In this paper, we are devoted to investigating the blow-up criteria for the three dimensional nematic liquid crystal flows. More precisely, we proved that the smooth solution (u,d) can be extended beyond T, provided that ∫T0(||ω3||2p2p−3Lp+||u3||2qq−3Lq+||∇d||2˙B0∞,∞)dt<∞,32<p≤∞,3<q≤∞.
Citation: Qiang Li, Baoquan Yuan. Blow-up criterion for the 3D nematic liquid crystal flows via one velocity and vorticity components and molecular orientations[J]. AIMS Mathematics, 2020, 5(1): 619-628. doi: 10.3934/math.2020041
[1] | Qiang Li, Mianlu Zou . A regularity criterion via horizontal components of velocity and molecular orientations for the 3D nematic liquid crystal flows. AIMS Mathematics, 2022, 7(5): 9278-9287. doi: 10.3934/math.2022514 |
[2] | Tariq Mahmood, Zhaoyang Shang . Blow-up criterion for incompressible nematic type liquid crystal equations in three-dimensional space. AIMS Mathematics, 2020, 5(2): 746-765. doi: 10.3934/math.2020051 |
[3] | Qiang Li, Baoquan Yuan . A regularity criterion for liquid crystal flows in terms of the component of velocity and the horizontal derivative components of orientation field. AIMS Mathematics, 2022, 7(3): 4168-4175. doi: 10.3934/math.2022231 |
[4] | Junling Sun, Xuefeng Han . Existence of Sobolev regular solutions for the incompressible flow of liquid crystals in three dimensions. AIMS Mathematics, 2022, 7(9): 15759-15794. doi: 10.3934/math.2022863 |
[5] | Zhongying Liu, Yang Liu, Yiqi Jiang . Global solvability of 3D non-isothermal incompressible nematic liquid crystal flows. AIMS Mathematics, 2022, 7(7): 12536-12565. doi: 10.3934/math.2022695 |
[6] | Zhengyan Luo, Lintao Ma, Yinghui Zhang . Optimal decay rates of higher–order derivatives of solutions for the compressible nematic liquid crystal flows in $ \mathbb R^3 $. AIMS Mathematics, 2022, 7(4): 6234-6258. doi: 10.3934/math.2022347 |
[7] | Xiufang Zhao . Decay estimates for three-dimensional nematic liquid crystal system. AIMS Mathematics, 2022, 7(9): 16249-16260. doi: 10.3934/math.2022887 |
[8] | Muhammad Naqeeb, Amjad Hussain, Ahmad Mohammed Alghamdi . Blow-up criteria for different fluid models in anisotropic Lorentz spaces. AIMS Mathematics, 2023, 8(2): 4700-4713. doi: 10.3934/math.2023232 |
[9] | Danxia Wang, Ni Miao, Jing Liu . A second-order numerical scheme for the Ericksen-Leslie equation. AIMS Mathematics, 2022, 7(9): 15834-15853. doi: 10.3934/math.2022867 |
[10] | Zhaoyang Shang . Osgood type blow-up criterion for the 3D Boussinesq equations with partial viscosity. AIMS Mathematics, 2018, 3(1): 1-11. doi: 10.3934/Math.2018.1.1 |
In this paper, we are devoted to investigating the blow-up criteria for the three dimensional nematic liquid crystal flows. More precisely, we proved that the smooth solution (u,d) can be extended beyond T, provided that ∫T0(||ω3||2p2p−3Lp+||u3||2qq−3Lq+||∇d||2˙B0∞,∞)dt<∞,32<p≤∞,3<q≤∞.
In this paper, we are interested in the following hydrodynamic system modeling the flow of the nematic liquid crystal materials in 3-dimensions:
{∂tu+u⋅∇u−μΔu+∇p=−λ∇⋅(∇d⊙∇d),∂td+u⋅∇d=γ(Δd+|∇d|2d),∇⋅u=0,|d|=1,u(x,0)=u0(x),d(x,0)=d0(x), | (1.1) |
where u is the velocity field, d is the macroscopic average of molecular orientation field and p represents the scalar pressure. And μ is the kinematic viscosity, λ is the competition between the kinetic and potential energies, and γ is the microscopic elastic relation time for the molecular orientation field. The notation ∇d⊙∇d represents the 3×3 matrix, of which the (i,j)th component can be denoted by ∂idk∂jdk(i,j≤3).
The model of the hydrodynamic theory for liquid crystals was established by Ericksen and Leslie [8,12,13], and the system (1.1) was first introduced by Lin [14] as a simplified version to the Ericksen-Leslie system describing the flow of nematic liquid crystals. Later, Lin and Liu had done many significant works such as [15,16].
When the orientation field d equals a constant, the above equations become the incompressible Navier-Stokes equations. Many regularity results on the weak solutions to the three-dimensional Navier-Stokes equations have been well studied, for example see [3,4,5,6,7,9,17,18,21,22,23,30,32,33], and references therein, where they have proved that the solution is a smooth one if the velocity, or vorticity, or the gradient of velocity, or their components are regular. In their famous work [2], J. Beale et al. proved that the smooth solution u blows up at a finite time t=T∗ for the 3D Euler equations, if ∫T∗0‖ω‖L∞dt=∞, which also holds for the Navier-Stokes equations. In [31], Zhang has investigated a regularity criterion via one velocity and one vorticity component. On the other hand, when the velocity field u=0, the system (1.1) becomes to the heat flow of harmonic maps onto a sphere. Wang proved in [24] that, if 0<T∗<∞ is the maximal time for the unique smooth solution d∈C∞(Rn;(0,T∗]), then ‖∇d‖Ln blows up as time t tends to T∗. Motivated by these developments, the global smooth solution on the nematic liquid crystal model (1.1) are studied in a series papers [10,19,20,26,27,28,29]. Huang and Wang [10] established a BKM type blow-up criterion for the system (1.1). That is, if T∗ is the maximal time, 0<T∗<∞, then
∫T∗0(‖ω‖L∞+||∇d||2L∞)dt=∞. | (1.2) |
This result is improved by Zhao [29] via two velocity components and molecular orientations. More precisely, the smooth solution (u, d) of the system (1.1) blows up at time t=T∗<∞, if and only if
∫T∗0(‖∇huh‖q˙B0p,2p3+||∇d||2˙B0∞,∞)dt=∞, with 3p+2q=2,32<p≤∞. | (1.3) |
Recently, Yuan and Wei [27] consider the blow-up criterion in terms of the vorticity in Besov space of negative index and the orientation field in the homogeneous Besov space. If
∫T0(‖ω‖22−r˙B−r∞,∞+||∇d||2˙B0∞,∞)dt<∞, 0<r<2, | (1.4) |
then the solution (u,d) can be extended smoothly beyond T.
Inspired by [27] and [31], we are aimed to replace the gradient of velocity in (1.3) and the vorticity in (1.4) by one velocity and one vorticity component. Our main results are stated as follows:
Theorem 1.1. Assume the initial data u0∈H3(R3) with ∇⋅u0=0, and d0∈H4(R3,S2), (u,d) is a smooth solution to the equations of (1.1) on [0,T) for some 0<T<∞. Then (u,d) can be extended beyond T, provided that
∫T0(||ω3||2p2p−3Lp+||u3||2qq−3Lq+||∇d||2˙B0∞,∞)dt<∞, with 32<p≤∞, 3<q≤∞. | (1.5) |
Remark 1.2. As we know, if the initial data u0∈Hs(Rn) with ∇⋅u0=0 and d0∈Hs+1(Rn,S2) for s≥n, then there exists a positive time T depending only on the initial value such that system (1.1) has a unique smooth solution (u,d)∈(Rn×[0,T)) satisfying (see for example [25])
u∈C([0,T];Hs(Rn))∩C1([0,T];Hs−2(Rn)),d∈C([0,T];Hs+1(Rn))∩C1([0,T];Hs−1(Rn)). |
In the following part, we shall use simplified notations. we shall use the letter C to denote a generic constant which may be different from line to line, and write ∂tu=∂u∂t,∂i=∂∂xi. Since the concrete values of the constants μ,λ,γ play no role in our discussion, to simplify the presentation, we shall assume that μ=λ=γ=1 in this paper.
In this section, we shall recall the interpolation inequality in [1] and the commutator estimate in [11], which will be used in the process of the proof of Theorem 1.1.
Lemma 2.1. (Page 82 in [1]). Let 1<q<p<∞ and α be a positive real number. Then there exists a constant C such that
||f||Lp≤C||f||1−θ˙B−α∞,∞||f||θ˙Bβq,q,with β=α(pq−1),θ=qp. |
In particular, when β=1, q=2 and p=4, we have α=1 and
||f||L4≤C||f||12˙B−1∞,∞||f||12H1. |
Lemma 2.2. (Commutator estimate [11]). Let s>0, 1<p<∞, and 1p=1p1+1p2=1p3+1p4 with p2, p3∈(1,+∞) and p1, p4∈[1,+∞]. Then,
||Λs(fg)||Lp≤C(||g||Lp1||Λsf||Lp2+||Λsg||Lp3||f||Lp4),‖|[Λs,f⋅∇]g||Lp≤C(||∇f||Lp1||Λsg||Lp2+||Λsf||Lp3||∇g||Lp4). |
In this section, we will prove Theorem 1.1 by energy methods. Under the condition (1.5), it suffices to show that, there exists a constant C such that
∫T0(‖ω‖L∞+||∇d||2L∞)dt<C, | (3.1) |
which is enough to guarantee the extension of smooth solution (u,d) beyond the time T, for details refer to [10].
Firstly, taking the L2 inner product with u and −Δd to the equations (1.1)1 and (1.1)2 respectively, and adding them together, it follows that
12ddt(||u||2L2+||∇d||2L2)+||∇u||2L2+||Δd||2L2=−∫R3|∇d|2dΔddx=∫R3|dΔd|2dx≤||Δd||2L2, | (3.2) |
where we have used the facts |d|=1, |∇d|2=−d⋅Δd, and the following equalities, due to ∇⋅u=0,
∫R3(u⋅∇u)⋅udx=0, ∫R3∇p⋅udx=0, |
∫R3[(u⋅∇d)⋅Δd−∇⋅(∇d⊙∇d)⋅u]dx=∫R3(ui∂id∂j∂jd−∂id∂j∂jdui−∂i∂jd∂jdui)dx=∫R3−∂i(|∂jd|22)uidx=0. |
Integrating (3.2) in time, we get
sup0<t<T(||u(t)||2L2+||∇d(t)||2L2)+∫T0||∇u(t)||2L2dt≤||u0||2L2+||∇d0||2L2. |
Next, we are devoted to obtaining the the H1 estimate of u and ∇d. Applying Δ to the Eq. (1.1)2, and taking the inner product with Δd, we obtain
12ddt||Δd||2L2+||∇Δd||2L2=−∫R3Δ(u⋅∇d)⋅Δddx+∫R3Δ(|∇d|2d)⋅Δddx. | (3.3) |
Multiplying (1.1)1 by −Δu, and integrating by parts, one has
12ddt||∇u||2L2+||Δu||2L2=∫R3(u⋅∇)u⋅Δudx+∫R3∇⋅(∇d⊙∇d)⋅Δudx. | (3.4) |
Summing up (3.3) and (3.4), it could be derived that
