Citation: Chang-jian Zhao. On Opial-Wirtinger type inequalities[J]. AIMS Mathematics, 2020, 5(2): 1275-1283. doi: 10.3934/math.2020087
[1] | Chunhong Li, Dandan Yang, Chuanzhi Bai . Some Opial type inequalities in (p, q)-calculus. AIMS Mathematics, 2020, 5(6): 5893-5902. doi: 10.3934/math.2020377 |
[2] | Da Shi, Ghulam Farid, Abd Elmotaleb A. M. A. Elamin, Wajida Akram, Abdullah A. Alahmari, B. A. Younis . Generalizations of some $ q $-integral inequalities of Hölder, Ostrowski and Grüss type. AIMS Mathematics, 2023, 8(10): 23459-23471. doi: 10.3934/math.20231192 |
[3] | Chang-Jian Zhao, Wing-Sum Cheung . On Opial-Traple type inequalities for β-partial derivatives. AIMS Mathematics, 2020, 5(6): 5716-5723. doi: 10.3934/math.2020366 |
[4] | Saad Ihsan Butt, Erhan Set, Saba Yousaf, Thabet Abdeljawad, Wasfi Shatanawi . Generalized integral inequalities for ABK-fractional integral operators. AIMS Mathematics, 2021, 6(9): 10164-10191. doi: 10.3934/math.2021589 |
[5] | Bandar Bin-Mohsin, Muhammad Uzair Awan, Muhammad Zakria Javed, Sadia Talib, Hüseyin Budak, Muhammad Aslam Noor, Khalida Inayat Noor . On some classical integral inequalities in the setting of new post quantum integrals. AIMS Mathematics, 2023, 8(1): 1995-2017. doi: 10.3934/math.2023103 |
[6] | Soubhagya Kumar Sahoo, Fahd Jarad, Bibhakar Kodamasingh, Artion Kashuri . Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application. AIMS Mathematics, 2022, 7(7): 12303-12321. doi: 10.3934/math.2022683 |
[7] | Alper Ekinci, Erhan Set, Thabet Abdeljawad, Nabil Mlaiki . Generalizations of Ostrowski type inequalities via $ F $-convexity. AIMS Mathematics, 2022, 7(4): 7106-7116. doi: 10.3934/math.2022396 |
[8] | Deren Gong, Xiaoliang Wang, Peng Dong, Shufan Wu, Xiaodan Zhu . Shifted Legendre polynomials-based single and double integral inequalities with arbitrary approximation order: Application to stability of linear systems with time-varying delays. AIMS Mathematics, 2020, 5(5): 4371-4398. doi: 10.3934/math.2020279 |
[9] | Wentao Le, Yucai Ding, Wenqing Wu, Hui Liu . New stability criteria for semi-Markov jump linear systems with time-varying delays. AIMS Mathematics, 2021, 6(5): 4447-4462. doi: 10.3934/math.2021263 |
[10] | Arthit Hongsri, Wajaree Weera, Thongchai Botmart, Prem Junsawang . Novel non-fragile extended dissipative synchronization of T-S fuzzy complex dynamical networks with interval hybrid coupling delays. AIMS Mathematics, 2023, 8(12): 28601-28627. doi: 10.3934/math.20231464 |
In 1960, Opial [12] established the following inequality:
Theorem A Suppose f∈C1[0,h] satisfies f(0)=f(h)=0 and f(x)>0 for all x∈(0,h). Then the inequality holds
∫h0|f(x)f′(x)|dx≤h4∫h0(f′(x))2dx, | (1.1) |
where this constant h/4 is best possible.
Many generalizations and extensions of Opial's inequality were established [2,4,5,6,7,8,9,10,11,15,16,17,18,19]. For an extensive survey on these inequalities, see [13]. Opial's inequality and its generalizations and extensions play a fundamental role in the ordinary and partial differential equations as well as difference equation [2,3,4,6,7,9,10,11,17]. In particular, Agarwal and Pang [3] proved the following Opial-Wirtinger's type inequalities.
Theorem B Let λ≥1 be a given real number, and let p(t) be a nonnegative and continuous function on [0,a]. Further, let x(t) be an absolutely continuous function on [0,a], with x(0)=x(a)=0. Then
∫a0p(t)|x(t)|λdt≤12∫a0[t(a−t)](λ−1)/2p(t)dt∫a0|x′(t)|λdt. | (1.2) |
The first aim of the present paper is to establish Opial-Wirtinger's type inequalities involving Katugampola conformable partial derivatives and α-conformable integrals (see Section 2). Our result is given in the following theorem, which is a generalization of (1.2).
Theorem 1.1 Let λ≥1 be a real number and α∈(0,1], and let p(s,t) be a nonnegative and continuous functions on [0,a]×[0,b]. Further, let x(s,t) be an absolutely continuous function and Katugampola partial derivable on [0,a]×[0,b], with x(s,0)=x(0,t)=x(0,0)=0 and x(a,b)=x(a,t)=x(s,b)=0. If p>1, 1p+1q=1 Then
∫a0∫b0p(s,t)|x(s,t)|λdαsdαt≤p+qpq(1α2)λ−1(∫a0∫b0Γabpqλα(s,t)⋅p(s,t)dαsdαt) |
×∫a0∫b0|∂2∂s∂t(x)α2(s,t)|λdαsdαt, | (1.3) |
where
Γabpqλα(s,t)={(st)1/p[(a−s)(b−t)]1/q}α(λ−1). |
Remark 1.1 Let x(s,t) reduce to s(t) and with suitable modifications, and p=q=2 and α=1, (1.3) become (1.2).
Theorem C Let λ≥1 be a given real number, and let p(t) be a nonnegative and continuous function on [0,a]. Further, let x(t) be an absolutely continuous function on [0,a], with x(0)=x(a)=0. Then
∫a0p(t)|x(t)|λdt≤12(a2)λ−1(∫a0p(t)dt)∫a0|x′(t)|λdt. | (1.4) |
Another aim of this paper is to establish the following inequality involving Katugampola conformable partial derivatives and α-conformable integrals. Our result is given in the following theorem.
Theorem 1.2 Let j=1,2 and λ≥1 be a real number, and let pj(s,t) be a nonnegative and continuous functions on [0,a]×[0,b]. Further, let xj(s,t) be an absolutely continuous function and Katugampola partial derivable on [0,a]×[0,b], with xj(s,0)=xj(0,t)=xj(0,0)=0 and xj(a,b)=xj(a,t)=xj(s,b)=0. Then for α∈(0,1]
∫a0∫b0(p1(s,t)|x1(s,t)|λ+p2(s,t)|x2(s,t)|λ)dαsdαt |
≤12λ(1α2)λ−1[(∫a0∫b0(st)α(λ−1)p1(s,t)dαsdαt)∫a0∫b0|∂2∂s∂t(x1)α2(s,t)|λdαsdαt |
+(∫a0∫b0(st)α(λ−1)p2(s,t)dαsdαt)∫a0∫b0|∂2∂s∂t(x2)α2(s,t)|λdαsdαt]. | (1.5) |
Here, let's recall the well-known Katugampola derivative formulation of conformable derivative of order for α∈(0,1] and t∈[0,∞), given by
Dα(f)(t)=limε→0f(teεt−α)−f(t)ε, | (2.1) |
and
Dα(f)(0)=limt→0Dα(f)(t), | (2.2) |
provided the limits exist. If f is fully differentiable at t, then
Dα(f)(t)=t1−αdfdt(t). |
A function f is α-differentiable at a point t≥0, if the limits in (2.1) and (2.2) exist and are finite. Inspired by this, we propose a new concept of α-conformable partial derivative. In the way of (1.4), α-conformable partial derivative is defined in as follows:
Definition 2.1 [20] (α-conformable partial derivative) Let α∈(0,1] and s,t∈[0,∞). Suppose f(s,t) is a continuous function and partial derivable, the α-conformable partial derivative at a point s≥0, denoted by ∂∂s(f)α(s,t), defined by
∂∂s(f)α(s,t)=limε→0f(seεs−α,t)−f(s,t)ε, | (2.3) |
provided the limits exist, and call α-conformable partial derivable.
Recently, Katugampola conformable partial derivative is defined in as follows:
Definition 2.2 [20] (Katugampola conformable partial derivatives) Let α∈(0,1] and s,t∈[0,∞). Suppose f(s,t) and ∂∂s(f)α(s,t) are continuous functions and partial derivable, the Katugampola conformable partial derivative, denoted by ∂2∂s∂t(f)α2(s,t), defined by
∂2∂s∂t(f)α2(s,t)=limε→0∂∂s(f)α(s,teεt−α)−∂∂s(f)α(s,t)ε, | (2.4) |
provided the limits exist, and call Katugampola conformable partial derivable.
Definition 2.3 [20] (α-conformable integral) Let α∈(0,1], 0≤a<b and 0≤c<d. A function f(x,y):[a,b]×[c,d]→R is α-conformable integrable, if the integral
∫ba∫dcf(x,y)dαxdαy:=∫ba∫dc(xy)α−1f(x,y)dxdy | (2.5) |
exists and is finite.
Theorem 3.1 Let λ≥1 be a real number and α∈(0,1], and let p(s,t) be a nonnegative and continuous functions on [0,a]×[0,b]. Further, let x(s,t) be an absolutely continuous function and Katugampola partial derivable on [0,a]×[0,b], with x(s,0)=x(0,t)=x(0,0)=0 and x(a,b)=x(a,t)=x(s,b)=0. If p>1, 1p+1q=1 Then
∫a0∫b0p(s,t)|x(s,t)|λdαsdαt≤p+qpq(1α2)λ−1(∫a0∫b0Γabpqλα(s,t)⋅p(s,t)dαsdαt) |
×∫a0∫b0|∂2∂s∂t(x)α2(s,t)|λdαsdαt, | (3.1) |
where
Γabpqλα(s,t)={(st)1/p[(a−s)(b−t)]1/q}α(λ−1). |
Proof From (2.4) and (2.5), we have
x(s,t)=∫s0∫t0∂2∂s∂t(x)α2(s,t)dαsdαt. |
By using Hölder's inequality with indices λ and λ/(λ−1), we have
|x(s,t)|λ/p≤[(∫s0∫t0|∂2∂s∂t(x)α2(s,t)|dαsdαt)λ]1/p |
≤(1α2(st)α)(λ−1)/p(∫s0∫t0|∂2∂s∂t(x)α2(s,t)|λdαsdαt)1/p. | (3.2) |
Similarly, from
x(s,t)=∫as∫bt∂2∂s∂t(x)α2(s,t)dαsdαt, |
we obtain
|x(s,t)|λ/q≤(1α2[(a−s)(b−t)]α)(λ−1)/q(∫as∫bt|∂q∂s∂t(x)α2(s,t)|λdαsdαt)1/q. | (3.3) |
Now a multiplication of (3.2) and (3.3), and by using the well-known Young inequality gives
|x(s,t)|λ≤(1α2)λ−1⋅Γabpqλα(s,t)⋅(∫s0∫t0|∂2∂s∂t(x)α2(s,t)|λdαsdαt)1/p×(∫as∫bt|∂2∂s∂t(x)α2(s,t)|λdαsdαt)1/q≤(1α2)λ−1⋅Γabpqλα(s,t)⋅(1p∫s0∫t0|∂2∂s∂t(x)α2(s,t)|λdαsdαt+1q∫as∫bt|∂2∂s∂t(x)α2(s,t)|λdαsdαt) |
=p+qpq(1α2)λ−1⋅Γabpqλα(s,t)∫a0∫b0|∂2∂s∂t(x)α2(s,t)|λdαsdαt, | (3.4) |
where
Γabpqλα(s,t)={(st)1/p[(a−s)(b−t)]1/q}α(λ−1). |
Multiplying the both sides of (3.4) by p(s,t) and α–conformable integrating both sides over t from 0 to b first and then integrating the resulting inequality over s from 0 to a, we obtain
∫a0∫b0p(s,t)|x(s,t)|λdαsdαt |
≤p+qpq(1α2)λ−1⋅∫a0∫b0Γabpqλα(s,t)⋅p(s,t)(∫a0∫b0|∂2∂s∂t(x)α2(s,t)|λdαsdαt)dαsdαt |
=p+qpq(1α2)λ−1⋅(∫a0∫b0Γabpqλα(s,t)⋅p(s,t)dαsdαt)∫a0∫b0|∂2∂s∂t(x)α2(s,t)|λdαsdαt. |
This completes the proof.
Remark 3.1 Let x(s,t) reduce to s(t) and with suitable modifications, (3.1) becomes the following result.
∫a0p(t)|x(t)|λdαt≤p+qpq(1α2)λ−1⋅∫a0Γapqλα(t)p(t)dαt∫a0|Dα(x)(t)|λdαt, | (3.5) |
where Dα(x)(t) is Katugampola derivative (2.1) stated in the introduction, and
Γapqλα(t)={t1/p(a−t)1/q}α(λ−1). |
Putting p=q=2 and α=1 in (3.5), (3.5) becomes inequality (1.2) established by Agarwal and Pang [3] stated in the introduction.
Taking for α=1, p=q=2 and p(s,t)=constant in (3.1), we have the following interesting result.
∫a0∫b0|x(s,t)|λdsdt≤12(ab)λ[B(λ+12,λ+12)]2∫a0∫b0|∂2∂s∂tx(s,t)|λdsdt, |
where B is the Beta function.
Theorem 3.2 Let j=1,2 and λ≥1 be a real number, and let pj(s,t) be a nonnegative and continuous functions on [0,a]×[0,b]. Further, let xj(s,t) be an absolutely continuous function and Katugampola partial derivable on [0,a]×[0,b], with xj(s,0)=xj(0,t)=xj(0,0)=0 and xj(a,b)=xj(a,t)=xj(s,b)=0. Then for α∈(0,1]
∫a0∫b0(p1(s,t)|x1(s,t)|λ+p2(s,t)|x2(s,t)|λ)dαsdαt |
≤12λ(1α2)λ−1[(∫a0∫b0(st)α(λ−1)p1(s,t)dαsdαt)∫a0∫b0|∂2∂s∂t(x1)α2(s,t)|λdαsdαt |
+(∫a0∫b0(st)α(λ−1)p2(s,t)dαsdαt)∫a0∫b0|∂2∂s∂t(x2)α2(s,t)|λdαsdαt]. | (3.6) |
Proof Because
x1(s,t)=∫s0∫t0∂2∂s∂t(x1)α2(s,t)dαsdαt=∫as∫bt∂2∂s∂t(x1)α2(s,t)dαsdαt. |
Hence
|x1(s,t)|≤12∫a0∫b0|∂2∂s∂t(x1)α2(s,t)|dαsdαt. |
By Hölder's inequality with indices λ and λ/(λ−1), it follows that
p1(s,t)|x1(s,t)|λ≤12λp1(s,t)(∫a0∫b0|∂2∂s∂t(x1)α2(s,t)|dαsdαt)λ |
≤12λ(1α2)λ−1(st)α(λ−1)p1(s,t)∫a0∫b0|∂2∂s∂t(x1)α2(s,t)|λdαsdαt, | (3.7) |
Similarly
p2(s,t)|x2(s,t)|λ≤12λ(1α2)λ−1(st)α(λ−1)p2(s,t)∫a0∫b0|∂2∂s∂t(x2)α2(s,t)|λdαsdαt, | (3.8) |
Taking the sum of (3.7) and (3.8) and α-integrating the resulting inequalities over t from 0 to b first and then over s from 0 to a, we obtain
∫a0∫b0(p1(s,t)|x1(s,t)|λ+p2(s,t)|x2(s,t)|λ)dαsdαt |
≤12λ(1α2)λ−1{∫a0∫b0((st)α(λ−1)p1(s,t)∫a0∫b0|∂2∂s∂t(x1)α2(s,t)|λdαsdαt)dαsdαt+∫a0∫b0((st)α(λ−1)p2(s,t)∫a0∫b0|∂2∂s∂t(x2)α2(s,t)|λdαsdαt)dαsdαt}=12λ(1α2)λ−1[(∫a0∫b0(st)α(λ−1)p1(s,t)dαsdαt)∫a0∫b0|∂2∂s∂t(x1)α2(s,t)|λdαsdαt+(∫a0∫b0(st)α(λ−1)p2(s,t)dαsdαt)∫a0∫b0|∂2∂s∂t(x2)α2(s,t)|λdαsdαt]. |
Remark 3.2 Taking for x1(s,t)=x2(s,t)=x(s,t) and p1(s,t)=p2(s,t)=p(s,t) in (3.6), (3.6) changes to the following inequality.
∫a0∫b0p(s,t)|x(s,t)|λdαsdαt≤12λ(1α2)λ−1 |
×(∫a0∫b0(st)α(λ−1)p(s,t)dαsdαt)∫a0∫b0|∂2∂s∂t(x)α2(s,t)|λdαsdαt. | (3.9) |
Putting α=1 in (3.9), we have
∫a0∫b0p(s,t)|x(s,t)|λdsdt≤12λ(∫a0∫b0(st)λ−1p(s,t)dsdt)∫a0∫b0|∂2∂s∂tx(s,t)|λdsdt. | (3.10) |
Let x(s,t) reduce to s(t) and with suitable modifications, and λ=1, (2.10) becomes the following result.
∫a0p(t)|x(t)|dt≤12(∫a0p(t)dt)∫a0|x′(t)|dt. | (3.11) |
This is just a new inequality established by Agarwal and Pang [4]. For λ=2 the inequality (3.11) has appear in the work of Traple [14], Pachpatte [13] proved it for λ=2m (m≥1 an integer).
Remark 3.3 Let xj(s,t) reduce to xj(t) (j=1,2) and pj(s,t) reduce to pj(t) (j=1,2) with suitable modifications, (3.6) becomes the following interesting result.
∫a0(p1(t)|x1(t)|λ+p2(t)|x2(t)|λ)dαt≤12λ(1α2)λ−1[(∫a0tα(λ−1)p1(t)dαt)∫a0|Dα(x′1)(t)|λdαt |
+(∫a0tα(λ−1)p2(t)dαt)∫a0|Dα(x′2)(t)|λdαt]. | (3.12) |
Putting λ=1 and α=1 in (3.12), we have the following interesting result.
∫a0(p1(t)|x1(t)|+p2(t)|x2(t)|)dt≤12(∫a0p1(t)dt∫a0|x′1(t)|dt+∫a0p2(t)dt∫a0|x′2(t)|dt). |
Finally, we give an example to verify the effectiveness of the new inequalities. Estimate the following double integrals:
∫10∫10[st(s−1)(t−1)]λdsdt, |
where λ≥1.
Let x1(s,t)=x2(s,t)=x(s,t)=st(s−1)(t−1), p1(s,t)=p2(s,t)=p(s,t)=(st)1−α, a=b=1 and 0<α≤1, and by using Theorem 3.2, we obtain
∫10∫10[st(s−1)(t−1)]λdsdt |
=∫10∫10p(s,t)|x(s,t)|λdαsdαt≤12λ(1α2)λ−1(∫10∫10(st)α(λ−1)p(s,t)dαsdαt)∫10∫10|∂2∂s∂t(x)α2(s,t)|λdαsdαt=12λ(1α2)λ−1(1α(λ−1)+1)2∫10∫10[(2s−1)(2t−1)]λ(st)α−1dsdt=12λ(1α2)λ−1(1α(λ−1)+1)2(12α−1∫1−1tλ1(t+1)1−αdt)2≤12λ(1α2)λ−1(1α(λ−1)+1)2(12α−12αα)2=22−λα2λ(α(λ−1)+1)2. |
We have introduced a general version of Opial-Wirtinger's type integral inequality for the Katugampola partial derivatives. The established results are generalization of some existing Opial type integral inequalities in the previous published studies. For further investigations we propose to consider the Opial-Wirtinger's type inequalities for other partial derivatives.
I would like to thank that research is supported by National Natural Science Foundation of China(11471334, 10971205).
The author declares no conflicts of interest.
[1] |
R. P. Agarwal, Harp Opial-type inequalities involving r-derivatives and their applications, Tohoku Math. J., 47 (1995), 567-593. doi: 10.2748/tmj/1178225462
![]() |
[2] | R. P. Agarwal,V. Lakshmikantham, Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations, World Scientific, Singapore, 1993. |
[3] | R. P. Agarwal, P. Y. H. Pang, Opial inequalities with applications in differential and difference Equations, Kluwer Academic Publishers, Dordrecht, 2013. |
[4] |
R. P. Agarwal, P. Y. H. Pang, Sharp opial-type inequalities in two variables, Appl. Anal., 56 (1995), 227-242. doi: 10.1080/00036819508840324
![]() |
[5] | R. P. Agarwal, E. Thandapani, On some new integrodifferential inequalities, Anal. sti. Univ. "Al. I. Cuza" din Iasi, 28 (1982), 123-126. |
[6] | D. Bainov, P. Simeonov, Integral Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, 1992. |
[7] |
W. S. Cheung, Some generalized Opial-type inequalities, J. Math. Anal. Appl., 162 (1991), 317-321. doi: 10.1016/0022-247X(91)90152-P
![]() |
[8] | K. M. Das, An inequality similar to Opial's inequality, P. Am. Math. Soc., 22 (1969), 258-261. |
[9] | E. K. Godunova, V. I. Levin, On an inequality of Maroni, Mat. Zametki., 2 (1967), 221-224. |
[10] |
J. D. Li, Opial-type integral inequalities involving several higher order derivatives, J. Math. Anal. Appl., 167 (1992), 98-100. doi: 10.1016/0022-247X(92)90238-9
![]() |
[11] | D. S. Mitrinovič, Analytic Inequalities, Springer-Verlag, Berlin, New York, 1970. |
[12] |
Z. Opial, Sur une inégalité, Ann. Polon. Math., 8 (1960), 29-39. doi: 10.4064/ap-8-1-29-32
![]() |
[13] | B. G. Pachpatte, A note on an inequality ascribed to Wirtinger, Tamkang J. Math., 17 (1986), 69-73. |
[14] | J. Traple, On a boundary value problem for systems of ordinary differential equations of second order, Zeszyty Nauk, Uni. Jagiell. Prace Math., 15 (1971), 159-168. |
[15] | D. Willett, The existence-uniqueness theorem for an n-th order linear ordinary differential equation, Amer. Math. Monthly, 75 (1968), 174-178. |
[16] | G. S. Yang, A note on inequality similar to Opial inequality, Tamkang J. Math.,18 (1987), 101-104. |
[17] | G. S. Yang, Inequality of Opial-type in two variables, Tamkang J. Math.,13 (1982), 255-259. |
[18] | C. J. Zhao, M. Bencze, On Agarwal-Pang-type inequalities, Ukrainian Math. J., 64 (2012), 200-209. |
[19] | C. J. Zhao, W. S. Cheung, Sharp integral inequalities involving high-order partial derivatives, J. Inequal. Appl.,2008 (2008), 1-10. |
[20] | C. J. Zhao, W. S. Cheung, Inequalities for Katugampola conformable partial derivatives, J. Inequal. Appl.,2019 (2019), 51. |
1. | Artion Kashuri, Muhammad Samraiz, Gauhar Rahman, Zareen A. Khan, Some New Beesack–Wirtinger-Type Inequalities Pertaining to Different Kinds of Convex Functions, 2022, 10, 2227-7390, 757, 10.3390/math10050757 | |
2. | Fidel Meléndez-Vázquez, Guillermo Fernández-Anaya, Aldo Jonathan Muñóz-Vázquez, Eduardo Gamaliel Hernández-Martínez, Generalized conformable operators: Application to the design of nonlinear observers, 2021, 6, 2473-6988, 12952, 10.3934/math.2021749 |