactivity insertions, Ann. Nucl. Energy, 68 (2014), 112117.
 31. S. S. Ray, A. Patra, Haar wavelet operational methods for the numerical solutions of fractional order nonlinear oscillatory van der pol system, Appl. Math. Comput., 220 (2013), 659667.
 32. S. S. Ray, On haar wavelet operational matrix of general order and its application for the numerical solution of fractional bagley torvik equation, Appl. Math. Comput., 218 (2012), 52395248.
 33. I. Aziz, F. Haq, et al. A comparative study of numerical integration based on haar wavelets and hybrid functions, Comput. Math. Appl., 59 (2010), 20262036.
 34. I. Aziz, A. AlFhaid, et al. An improved method based on haar wavelets for numerical solution of nonlinear integral and integrodifferential equations of first and higher orders, J. Comput. Appl. Math., 260 (2014), 449469.
 35. I. Aziz, A. AlFhaid, A. Shah, et al. A numerical assessment of parabolic partial differential equations using haar and legendre wavelets, Appl. Math. Model., 37 (2013), 94559481.
 36. R. Jiwari, A haar wavelet quasilinearization approach for numerical simulation of burgers' equation, Comput. Phys. Commun., 183 (2012), 24132423.
 37. Ü. Lepik, Solving fractional integral equations by the haar wavelet method, Appl. Math. Comput., 214 (2009), 468478.
 38. Z. Shi, Y.y. Cao, A spectral collocation method based on haar wavelets for poisson equations and biharmonic equations, Math. Comput. Model., 54 (2011), 28582868.
 39. H. Hein, L. Feklistova, Computationally efficient delamination detection in composite beams using haar wavelets, Mech. Syst. Signal Pr., 25 (2011), 22572270.
 40. Z. Gao, X. Liao, Discretization algorithm for fractional order integral by haar wavelet approximation, Appl. Math. Comput., 218 (2011), 19171926.
 41. C. Chen, C. Hsiao, Haar wavelet method for solving lumped and distributedparameter systems, IEE ProceedingsControl Theory and Applications, 144 (1997), 8794.
 42. Y. Chen, M. Yi, C. Yu, Error analysis for numerical solution of fractional differential equation by haar wavelets method, J. Comput. Sci., 3 (2012), 367373.
 43. X. Xie, G. Jin, Y. Yan, et al. Free vibration analysis of composite laminated cylindrical shells using the haar wavelet method, Composite Structures, 109 (2014), 169177.
 44. U. Saeed, M. ur Rehman, Haar waveletquasilinearization technique for fractional nonlinear differential equations, Appl. Math. Comput., 220 (2013), 630648.
 45. İ. Çelik, Haar wavelet approximation for magnetohydrodynamic flow equations, Appl. Math. Model., 37 (2013), 38943902.
 46. İ. Çelik, Haar wavelet method for solving generalized burgershuxley equation, Arab Journal of Mathematical Sciences, 18 (2012), 2537.
 47. G. Hariharan, K. Kannan, K. Sharma, Haar wavelet method for solving fisher's equation, Appl. Math. Comput., 211 (2009), 284292.
 48. L. Wang, Y. Ma, Z. Meng, Haar wavelet method for solving fractional partial differential equations numerically, Appl. Math. Comput., 227 (2014), 6676.
 49. H. Kaur, R. Mittal, V. Mishra, Haar wavelet solutions of nonlinear oscillator equations, Appl. Math. Model., 38 (2014), 49584971.
 50. Z. Shi, Y. Y. Cao, Q. j. Chen, Solving 2d and 3d poisson equations and biharmonic equations by the haar wavelet method, Appl. Math. Model., 36 (2012), 51435161.
 51. G. Jin, X. Xie, Z. Liu, The haar wavelet method for free vibration analysis of functionally graded cylindrical shells based on the shear deformation theory, Composite Structures, 108 (2014), 435448.
 52. S. Kumar, A. Kumar, S. Abbas, et al. A modified analytical approach with existence and uniqueness for fractional cauchy reactiondiffusion equations, Advances in Difference Equations, 2020 (2020), 118.
 53. S. Kumar, A. Kumar, S. Momani, et al. Numerical solutions of nonlinear fractional model arising in the appearance of the stripe patterns in twodimensional systems, Advances in Difference Equations, 2019 (2019), 413.
 54. M. Jleli, S. Kumar, R. Kumar, et al. Analytical approach for time fractional wave equations in the sense of yangabdelatycattani via the homotopy perturbation transform method, Alexan. Eng. J., 2019.
 55. S. Kumar, K. S. Nisar, R. Kumar, et al. A new rabotnov fractionalexponential function based fractional derivative for diffusion equation under external force, Mathematical Methods in Applied Science, 2020.
 56. B. Ghanbari, S. Kumar, R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with nonsingular fractional derivative, Chaos, Soliton and Fractals, 133 (2020), 109619.
 57. A. ElAjou, M. N. Oqielat, Z. AlZhour, et al. Solitary solutions for timefractional nonlinear dispersive pdes in the sense of conformable fractional derivative, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29 (2019), 093102.
 58. E. F. D. Goufo, S. Kumar, S. B. Mugisha, Similarities in a fifthorder evolution equation with and with no singular kernel, Chaos, Soliton and Fractals, 130 (2020), 109467.
 59. S. Bhatter, A. Mathur, D. Kumar, et al. A new analysis of fractional drinfeldsokolovwilson model with exponential memory, Physica A: Statistical Mechanics and its Applications, 537 (2020), 122578.
 60. P. Veeresha, D. G. Prakasha, D. Kumar, An efficient technique for nonlinear timefractional klein fockgordon equation, Appl. Math. Comput., 364 (2020), 124637.
 61. D. Kumar, J. Singh, M. A. AlQurashi, et al. A new fractional sirssi malaria disease model with application of vaccines, antimalarial drugs, and spraying, Advances in Difference Equations, 2019 (2019), 278.
 62. T. Hull, W. Enright, B. Fellen, et al. Comparing numerical methods for ordinary differential equations, SIAM J. Numer. Anal., 9 (1972), 603637.
 63. O. S. Board, Ocean acidification: a national strategy to meet the challenges of a changing ocean, National Academies Press, 2010.
 64. S. Muthukaruppan, I. Krishnaperumal, R. Lakshmanan, Theoretical analysis of mass transfer with chemical reaction using absorption of carbon dioxide into phenyl glycidyl ether solution, Appl. Math. Ser. B, 3 (2012), 11791186.
 65. S. Kumar, M. M. Rashidi, New analytical method for gas dynamics equation arising in shock fronts, Comput. Phys. Commun., 185 (2014), 19471954.
 66. Y. Li, W. Zhao, Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Comput., 216 (2010), 22762285.
 67. M. Srivastava, S. K. Agrawal, S. Das, Synchronization of chaotic fractional order lotkavolterra system, Int. J. Nonlinear Sci., 13 (2012), 482494.
 68. K. Diethelm, N. J. Ford, Multiorder fractional differential equations and their numerical solution, Appl. Math. Comput., 154 (2004), 621640.
 69. H. Aminikhah, An analytical approximation to the solution of chemical kinetics system, J. King Saud Univ. Sci., 23 (2011), 167170.
 70. J. S. Duan, R. Rach, A. M. Wazwaz, Steadystate concentrations of carbon dioxide absorbed into phenyl glycidyl ether solutions by the adomian decomposition method, J. Math. Chem., 53 (2015), 10541067.
 71. M. A. ALJawary, G. H. Radhi, The variational iteration method for calculating carbon dioxide absorbed into phenyl glycidyl ether, Iosr Journal of Mathematics, 11 (2015), 99105.
Reader Comments
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *