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1. Introduction

In this paper, we are interested in the following hydrodynamic system modeling the flow of the
nematic liquid crystal materials in 3-dimensions:

Oou+u-Vu—puAu+Vp=-AV-(Vd o Vd),
d,d +u-Vd = y(Ad + |Vd*d),
V-u=0,d =1,

u(x,0) = up(x), d(x, 0) = do(x),

(1.1)

where u 1s the velocity field, d is the macroscopic average of molecular orientation field and p
represents the scalar pressure. And u is the kinematic viscosity, A is the competition between the
kinetic and potential energies, and y is the microscopic elastic relation time for the molecular
orientation field. The notation Vd © Vd represents the 3 x 3 matrix, of which the (i, j)th component
can be denoted by 0;d;0;d(i, j < 3).

The model of the hydrodynamic theory for liquid crystals was established by Ericksen and
Leslie [8, 12, 13], and the system (1.1) was first introduced by Lin [14] as a simplified version to the
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Ericksen-Leslie system describing the flow of nematic liquid crystals. Later, Lin and Liu had done
many significant works such as [15, 16].

When the orientation field d equals a constant, the above equations become the incompressible
Navier-Stokes equations. Many regularity results on the weak solutions to the three-dimensional
Navier-Stokes equations have been well studied, for example see [3-7,9,17,18,21-23,30,32,33], and
references therein, where they have proved that the solution is a smooth one if the velocity, or
vorticity, or the gradient of velocity, or their components are regular. In their famous work [2], J.
Beale et al. prgved that the smooth solution u blows up at a finite time t+ = T* for the 3D Euler
equations, if fOT ||wl|z~dt = oo, which also holds for the Navier-Stokes equations. In [31], Zhang has
investigated a regularity criterion via one velocity and one vorticity component. On the other hand,
when the velocity field u = 0, the system (1.1) becomes to the heat flow of harmonic maps onto a
sphere. Wang proved in [24] that, if 0 < 7™ < oo is the maximal time for the unique smooth solution
d € C*(R";(0,T*]), then ||Vd||;» blows up as time ¢ tends to 7. Motivated by these developments, the
global smooth solution on the nematic liquid crystal model (1.1) are studied in a series
papers [10, 19, 20,26-29]. Huang and Wang [10] established a BKM type blow-up criterion for the
system (1.1). That is, if 7" is the maximal time, 0 < 7" < oo, then

.
f (Ul + IVAIE)dr = oo. (12)
0

This result is improved by Zhao [29] via two velocity components and molecular orientations. More
precisely, the smooth solution (u, d) of the system (1.1) blows up at time ¢t = 7" < oo, if and only if

T*
3.2 3
f (IVadllyy  + IVl )dr = oo, with P 2.5 <pse. (1.3)
0 ,

2p
Py

Recently, Yuan and Wei [27] consider the blow-up criterion in terms of the vorticity in Besov space of
negative index and the orientation field in the homogeneous Besov space. If

r

f (||w| 4 ||Vd|| )dt <oo, 0<r<2, (1.4)

then the solution (u, d) can be extended smoothly beyond 7.

Inspired by [27] and [31], we are aimed to replace the gradient of velocity in (1.3) and the vorticity
in (1.4) by one velocity and one vorticity component. Our main results are stated as follows:
Theorem 1.1. Assume the initial data uy € H*(R®) with V - uy = 0, and dy € H*(R?,S?), (u,d) is a
smooth solution to the equations of (1.1) on [0, T) for some 0 < T < co. Then (u,d) can be extended
beyond T, provided that

2p

3
f (sl + ||u3|| + IIVdIIBo )t < oo, with 5 < p < 0, 3 < g < 0. (1.5)

Remark 1.2. As we know, if the initial data uy € H*(R") with V - uy = 0 and dy € H**'(R", S?) for
s > n, then there exists a positive time T depending only on the initial value such that system (1.1) has
a unique smooth solution (u,d) € (R" X [0, T)) satisfying (see for example [25])
u € C([0, TT; H'R") N C'([0, T]; H**(R"),
d € C([0, TI; H*'(RM) N C'([0, T1; H*'(R")).

AIMS Mathematics Volume 5, Issue 1, 619-628.



621

In the following part, we shall use simplified notations. we shall use the letter C to denote a generic

constant which may be different from line to line, and write d,u = Z—’l‘, 0, = %. Since the concrete

values of the constants u, 4,7y play no role in our discussion, to simplify the presentation, we shall
assume that 4 = A =y = 1 in this paper.

2. Preliminaries

In this section, we shall recall the interpolation inequality in [ 1] and the commutator estimate in [11],
which will be used in the process of the proof of Theorem 1.1.

Lemma 2.1. (Page 82 in [1]). Let 1 < g < p < oo and a be a positive real number. Then there exists a
constant C such that

_ . 14
1Al < CUALE AL, cwith = o —1),0= 1.
e @ q p
In particular, when 8 =1, ¢ =2 and p = 4, we have a = 1 and
11l < ClAG 1117

Lemma 2.2. (Commutator estimate [11]). Let s > 0, 1 < p < o0, and 11—7 =141l L

L with D2,
P1 p2 p3 P4
p3 € (1,+00) and py, p4 € [1,+00]. Then,

IA*(Flr < CAIglLr IA° fllzre + 1Al Lrs ] fllire)
A, - VIgllir < CAV AUl lIA gl + IA° fllrs IVl Lrs).

3. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1 by energy methods. Under the condition (1.5), it suffices
to show that, there exists a constant C such that

T
f (Il + IVdIE)dr < C, (3.1)
0

which is enough to guarantee the extension of smooth solution (u,d) beyond the time 7', for details
refer to [10].

Firstly, taking the L? inner product with u and —Ad to the equations (1.1); and (1.1), respectively,
and adding them together, it follows that

1d
§d_r(”u”iz +IVdllZ,) + IVull7, + lIAd], —f3 Vdl*dAddx

R

120

f 3 ldAd*dx < ||Ad|? (3.2)
R

where we have used the facts |d| = 1, |Vd|* = —d - Ad, and the following equalities, due to V - u = 0,

f(u-Vu)-udx:O,pr-udx:O,
R3 R3
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‘fR} [(u-Vd)-Ad -V - (Vdo Vd)-uldx = (1;0,d0;0;d — 0;d0 ;0 ;du; — 0,0,d0 ;du;)dx

dx = 0.

.
.o

Integrating (3.2) in time, we get

T
sup ()7, + IVd®I;.) + f IVu(@)|I7,d < lluoll7, + IV el
0

0<t<T

Next, we are devoted to obtaining the the H' estimate of u and Vd. Applying A to the Eq. (1.1),, and
taking the inner product with Ad, we obtain

1d
——||Ad|| ||VAd||L2 = —f A(u-Vd) - Addx + f A(Vd|*d) - Addx. (3.3)
2 dt R3 R3
Multiplying (1.1); by —Au, and integrating by parts, one has
d
——|IVull;, + | Aull;, = f (u - Vu - Audx + f V- (Vd © Vd) - Audx. (3.4)
2 dt R3 R3

Summing up (3.3) and (3.4) , it could be derived that
li(IIV 117, + [IAdII7) + [|Aull?, + [IVAd]];
5 Vsl L Ul J&
= f(u~V)u~Audx+f V- (Vd o Vd) - Audx
R3 R3

- f A(u - Vd) - Addx + f A(IVd|*d) - Addx
R3 R3
= L+L+L5L+1,. 3.5

For the term /; one may refer to [31], for the completeness, We here give the deduction as follows:

I (u V)u - Audx

f Z U ;0 ju;0r0ku;dx

111

f Z Oyt ju: Oy ;.

i,j=1

We classify the the terms 0gu;0;u;0u;, 1 < i, j,k <3 as

(OIfk=j=3,0orj=i=3,ork=1i=3, we then invoke the divergence free condition to replace d;u;
by —01u; — dru,;
(2) Otherwise, at least two indices belong to {1, 2}. Thus /; will be

3 3
Z fa’llzjklalulaujakul"' Z falzijkzaluzaiujakuz

i,k =1 i,k =1 R}
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3

Z fa211jk162ulau]ak+ Z fa'22ijklazu2aiujak
i,jk, =1

i,jk,0=1
= I+ 1+ DI + I,

where @ij, 1 < myn < 2, 1 < i, j,k,I < 3, are suitable integers. Next, we want to represent
Oy, 1 <m,n <2by u;z and w;. Denoting by A, = 0,0, + 0,0, the horizontal Laplacian, we have
Apu; = 6161141 + (9262141
= 01(=0yuy — O3u3) + 0,0,u,
= —0,(01uy — Oruy) — 0,033

= —0Ohw; — 0,03u3,

Ahuz = (91(1)3 — 6263143.

Based on the computations above, we can use the two-dimension Riesz transformation R, = j_—L’A’ to
denote the term d,,u,, 1 <m,n < 2, l
62 Om a1 8m
0mu1 = w3 + 631/{3 = %2%,,,(1)3 + %1%,"(931/{3, (36)
V=An V=4 V=Ap V=Ay
8mu2 = %1%,,,0)3 + %2%,”831/{3. (37)

By (3.6), the term /;; could be turned into

Iy f ay1jk01u10;u jOruydx

R3

~
=~
i

1l
—_

2N

f &11ijk1(R2%1w3 + %1%103”3)6i”j6kuldx
| IR

<
o~
—
Il

BN BN

fa“ijk,%z‘?\lwﬁiujakuldx
R3
1

<
o~
—
Il

f 0/11,~jk1%1%1u3(633iu,3ku1 + (9,-u.,-<93(9ku1)dx.

R3

~
=~
i

1l
—_

2N

Because of the Riesz transformation being bounded in L(R?) to LP(R?) for 1 < p < oo, and using
Holder and Gagliardo-Nirenberg inequalities yields

2
Ly < Clwsllp|IVul? 2+ ClluslicallVull 2 [1V7ull2
Lp-1
2p3 ) 5 q+3
< Cllwslie [Vl IIV uII +C||u3IILqIIVu|| IIV ull,2
2
< C(Ilw3||2“+||u3|| )IIVMII 2||AM||L2
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The estimates of terms /15, I51, I, are similar to [y, thus we can get

2p

p— 1
L < Clllwsll; +||u3|| )IIVMII + gllAull7,.

Lr

Next, we estimate the terms I, I3, I,.

12+I3

faj(aidkajdk)aﬂuidx—f 8;,(u,~8,~dk)6jjdkdx

R3

f@idkajjdk(')ﬂuidx+f Gl(u,-a,-dk)(')lﬁjjdkdx
R3

Il
%%

0; 6ldk6”dk(9,u dx — f aidkal(?jjdkalu,-dx

R3

+
>

u@idkalajjdkdx+f uiaiﬁldkalﬁjjdkdx

R3

0, 81dk8Udk81u dx + ul-@,-(')ldkﬁl(?jjdkdx

6,-61dk<9jjdk(9,u,~dx - alu,-a,-aldkajjdkdx.

w
[}

%%%
T

We deduce from the Lemma 2.1 that

L+ < |VullAdl,
< CIIVMIILzIIVdIIBgLWIIVAa'IIL2
< CIIVdIIf;&WIIVMIIiz IIVAdII

12°

For 14, it is easy to check that

I f A(Vd[*d) - Addx = — f V(Vd|*d)VAddx
R3 R3

= - f (IVd*Vd + dVdV*d)VAddx = f IVd|*V*dAd — dVdV*dV Addx
R3 R3

IA

CIVAIZlIAdIIZ, + CIIVAlllAd] VA2

IA

1
CIIVdll7IIAdII, + gllVAdlliz

IA

1
CllAdl2IVdllg, IVAdI2 + gIIVAdIIiz
1
< CIIVdIIf?govwllAdlliz + ZIIVAdIIiz-
Inserting (3.8), (3.9) and (3.10) into (3.5) yields

d
a(IIVulliz +1AdI7) +  llAull, + IVAI,

2p 2q
=3 -3 2 2 2
< Cllwslly” + llusllz,” + 11Vl DAIVull + IAIL).

(3.8)

(3.9)

(3.10)
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Applying the Gronwall inequality leads to

T
IVull7, + IIAdIIiﬁf(IIAulliﬁllVAdlliz)dt
0

IA

T 2 2q

expf (lwsll;y™ + lluslly,” + VIR, dDUIVuoll. + [IAdolI3.) (3.11)
0 00,00

C

At last, under the H'! estimates of Vu and Ad, we will show
T
f (IVAull;, + 1A%d|]7,)dt < C, (3.12)
0
where C is a constant.
Applying A and VA to the Egs. (1.1); and (1.1), respectively, and taking the L? inner product with
(Au, VAd), we obtain that
lg(IIA 17, + IVAdI.) + IV Aull?, + |A%d]];
2 dt u L2 L2 u L2 L2

= —f A(u - Vu) - Audx — f A(Vd; - Ad;) - Audx
R3 R?

- f VA(u - Vd) - VAddx — f VA(Vd[*d) - VAddx
R3 R3
= Ji+ L+ 3+ U, (313)

Using the inequality (3.11) and commutator estimate, Ji, J», J3 can be estimated by

J = —f[A,u-V]u-Audx
]R3
< A u- V]Mlng |Au|p4
< CUIVull2llAull s + [[Aul| 2|Vl 2)|| Al | 1+
< C||VM||L2||AM||i4 (3.14)
1 3
< CllaulIvAulL,
1
< C”Au”iz + EHVAMH%Z,
5 = f V(Vd,; - Ad;)VAudx
R3
< AV - Ad || 2| Aul| 2
< (IVAll+IVAd|| 1+ + [|Ad]| 2 |Ad| 1)1V Aul| 2
< C(IAdl2lIVAd||s + |Ad]| 4| A )|V A 2
1
< C||VAd||i4+C||Ad||i4+6||VAM||iz (3.15)
VAdIEIAZIE. + ClIAdE AL, + L1V Aul?
< CIVAAILINGIL, + CIADIL 1N, + £V AU,
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1 1
< CIVAd, + 1) + gllAzdIIiz + gIIVAulliz,

J3 —f[VA,u'V]d-VAddx
R3
VA, u- V1d|l +IIVAd]|.s
CIVull2IVAd|| s + [IVd|| ]IV Aull2)IIVAd]

1
CIVull2[IVAd|| 2 + A NIV Aull )11V Ad] | 4

IAN A

IA

IA

1
CIIVAd|;, + EIIVAulliz (3.16)

IA

boazad L L 2
CIIVAd||,lIA%d]l;, + g”VAM”Lz
1 1
< ClVAdl;, + EHAZd”iz + EIIVAulliz-
To bound J,, by the facts |d| = 1, |Vd|*> = —d - Ad, it follows that

J, = - f VA(Vd]*d) - VAddx = f A(VdPd)A*d
R3 R3

f [A(Vd|?)d + 2V|Vd|*Vd + |Vd[*Ad]1A*d
R3

C(IAAd]|,2 + IVAVAd||2 + [IVAVAAd]|2 + |[dAdAd]| )| A2
CUIAdI;, + IVl IV A )IA Al 2 (3.17)

3 AZN3 A2 E AZINE A2
CllAdIlLNIA%d| L IIA 2 + CIVAAILLIIA™I A2

IANIA A

IA

1

C(IVAd|l, + 1) + gllAzdlliz-
Putting the estimates (3.14)—(3.17) to (3.13), we get

d

d—t(llAulliz + IVAdIIL) + IVAull?, + IA%d|I7, < ClAullZ, + (IVAdIZ, + 1),
which gives us the desired result (3.12) by the Gronwall inequality. Finally, by using the Sobolev
embedding H*(R?) — L®(R?), (3.12) leads to the BKM’s criterion (3.1) immediately, which completes
the proof of Theorem 1.1.
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