12ddt(||∇u||2L2+||Δd||2L2)+||Δu||2L2+||∇Δd||2L2=∫R3(u⋅∇)u⋅Δudx+∫R3∇⋅(∇d⊙∇d)⋅Δudx−∫R3Δ(u⋅∇d)⋅Δddx+∫R3Δ(|∇d|2d)⋅Δddx:=I1+I2+I3+I4. | (3.5) |
For the term I1 one may refer to [31], for the completeness, We here give the deduction as follows:
I1=∫R3(u⋅∇)u⋅Δudx=∫R33∑i,j=1uj∂jui∂k∂kuidx=−∫R33∑i,j=1∂kuj∂jui∂kuidx. |
We classify the the terms ∂kuj∂jui∂kui,1≤i,j,k≤3 as
(1) If k=j=3, or j=i=3, or k=i=3, we then invoke the divergence free condition to replace ∂3u3 by −∂1u1−∂2u2;
(2) Otherwise, at least two indices belong to {1,2}. Thus I1 will be
I1=3∑i,j,k,l=1∫R3α11ijkl∂1u1∂iuj∂kul+3∑i,j,k,l=1∫R3α12ijkl∂1u2∂iuj∂kul+3∑i,j,k,l=1∫R3α21ijkl∂2u1∂iuj∂k+3∑i,j,k,l=1∫R3α22ijkl∂2u2∂iuj∂k=I11+I12+I21+I22, |
where αmnijkl, 1≤m,n≤2, 1≤i,j,k,l≤3, are suitable integers. Next, we want to represent ∂mun,1≤m,n≤2 by u3 and ω3. Denoting by Δh=∂1∂1+∂2∂2 the horizontal Laplacian, we have
Δhu1=∂1∂1u1+∂2∂2u1=∂1(−∂2u2−∂3u3)+∂2∂2u1=−∂2(∂1u2−∂2u1)−∂1∂3u3=−∂2ω3−∂1∂3u3, |
Δhu2=∂1ω3−∂2∂3u3. |
Based on the computations above, we can use the two-dimension Riesz transformation ℜm=∂m√−Δh to denote the term ∂mun,1≤m,n≤2,
∂mu1=∂2√−Δh∂m√−Δhω3+∂1√−Δh∂m√−Δh∂3u3=ℜ2ℜmω3+ℜ1ℜm∂3u3, | (3.6) |
∂mu2=ℜ1ℜmω3+ℜ2ℜm∂3u3. | (3.7) |
By (3.6), the term I11 could be turned into
I11=3∑i,j,k,l=1∫R3α11ijkl∂1u1∂iuj∂kuldx=3∑i,j,k,l=1∫R3α11ijkl(ℜ2ℜ1ω3+ℜ1ℜ1∂3u3)∂iuj∂kuldx=3∑i,j,k,l=1∫R3α11ijklℜ2ℜ1ω3∂iuj∂kuldx−3∑i,j,k,l=1∫R3α11ijklℜ1ℜ1u3(∂3∂iuj∂kul+∂iuj∂3∂kul)dx. |
Because of the Riesz transformation being bounded in Lp(R2) to Lp(R2) for 1<p<∞, and using H¨older and Gagliardo-Nirenberg inequalities yields
I11≤C||ω3||Lp||∇u||2L2pp−1+C||u3||Lq||∇u||L2qq−2||∇2u||L2≤C||ω3||Lp||∇u||2p−3pL2||∇2u||3pL2+C||u3||Lq||∇u||q−3qL2||∇2u||q+3qL2≤C(||ω3||2p2p−3Lp+||u3||2qq−3Lq)||∇u||2L2+132||Δu||2L2. |
The estimates of terms I12,I21,I22 are similar to I11, thus we can get
I1≤C(||ω3||2p2p−3Lp+||u3||2qq−3Lq)||∇u||2L2+18||Δu||2L2. | (3.8) |
Next, we estimate the terms I2,I3,I4.
I2+I3=∫Rn∂j(∂idk∂jdk)∂lluidx−∫R3∂ll(ui∂idk)∂jjdkdx=∫R3∂idk∂jjdk∂lluidx+∫R3∂l(ui∂idk)∂l∂jjdkdx=−∫R3∂i∂ldk∂jjdk∂luidx−∫R3∂idk∂l∂jjdk∂luidx+∫R3∂lui∂idk∂l∂jjdkdx+∫R3ui∂i∂ldk∂l∂jjdkdx=−∫R3∂i∂ldk∂jjdk∂luidx+∫R3ui∂i∂ldk∂l∂jjdkdx=−∫R3∂i∂ldk∂jjdk∂luidx−∫R3∂lui∂i∂ldk∂jjdkdx. |
We deduce from the Lemma 2.1 that
I2+I3≤||∇u||L2||Δd||2L4≤C||∇u||L2||∇d||˙B0∞,∞||∇Δd||L2≤C||∇d||2˙B0∞,∞||∇u||2L2+14||∇Δd||2L2, | (3.9) |
For I4, it is easy to check that
I4=∫R3Δ(|∇d|2d)⋅Δddx=−∫R3∇(|∇d|2d)∇Δddx=−∫R3(|∇d|2∇d+d∇d∇2d)∇Δddx=∫R3|∇d|2∇2dΔd−d∇d∇2d∇Δddx≤C||∇d||2L4||Δd||2L4+C||∇d||L4||Δd||L4||∇Δd||L2≤C||∇d||2L4||Δd||2L4+18||∇Δd||2L2 | (3.10) |
≤C||Δd||L2||∇d||˙B0∞,∞||∇Δd||L2+18||∇Δd||2L2≤C||∇d||2˙B0∞,∞||Δd||2L2+14||∇Δd||2L2. |
Inserting (3.8), (3.9) and (3.10) into (3.5) yields
ddt(||∇u||2L2+||Δd||2L2)+||Δu||2L2+||∇Δd||2L2≤C(||ω3||2p2p−3Lp+||u3||2qq−3Lq+||∇d||2˙B0∞,∞)(||∇u||2L2+||Δd||2L2). |
Applying the Gronwall inequality leads to
||∇u||2L2+||Δd||2L2+∫T0(||Δu||2L2+||∇Δd||2L2)dt≤exp∫T0(||ω3||2p2p−3Lp+||u3||2qq−3Lq+||∇d||2˙B0∞,∞dt)(||∇u0||2L2+||Δd0||2L2)<C | (3.11) |
At last, under the H1 estimates of ∇u and Δd, we will show
∫T0(||∇Δu||2L2+||Δ2d||2L2)dt<C, | (3.12) |
where C is a constant.
Applying Δ and ∇Δ to the Eqs. (1.1)1 and (1.1)2 respectively, and taking the L2 inner product with (Δu,∇Δd), we obtain that
12ddt(||Δu||2L2+||∇Δd||2L2)+||∇Δu||2L2+||Δ2d||2L2=−∫R3Δ(u⋅∇u)⋅Δudx−∫R3Δ(∇dj⋅Δdj)⋅Δudx−∫R3∇Δ(u⋅∇d)⋅∇Δddx−∫R3∇Δ(|∇d|2d)⋅∇Δddx:=J1+J2+J3+J4. | (3.13) |
Using the inequality (3.11) and commutator estimate, J1,J2,J3 can be estimated by
J1=−∫R3[Δ,u⋅∇]u⋅Δudx≤||[Δ,u⋅∇]u||L43||Δu||L4≤C(||∇u||L2||Δu||L4+||Δu||L4||∇u||L2)||Δu||L4≤C||∇u||L2||Δu||2L4≤C||Δu||12L2||∇Δu||32L2≤C||Δu||2L2+16||∇Δu||2L2, | (3.14) |
J2=∫R3∇(∇dj⋅Δdj)∇Δudx≤||Δ(∇dj⋅Δdj)||L2||Δu||L2≤(||∇d||L4||∇Δd||L4+||Δd||L4||Δd||L4)||∇Δu||L2≤C(||Δd||L2||∇Δd||L4+||Δd||L4||Δd||L4)||∇Δu||L2≤C||∇Δd||2L4+C||Δd||4L4+16||∇Δu||2L2≤C||∇Δd||12L2||Δ2d||32L2+C||Δd||52L2||Δ2d||32L2+16||∇Δu||2L2≤C(||∇Δd||2L2+1)+16||Δ2d||2L2+16||∇Δu||2L2, | (3.15) |
J3=−∫R3[∇Δ,u⋅∇]d⋅∇Δddx≤||[∇Δ,u⋅∇]d||L43||∇Δd||L4≤C(||∇u||L2||∇Δd||L4+||∇d||L4||∇Δu||L2)||∇Δd||L4≤C(||∇u||L2||∇Δd||L4+||Δd||12L2||∇Δu||L2)||∇Δd||L4≤C||∇Δd||2L4+16||∇Δu||2L2≤C||∇Δd||12L2||Δ2d||32L2+16||∇Δu||2L2≤C||∇Δd||2L2+16||Δ2d||2L2+16||∇Δu||2L2. | (3.16) |
To bound J4, by the facts |d|=1, |∇d|2=−d⋅Δd, it follows that
J4=−∫R3∇Δ(|∇d|2d)⋅∇Δddx=∫R3Δ(|∇d|2d)Δ2d=∫R3[Δ(|∇d|2)d+2∇|∇d|2∇d+|∇d|2Δd]Δ2d≤C(‖ΔdΔd‖L2+||∇d∇Δd||L2+||∇d∇dΔd||L2+||dΔdΔd||L2)||Δ2d||L2≤C(||Δd||2L4+||∇d||L4||∇Δd||L4)||Δ2d||L2≤C||Δd||54L2||Δ2d||34L2||Δ2d||L2+C||∇Δd||14L2||Δ2d||34L2||Δ2d||L2≤C(||∇Δd||2L2+1)+16||Δ2d||2L2. | (3.17) |
Putting the estimates (3.14)–(3.17) to (3.13), we get
ddt(||Δu||2L2+||∇Δd||2L2)+||∇Δu||2L2+||Δ2d||2L2≤C(||Δu||2L2+||∇Δd||2L2+1), |
which gives us the desired result (3.12) by the Gronwall inequality. Finally, by using the Sobolev embedding H2(R3)↪L∞(R3), (3.12) leads to the BKM's criterion (3.1) immediately, which completes the proof of Theorem 1.1.
The research of Baoquan Yuan was partially supported by the National Natural Science Foundation of China (No. 11471103).
All authors declare no conflicts of interest in this paper.
[1] | H. Bahouri, J. Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Heidelberg: Springer, 2011. |
[2] | J. T. Beale, T. Kato, A. Majda, Remarks on breakdown of smooth solutions for the 3D Euler equations, Commun. Math. Phys., 94 (1984), 61-66. |
[3] | C. S. Cao, Sufficient conditions for the regularity to the 3D Navier-Stokes equations, Discrete Contin. Dyn. Syst., 26 (2010), 1141-1151. |
[4] | C. S. Cao, E. S. Titi, Regularity criteria for the three-dimensional Navier-Stokes equations, Indiana Univ. Math. J., 57 (2008), 2643-2661. |
[5] | P. Constantin, C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations, Indiana Univ. Math. J., 42 (1993), 775-789. |
[6] | L. Escauriaza, G. Seregin, V. Šverák, Backward uniqueness for parabolic equations, Arch. Ration. Mech. Anal., 169 (2003), 147-157. |
[7] | B. Q. Dong, Z. F. Zhang, The BKM criterion for the 3D Navier-Stokes equations via two velocity components, Nonlinear Anal. Real, 11 (2010), 2415-2421. |
[8] | J. L. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rheol., 5 (1961) 23-34. |
[9] | H. Kozono, T. Ogawa, Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., 242 (2002), 251-278. |
[10] | T. Huang, C. Y. Wang, Blow up criterion for nematic liquid crystal flows, Commun. Part. Diff. Eq., 37 (2012), 875-884. |
[11] | T. Kato, G. Ponce, Commutator estimates and the Euler and the Navier-Stokes equations, Commun. Pur. Appl. Math., 41 (1988), 891-907. |
[12] | F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265-283. |
[13] | F. M. Leslie, Theory of Flow Phenomenon in Liquid Crystals, In: Advances in Liquid Crystals, New York: Academic Press, 4 (1979), 1-81. |
[14] | F. H. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Commun. Pur. Appl. Math., 42 (1989), 789-814. |
[15] | F. H. Lin, C. Liu, Nonparabolic dissipative systems modelling the flow of liquid crystals, Commun. Pur. Appl. Math., 48 (1995), 501-537. |
[16] | F. H. Lin, C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals, Discrete Contin. Dynam. Syst., 2 (1996), 1-22. |
[17] | G. Prodi, Un teorema di unicit per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48 (1959), 173-182. |
[18] | P. Penel, M. Pokorný, Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity, Appl. Math., 49 (2004), 483-493. |
[19] | C. Y. Qian, Remarks on the regularity criterion for the nematic liquid crystal flows in R3, Appl. Math. Comput., 274 (2016), 679-689. |
[20] | C. Y. Qian, A further note on the regularity criterion for the 3D nematic liquid crystal flows, Appl. Math. Comput., 290 (2016), 258-266. |
[21] | J. Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Probl. Proc. Symp., 1963 (1963), 69-98. |
[22] | H. Beirão da Veiga, A new regularity class for the Navier-Stokes equations in Rn, Chinese Ann. Math. Ser. B, 16 (1995), 407-412. |
[23] | H. Beirão da Veiga, L. Berselli, On the regularzing effect of the vorticity direction in incompressible viscous flows, Differ. Integral Equ., 15 (2002), 345-356. |
[24] | C. Y. Wang, Heat flow of harmonic maps whose gradients belong to LnxL∞t, Arch. Ration. Mech. Anal., 188 (2008), 309-349. |
[25] | H. Y. Wen, S. J. Ding, Solutions of incompressible hydrodynamic flow of liquid crystals, Nonlinear Anal. Real, 12 (2011), 1510-1531. |
[26] | R. Y. Wei, Z. A. Yao, Y. Li, Regularity criterion for the nematic liquid crystal flows in terms of velocity, Abst. Appl. Anal., 2014 (2014), 234809. |
[27] | B. Q. Yuan, C. Z. Wei, BKM's criterion for the 3D nematic liquid crystal flows in Besov spaces of negative regular index, J. Nonlinear Sci. Appl., 10 (2017), 3030-3037. |
[28] | B. Q. Yuan, C. Z. Wei, Global regularity of the generalized liquid crystal model with fractional diffusion, J. Math. Anal. Appl., 467 (2018), 948-958. |
[29] | J. H. Zhao, BKM's criterion for the 3D nematic liquid crystal flows via two velocity components and molecular orientations, Math. Method. Appl. Sci., 40 (2016), 871-882. |
[30] | Z. F. Zhang, Q. L. Chen, Regularity criterion via two components of vorticity on weak solutions to the Navier-Stokes equationsin R3, J. Differ. Equations, 216 (2005), 470-481. |
[31] | Z. J. Zhang, G. Zhou, Serrin-type regularity criterion for the Navier-Stokes equations involving one velocity and one vorticity component, Czech. Math. J., 68 (2018), 219-225. |
[32] | Y. Zhou, A new regularity criterion for weak solutions to the Navier-Stokes equations, J. Math. Pure. Appl., 84 (2005), 1496-1514. |
[33] | Y. Zhou, M. Pokorný, On the regularity to the solutions of the Navier-Stokes equations via one velocity component, Nonlinearity, 23 (2010), 1097-1107. |
1. | Baoquan Yuan, Qiang Li, Note on global regular solution to the 3D liquid crystal equations, 2020, 109, 08939659, 106491, 10.1016/j.aml.2020.106491 | |
2. | Qiang Li, Baoquan Yuan, Two regularity criteria of solutions to the liquid crystal flows, 2023, 0170-4214, 10.1002/mma.9045 | |
3. | Qiang Li, Baoquan Yuan, A regularity criterion for liquid crystal flows in terms of the component of velocity and the horizontal derivative components of orientation field, 2022, 7, 2473-6988, 4168, 10.3934/math.2022231 | |
4. | Qiang Li, Mianlu Zou, A regularity criterion via horizontal components of velocity and molecular orientations for the 3D nematic liquid crystal flows, 2022, 7, 2473-6988, 9278, 10.3934/math.2022514 | |
5. | Ruirui Wang, Qiang Mu, Yulei Wang, Qiang Li, Yongqiang Fu, Two Logarithmically Improved Regularity Criteria for the 3D Nematic Liquid Crystal Flows, 2022, 2022, 2314-4785, 1, 10.1155/2022/4454497 | |
6. | Wei Li, Qiongru Wu, Global smooth solution to the n-dimensional liquid crystal equations with fractional dissipation, 2024, 57, 2391-4661, 10.1515/dema-2024-0019 | |
7. | Ines Ben Omrane, Mourad Ben Slimane, Sadek Gala, Maria Alessandra Ragusa, A new regularity criterion for the 3D nematic liquid crystal flows, 2025, 23, 0219-5305, 287, 10.1142/S0219530524500313 |