Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Biological advection and cross-diffusion with parameter regimes

1 Thermoelectric Conversion Research Center, Korea Electrotechnology Research Institute, 12, Bulmosan-ro 10 beon-gil, Changwon-si, Gyeongsangnam-do, 51543, Korea
2 Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong, Daejeon 305-701, Korea
3 Department of Mathematics, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 362-763, Korea
4 College of Science & Technology, Korea University, Sejong 30019, Republic of Korea

Special Issues: Applied and Industrial Mathematics in Canada and Worldwide

Advection and cross-diffusion terms are obtained as dispersal strategies of biological species. The focus of the paper is their connection to a given population dynamics. In particular, meaningful parameter regimes as biological dispersal are obtained. Eventually, we obtain a systematic approach to construct an advection or a cross-diffusion term from a given population dynamics and find meaningful parameter regimes as biolog
  Article Metrics

Keywords cross diffusion; chemotaxis; biological dispersal; Lotka-Volterra equations; evolution of dispersal

Citation: Jaywan Chung, Yong-Jung Kim, Ohsang Kwon, Chang-Wook Yoon. Biological advection and cross-diffusion with parameter regimes. AIMS Mathematics, 2019, 4(6): 1721-1744. doi: 10.3934/math.2019.6.1721


  • 1. R. S. Cantrell and C. Cosner, Spatial ecology via reaction-diffusion equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons Ltd., Chichester, 2003.
  • 2. J. Cebrian, Energy flows in ecosystems, Science, 349 (2015), 1053-1054.    
  • 3. E. Cho and Y.-J. Kim, Starvation driven diffusion as a survival strategy of biological organisms, Bull. Math. Biol., 75 (2013), 845-870.    
  • 4. D. Cohen and S. A. Levin, Dispersal in patchy environments: the effects of temporal and spatial structure, Theoret. Population Biol., 39 (1991), 63-99.    
  • 5. L. Desvillettes, Y.-J. Kim, A. Trescases, et al. A logarithmic chemotaxis model featuring global existence and aggregation, Nonlinear Analysis: Real World Applications, 50 (2019), 562-582.    
  • 6. U. Dieckman, B. O'Hara and W. Weisser, The evolutionary ecology of dispersal, Trends Ecol. Evol., 14 (1999), 88-90.    
  • 7. J. Dockery, V. Hutson, K. Mischaikow, et al. The evolution of slow dispersal rates: a reaction diffusion model, J. Math. Biol., 37 (1998), 61-83.    
  • 8. I. A. Hatton, K. S. McCann, J. M. Fryxell, et al. The predator-prey power law: Biomass scaling across terrestrial and aquatic biomes, Science, 349 (2015).
  • 9. R. Holt and M. McPeek, Chaotic population dynamics favors the evolution of dispersal, The American Naturalist, 148 (1996), 709-718.    
  • 10. V. Hutson, K. Mischaikow and P. Poláčik, The evolution of dispersal rates in a heterogeneous time-periodic environment, J. Math. Biol., 43 (2001), 501-533.    
  • 11. M. Johnson and M. Gaines, Evolution of dispersal: Theoretical models and empirical tests using birds and mammels, Ann. Rev. Ecol. Syst., 21 (1990), 449-480.    
  • 12. M. Keeling, Spatial models of interacting populations, advanced ecological theory: Principles and applications, J. McGlade, ed. Blackwell Science, Oxford, 1999.
  • 13. E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234.    
  • 14. E. F. Keller, L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235-248.    
  • 15. Y.-J. Kim, O. Kwon and F. Li, Evolution of dispersal toward fitness, Bull. Math. Biol., 75 (2013), 2474-2498.    
  • 16. Y.-J. Kim, O. Kwon and F. Li, Global asymptotic stability and the ideal free distribution in a starvation driven diffusion, J. Math. Biol., 68 (2014), 1341-1370.    
  • 17. Y.-J. Kim and H. Seo, Model for heterogeneous diffusion, SIAM Appl. Math., 2019.
  • 18. Y.-J. Kim, H. Seo and C. Yoon, Asymmetric dispersal and evolutional selection in two-patch system, Discrete Contin. Dyn. Syst., 2019.
  • 19. K.-Y. Lam and W.-M. Ni, Limiting profiles of semilinear elliptic equations with large advection in population dynamics, Discrete Contin. Dyn. Syst., 28 (2010), 1051-1067.    
  • 20. M. McPeek and R. Holt, The evolution of dispersal in spatially and temporally varying environments, The American Naturalist, 140 (1992), 1010-1027.    
  • 21. J. D. Murray, Non-existence of wave solutions for the class of reaction-diffusion equations given by the Volterra interacting-population equations with diffusion, J. Theoret. Biol., 52 (1975), 459-469.    
  • 22. T. Nagylaki, Introduction to theoretical population genetics, Biomathematics, vol. 21, SpringerVerlag, Berlin, 1992.
  • 23. W.-M. Ni, The mathematics of diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 82, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.
  • 24. A. Okubo and S. A. Levin, Diffusion and ecological problems: modern perspectives, second ed., Interdisciplinary Applied Mathematics, vol. 14, Springer-Verlag, New York, 2001.
  • 25. J. G. Skellam, Some phylosophical aspects of mathematical modelling in empirical science with special reference to ecology, Mathematical Models in Ecology, Blackwell Sci. Publ., London, 1972.
  • 26. J. G. Skellam, The formulation and interpretation of mathematical models of diffusionary processes in population biology, The mathematical theory of the dynamics of biological populations, Academic Press, New York, 1973.
  • 27. J. M. J. Travis and C. Dytham, Habitat persistence, habitat availability and the evolution of dispersal, Proc. Roy. Soc. London B., 266 (1999), 723-728.


Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved