AIMS Mathematics, 2020, 5(2): 1011-1024. doi: 10.3934/math.2020070

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Some Grüss-type inequalities using generalized Katugampola fractional integral

Department of Mathematics Dr. Babasaheb Ambedkar Marathwada University Aurangabad-431004, India

The main objective of this paper is to obtain a generalization of some Grüss-type inequalities in case of functional bounds by using a generalized Katugampola fractional integral. We obtained new Grüss type inequalitys with functional bounds via the generalized fractional integral operators having same and different parameters. Results obtained are more generalized in nature.
  Article Metrics


1. E. Akin, S. Aslıyüce, A. F. Güvenilir, et al. Discrete Grüss type inequality on fractional calculus, J. Inequal. Appl., 2015 (2015), 174.

2. V. L. Chinchane, D. B. Pachpatte, A note on fractional integral inequality involving convex functions using saigo fractional integral, Indian J. Math., 61 (2019), 27-39.

3. V. L. Chinchane, D. B. Pachpatte, On some new Grüss-type inequality using Hadamard fractional integral operator, J. Fract. Calc. Appl., 5 (2014), 1-10.

4. Z. Dahmani, L. Tabharit, S. Taf, New generalizations of Grüss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2 (2010), 93-99.

5. Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlin. Sci., 9 (2010), 493-497.

6. S. S. Dragomir, A generalization of Grüss inequality in inner product spaces and applications, J. Math. Anal. Appl., 237 (1999), 74-82.    

7. S. S. Dragomir, Some integral inequalities of Grüss type, Indian J. Pur. Appl. Math., 31 (2000), 397-415.

8. T. S. Du, J. G. Liao, L. Z. Chen, et al. Properties and Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized (α, m)-preinvex functions, J. Inequal. Appl., 2016 (2016), 306.

9. T. Du, M. U. Awan, A. Kashuri, et al. Some k-fractional extensions of the trapezium inequalities through generalized relative semi-(m, h)-preinvexity, Appl. Anal., 2019 (2019), 1-21.

10. N. Elezovic, L. J. Marangunic, J. Pecaric, Some improvements of Grüss type inequality, J. Math. Inequal., 1 (2007), 425-436.

11. G. Gruss, Uber das maximum des absoluten betrages von, Math. Z., 39 (1935), 215-226.    

12. U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1-15.

13. U. N. Katugampola, New fractional integral unifying six existing fractional integrals, 2016, arXiv:1612.08596 (eprint).

14. A. M. D Mercer, P. Mercer, New proofs of the Grüss inequality, Aust. J. Math. Anal. Appl., 1 (2004), 12.

15. D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, Classical and New Inequalities in Analysis, Springer, 1993.

16. N. Minculete, L. Ciurdariu, A generalized form of Grüss type inequality and other integral inequalities, J. Inequal. Appl., 2014 (2014), 119.

17. B. G. Pachpatte, A note on Chebyshev-Grüss inequalities for differential equations, Tamsui Oxf. J. Math. sci., 22 (2006), 29-37.

18. B. G. Pachpatte, On multidimensional Grüss type integral inequalities, J. Inequal. Pure Appl. Math., 3 (2002), 27.

19. J. V. C. Sousa, D. S. Oliveira, E. C. de Oliveira, Grüss-type inequalities by means of generalized fractional integrals, B. Braz. Math. Soc., 50 (2019), 1029-1047.    

20. J. Tariboon, S. K. Ntouyas, W. Sudsutad, Some new Riemann-Liouville fractional integral inequalities, Int. J. Math. Math. Sci., 2014 (2014).

21. G. Wang, P. Agarwal, M. Chand, Certain Grüss type inequalities involving the generalized fractional integral operator, J. Inequal. Appl., 2014 (2014), 147.

22. C. Zhu, W. Yang, Q. Zhao, Some new fractional q-integral Grüss-type inequalities and other inequalities, J. Inequal. Appl., 2012 (2012), 299.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved