Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

On quantum aspects of general theory of relativity and its detectors

Department of HEAS (Mathematics), Rajasthan Technical University, Kota 324010, India

Special Issues: 2nd International Conference on Mathematical Modeling, Applied Analysis and Computation (ICMMAAC-19), August 8–10, 2019, JECRC University, Jaipur, India

Starting from limitations of quantum theory and its measurements we have discussed the concept of quantization in general theory of relativity in strong regime as well as quantization of gravity, which leads to gravitons, in weak field limitation. This is based on the fact that general theory of relativity based on strong principle of equivalence which is incompatible with quantum principle. It has shown that this is the complete agreement with the implications following from the measurement analysis. To discuss the physical consequences of the limitations arising for quantum GRT, Compton effect and Euler scattering are discussed.
  Figure/Table
  Supplementary
  Article Metrics

References

1. F. Bastianelli, R. Bonezzi, One-loop quantum gravity from a worldline viewpoint, J. High Energy Phys., 7 (2013), 16.

2. H. H. Von Borzeszkowski, Planck's orders of magnitude and the limits of the quantum gravity conception, Technical report of International Centre for Theoretical Physics, (1988), IC-87/321.

3. H. H. Von Borzeszkowski, On high frequency background quantization of gravity, Found. Phys., 12 (1982), 633-643.    

4. B. S. DeWitt, Quantum theory of gravity. I. the canonical theory, Phys. Rev., 160 (1967), 1113.

5. B. S. DeWitt, Quantum theory of gravity. II. the manifestly covariant theory, Phys. Rev., 162 (1967), 1195.

6. P. A. Dirac, The lagrangian in quantum mechanics, In: Feynman's Thesis A New Approach to Quantum Theory, World Scientific, 111-119.

7. J. F. Donoghue, General relativity as an effective field theory: The leading quantum corrections, Phys. Rev. D, 50 (1994), 3874.

8. G. V. Dunne, The Heisenberg-Euler effective action: 75 years on, Int. J. Mod Phys., 14 (2012), 42-56.

9. S. Eidelman, K. Hayes, K. E. Olive, et al. Review of particle physics, Phys. lett. B, 592 (2004), 1-5.    

10. L. K. Elizabeth, Quantum gravitational corrections to vacuum polarization during inflation, PhD thesis of University Of Florida, 2013.

11. G. Esposito, An introduction to quantum gravity, arXiv:1108.32699v1, 2011.

12. A. A. Grib, S. Mamayev, V. Mostepanenko, Particle creation and vacuum polarization in an isotropic universe, J. Phys. A Math. Gen., 13 (1980), 2057.

13. D. Hochberg, A. Popov, S. V. Sushkov, Self-consistent wormhole solutions of semi-classical gravity, Phys. Rev. Lett., 78 (1997), 2050.

14. B. Horst-Heino, T. Hans-Jurgen, The Meaning of Quantum Gravity, Springer Science and Business Media, 2012.

15. J. P. Hsu, D. Fine, 100 Years of Gravity and Accelerated Frames: The Deepest Insights of Einstein and Yang-Mills, World Scientific, 2005.

16. C. Isham, A. Salam, J. Strathdee, Infinity suppression in gravity-modified electrodynamics. II, Phys. Rev. D, 5 (1972), 2548.

17. M. Kaku, Quantum Field Theory: A Modern Introduction, Oxford University Press, 1993.

18. I. Kuntz, Gravitational waves in quantum gravity, In: Gravitational Theories Beyond General Relativity, Springer Ltd, 2019.

19. S. N. Pandey, A. M. Mishra, Gödel type solution of an f (R) theory of gravitation, WJST, 13 (2016), 329-336.

20. V. Mukhanov, S. Winitzki, Introduction to Quantum Effects in Gravity, Cambridge University Press, 2007.

21. T. Padmanabhan, Quantum Field Theory: the Why, What and How, Heidelberg: Springer, 2016.

22. J. B. Pitts, W. Schieve, Null cones in lorentz-covariant general relativity, arXiv preprint grqc/0111004, 2001.

23. L. Rosenfeld, Quantentheorie und gravitation, In: Entstehung, Entwicklung und Perspektiven der Einsteinschen Gravitationstheorie, Berlin: Akademie-Verlag, (1966), 184-199.

24. R. Ruffini, G. Vereshchagin, S. S. Xue, Electron-positron pairs in physics and astrophysics: From heavy nuclei to black holes, Phys. Rep., 487 (2010), 1-140.    

25. M. Visser, Gravitational vacuum polarization, arXiv preprint gr-qc/9710034, 1997.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved