Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Biological advection and cross-diffusion with parameter regimes

1 Thermoelectric Conversion Research Center, Korea Electrotechnology Research Institute, 12, Bulmosan-ro 10 beon-gil, Changwon-si, Gyeongsangnam-do, 51543, Korea
2 Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong, Daejeon 305-701, Korea
3 Department of Mathematics, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 362-763, Korea
4 College of Science & Technology, Korea University, Sejong 30019, Republic of Korea

Special Issues: Applied and Industrial Mathematics in Canada and Worldwide

Advection and cross-diffusion terms are obtained as dispersal strategies of biological species. The focus of the paper is their connection to a given population dynamics. In particular, meaningful parameter regimes as biological dispersal are obtained. Eventually, we obtain a systematic approach to construct an advection or a cross-diffusion term from a given population dynamics and find meaningful parameter regimes as biolog
  Figure/Table
  Supplementary
  Article Metrics

References

1. R. S. Cantrell and C. Cosner, Spatial ecology via reaction-diffusion equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons Ltd., Chichester, 2003.

2. J. Cebrian, Energy flows in ecosystems, Science, 349 (2015), 1053-1054.    

3. E. Cho and Y.-J. Kim, Starvation driven diffusion as a survival strategy of biological organisms, Bull. Math. Biol., 75 (2013), 845-870.    

4. D. Cohen and S. A. Levin, Dispersal in patchy environments: the effects of temporal and spatial structure, Theoret. Population Biol., 39 (1991), 63-99.    

5. L. Desvillettes, Y.-J. Kim, A. Trescases, et al. A logarithmic chemotaxis model featuring global existence and aggregation, Nonlinear Analysis: Real World Applications, 50 (2019), 562-582.    

6. U. Dieckman, B. O'Hara and W. Weisser, The evolutionary ecology of dispersal, Trends Ecol. Evol., 14 (1999), 88-90.    

7. J. Dockery, V. Hutson, K. Mischaikow, et al. The evolution of slow dispersal rates: a reaction diffusion model, J. Math. Biol., 37 (1998), 61-83.    

8. I. A. Hatton, K. S. McCann, J. M. Fryxell, et al. The predator-prey power law: Biomass scaling across terrestrial and aquatic biomes, Science, 349 (2015).

9. R. Holt and M. McPeek, Chaotic population dynamics favors the evolution of dispersal, The American Naturalist, 148 (1996), 709-718.    

10. V. Hutson, K. Mischaikow and P. Poláčik, The evolution of dispersal rates in a heterogeneous time-periodic environment, J. Math. Biol., 43 (2001), 501-533.    

11. M. Johnson and M. Gaines, Evolution of dispersal: Theoretical models and empirical tests using birds and mammels, Ann. Rev. Ecol. Syst., 21 (1990), 449-480.    

12. M. Keeling, Spatial models of interacting populations, advanced ecological theory: Principles and applications, J. McGlade, ed. Blackwell Science, Oxford, 1999.

13. E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234.    

14. E. F. Keller, L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235-248.    

15. Y.-J. Kim, O. Kwon and F. Li, Evolution of dispersal toward fitness, Bull. Math. Biol., 75 (2013), 2474-2498.    

16. Y.-J. Kim, O. Kwon and F. Li, Global asymptotic stability and the ideal free distribution in a starvation driven diffusion, J. Math. Biol., 68 (2014), 1341-1370.    

17. Y.-J. Kim and H. Seo, Model for heterogeneous diffusion, SIAM Appl. Math., 2019.

18. Y.-J. Kim, H. Seo and C. Yoon, Asymmetric dispersal and evolutional selection in two-patch system, Discrete Contin. Dyn. Syst., 2019.

19. K.-Y. Lam and W.-M. Ni, Limiting profiles of semilinear elliptic equations with large advection in population dynamics, Discrete Contin. Dyn. Syst., 28 (2010), 1051-1067.    

20. M. McPeek and R. Holt, The evolution of dispersal in spatially and temporally varying environments, The American Naturalist, 140 (1992), 1010-1027.    

21. J. D. Murray, Non-existence of wave solutions for the class of reaction-diffusion equations given by the Volterra interacting-population equations with diffusion, J. Theoret. Biol., 52 (1975), 459-469.    

22. T. Nagylaki, Introduction to theoretical population genetics, Biomathematics, vol. 21, SpringerVerlag, Berlin, 1992.

23. W.-M. Ni, The mathematics of diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 82, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.

24. A. Okubo and S. A. Levin, Diffusion and ecological problems: modern perspectives, second ed., Interdisciplinary Applied Mathematics, vol. 14, Springer-Verlag, New York, 2001.

25. J. G. Skellam, Some phylosophical aspects of mathematical modelling in empirical science with special reference to ecology, Mathematical Models in Ecology, Blackwell Sci. Publ., London, 1972.

26. J. G. Skellam, The formulation and interpretation of mathematical models of diffusionary processes in population biology, The mathematical theory of the dynamics of biological populations, Academic Press, New York, 1973.

27. J. M. J. Travis and C. Dytham, Habitat persistence, habitat availability and the evolution of dispersal, Proc. Roy. Soc. London B., 266 (1999), 723-728.

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved