In this present study, firstly, some necessary definitions and some results related to Riemann-Liouville fractional and new fractional conformable integral operators defined by Jarad et al. [13] are given. As a second, a new identity has been proved. By using this identity, new Ostrowski type inequalities has obtained involving fractional conformable integral operators. Also, some new inequalities has established for AG-convex functions via fractional conformable integrals in this study. Relevant connections of the results presented here with those earlier ones are also pointed out.
Citation: Erhan Set, Ahmet Ocak Akdemir, Abdurrahman Gözpınar, Fahd Jarad. Ostrowski type inequalities via new fractional conformable integrals[J]. AIMS Mathematics, 2019, 4(6): 1684-1697. doi: 10.3934/math.2019.6.1684
[1] | Fabian Ziltener . Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, 2021, 29(4): 2553-2560. doi: 10.3934/era.2021001 |
[2] | Meng Wang, Naiwei Liu . Qualitative analysis and traveling wave solutions of a predator-prey model with time delay and stage structure. Electronic Research Archive, 2024, 32(4): 2665-2698. doi: 10.3934/era.2024121 |
[3] | Mohammed Shehu Shagari, Faryad Ali, Trad Alotaibi, Akbar Azam . Fixed point of Hardy-Rogers-type contractions on metric spaces with graph. Electronic Research Archive, 2023, 31(2): 675-690. doi: 10.3934/era.2023033 |
[4] | Souad Ayadi, Ozgur Ege . Image restoration via Picard's and Mountain-pass Theorems. Electronic Research Archive, 2022, 30(3): 1052-1061. doi: 10.3934/era.2022055 |
[5] | Xianyi Li, Xingming Shao . Flip bifurcation and Neimark-Sacker bifurcation in a discrete predator-prey model with Michaelis-Menten functional response. Electronic Research Archive, 2023, 31(1): 37-57. doi: 10.3934/era.2023003 |
[6] | Mingjun Zhou, Jingxue Yin . Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, 2021, 29(3): 2417-2444. doi: 10.3934/era.2020122 |
[7] | Xiaofei Zhang, Fanjing Wang . Brake orbits with minimal period estimates of first-order variant subquadratic Hamiltonian systems. Electronic Research Archive, 2022, 30(11): 4220-4231. doi: 10.3934/era.2022214 |
[8] | Marek Janasz, Piotr Pokora . On Seshadri constants and point-curve configurations. Electronic Research Archive, 2020, 28(2): 795-805. doi: 10.3934/era.2020040 |
[9] | Limin Guo, Weihua Wang, Cheng Li, Jingbo Zhao, Dandan Min . Existence results for a class of nonlinear singular p-Laplacian Hadamard fractional differential equations. Electronic Research Archive, 2024, 32(2): 928-944. doi: 10.3934/era.2024045 |
[10] | A. Safari-Hafshejani, M. Gabeleh, M. De la Sen . Optimal pair of fixed points for a new class of noncyclic mappings under a (φ,Rt)-enriched contraction condition. Electronic Research Archive, 2024, 32(4): 2251-2266. doi: 10.3934/era.2024102 |
In this present study, firstly, some necessary definitions and some results related to Riemann-Liouville fractional and new fractional conformable integral operators defined by Jarad et al. [13] are given. As a second, a new identity has been proved. By using this identity, new Ostrowski type inequalities has obtained involving fractional conformable integral operators. Also, some new inequalities has established for AG-convex functions via fractional conformable integrals in this study. Relevant connections of the results presented here with those earlier ones are also pointed out.
Consider a symplectic manifold
Problem. Find conditions under which
This generalizes the problems of showing that a given Hamiltonian diffeomorphism has a fixed point and that a given Lagrangian submanifold intersects its image under a Hamiltonian diffeomorphism. References for solutions to the general problem are provided in [20,22].
Example(translated points). As explained in [19,p. 97], translated points of the time-1-map of a contact isotopy starting at the identity are leafwise fixed points of the Hamiltonian lift of this map to the symplectization.
We denote
Nω:={isotropic leaves of N}. |
We call
1Such a structure is unique if it exists. In this case the symplectic quotient of
We denote by
The main result of [20] (Theorem 1.1) implies the following. We denote by
Theorem 1.1 (leafwise fixed points for adiscal coisotropic). Assume that
2This means compact and without boundary.
|Fix(ψ,N)|≥dimN∑i=0bi(N). | (1) |
This bound is sharp if there exists a
3[20,Theorem 1.1] is formulated in a more general setting than Theorem 1.1. Chekanov's result is needed to deal with that setting, whereas in the setting of Theorem 1.1 Floer's original article [5] suffices.
Similarly to Theorem 1.1, in [21] for a regular
Theorem 1.2 (leafwise fixed points for monotone coisotropic). Assume that
4[20,Theorem 1.1] is stated for the geometrically bounded case, but the proof goes through in the convex at infinity case.
|Fix(ψ,N)|≥m(N)−2∑i=dimN−m(N)+2bi(N). | (2) |
The idea of the proof of this theorem given in [21], is to use the same Lagrangian embedding as in the proof of Theorem 1.1. We then apply P. Albers' Main Theorem in [2], which states Theorem 1.2 in the Lagrangian case.
Finally, the main result of [22] (Theorem 1) implies that leafwise fixed points exist for an arbitrary closed coisotropic submanifold if the Hamiltonian flow is suitably
Theorem 1.3 (leafwise fixed points for
|Fix(φ1,N)|≥dimN∑i=0bi(N). | (3) |
This result is optimal in the sense that the
The point of this note is to reinterpret the proofs of Theorems 1.1 and 1.2 in terms of a version of Floer homology for an adiscal or monotone regular coisotropic submanifold. I also outline a definition of a local version of Floer homology for an arbitrary closed coisotropic submanifold and use it to reinterpret the proof of Theorem 1.3. Details of the construction of this homology will be carried out elsewhere. For the extreme cases
5In [1] a Lagrangian Floer homology was constructed that is "local" in a different sense.
Potentially a (more) global version of coisotropic Floer homology may be defined under a suitable condition on
6This can only work under suitable conditions on
Based on the ideas outlined below, one can define a Floer homology for certain regular contact manifolds and use it to show that a given time-1-map of a contact isotopy has translated points. Namely, consider a closed manifold
Various versions of coisotropic Floer homology may play a role in mirror symmetry, as physicists have realized that the Fukaya category should be enlarged by coisotropic submanifolds, in order to make homological mirror symmetry work, see e.g. [11].
To explain the coisotropic Floer homology in the regular case, consider a geometrically bounded symplectic manifold
Suppose first also that
7 By definition, for every such point
Fixc(N,φ):={(N,φ)-contractible leafwise fixed points},CF(N,φ):=⊕Fixc(N,φ)Z2. | (4) |
Remark. By definition this direct sum contains one copy of
We now define a collection of boundary operators on
ˆM:=M×Nω,ˆω:=ω⊕(−ωN),ιN:N→ˆM,ιN(x):=(x,isotropic leaf through x),ˆN:=ιN(N),ˆφt:=φt×idNω. | (5) |
The map
ιN:Fixc(N,φ)→Fixc(ˆN,ˆφ)={ˆx∈ˆN∩(ˆφ1)−1(ˆN)|t↦ˆφt(ˆx) contractible with endpoints in ˆN} | (6) |
is well-defined and injective. A straightforward argument shows that it is surjective.
Let
8 The exponent
9 It follows from the proof of [5,Proposition 2.1] that this set is dense in the set of all
∂N,φ,ˆJ:CF(N,φ)→CF(N,φ) |
to be the (Lagrangian) Floer boundary operator of
To see that this operator is well-defined, recall that it is defined on the direct sum of
10 Sometimes this is called the "
We check the conditions of [5,Definition 3.1]. Since
11In [5] Floer assumes that the symplectic manifold is closed. However, the same construction of Floer homology works for geometrically bounded symplectic manifolds. Here we use that we only consider Floer strips with compact image.
HF(N,φ,ˆJ):=H(CF(N,φ),∂N,φ,ˆJ). |
Let
12By [5,Proposition 2.4] such a grading exists and each two gradings differ by an additive constant.
Φ^J0,^J1:HF(N,φ,^J0)→HF(N,φ,^J1) |
the canonical isomorphism provided by the proof of [5,Proposition 3.1,p. 522]. This isomorphism respects the grading
Definition 2.1 (Floer homology for adiscal coisotropic). We define the Floer homology of
HF(N,φ):=((HF(N,φ,ˆJ))ˆJ∈Jreg(N,φ1),(Φ^J0,^J1)^J0,^J1∈Jreg(N,φ1)). |
Remarks. ● This is a collection of graded
● Philosophically, the Floer homology of
By the proof of [5,Theorem 1]
Suppose now that
13We continue to assume that
Definition 2.2 (Floer homology for monotone coisotropic). We define the Floer homology of
Since
Consider now the situation in which
To explain the boundary operator
˜N:={(x,x)|x∈N} | (7) |
as a Lagrangian submanifold. We shrink
The boundary operator
To understand why heuristically, the boundary operator
14Here one needs to work with a family of almost complex structures depending on the time
● Holomorphic strips with boundary on
● Disks or spheres cannot bubble off. This follows from our assumption that
● Index-1-strips generically do not break.
It follows that heuristically,
Given two choices of symplectic submanifolds
To make the outlined Floer homology rigorous, the words "close" and "short" used above, need to be made precise. To obtain an object that does not depend on the choice of "closeness", the local Floer homology of
φ↦HF(N,φ,J) |
around
By showing that
Remark(local presymplectic Floer homology). A presymplectic form on a manifold is a closed two-form with constant rank. By [12,Proposition 3.2] every presymplectic manifold can be coisotropically embedded into some symplectic manifold. By [12,4.5. Théorème on p. 79] each two coisotropic embeddings are equivalent. Hence heuristically, we may define the local Floer homology of a presymplectic manifold to be the local Floer homology of any of its coisotropic embeddings.
Remark (relation between the constructions). Assume that
(x,y)↦(x,isotropic leaf through y). |
I would like to thank Will Merry for an interesting discussion and the anonymous referees for valuable suggestions.
[1] |
M. Alomari, M. Darus, S. S. Dragomir, et al. Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071-1076. doi: 10.1016/j.aml.2010.04.038
![]() |
[2] |
G. A. Anastassiou, Ostrowski type inequalities, Proc. Amer. Math. Soc., 123 (1995), 3775-3781. doi: 10.1090/S0002-9939-1995-1283537-3
![]() |
[3] | G. Anastassiou, M. R. Hooshmandasl, A. Ghasemi, et al. Montogomery identities for fractional integrals and related fractional inequalities, Journal of Inequalities in Pure and Applied Mathematics, 10 (2009), 1-6. |
[4] |
G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 335 (2007), 1294-1308. doi: 10.1016/j.jmaa.2007.02.016
![]() |
[5] | S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, Journal of Inequalities in Pure and Applied Mathematics, 10 (2009), 86. |
[6] | Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlin. Sci. Num., 9 (2010), 493-497. |
[7] |
Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1 (2010), 51-58. doi: 10.15352/afa/1399900993
![]() |
[8] | Z. Dahmani, L. Tabharit, S. Taf, Some fractional integral inequalities, Nonl. Sci. Lett. A, 1 (2010), 155-160. |
[9] | Z. Dahmani, L. Tabharit, S. Taf, New generalizations of Gruss inequality usin Riemann-Liouville fractional integrals, Bulletin of Mathematical Analysis and Applications, 2 (2010), 93-99. |
[10] | S. S. Dragomir, Ostrowski type inequalities for lebesque integral: A survey of recent results, Australian Journal of Mathematical Analysis and Applications, 14 (2017), 1-287. |
[11] |
S. S. Dragomir, General Lebesgue integral inequalities of Jensen and Ostrowski type for differentiable functions whose derivatives in absolute value are h-convex and applications, Annales Universitatis Mariae Curie-Sklodowska, Sectio A-Mathematica, 69 (2015), 17-45. doi: 10.17951/a.2015.69.2.17-45
![]() |
[12] | A. Gözpınar, Some Hermite-Hadamard Type Inequalities For Convex Functions Via New Fractional Conformable Integrals And Related Inequalities, AIP Conference Proceedings, 1991 (2018), 20006. |
[13] | F. Jarad, E. Uğurlu, T. Abdeljawad, et al. On a new class of fractional operators, Adv. Differ. Equ-NY, 2017 (2017), 247. |
[14] | A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204. |
[15] | D. S. Mitrinoviç, J. E. Peèariæ, A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Dortrecht, 1991. |
[16] | C. P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl., 3 (2000), 155-167. |
[17] | M. A. Noor, K. A. Noor, M. A. Awan, Fractional Ostrowski inequalities for (s,m)-Godunova-Levin functions, Facta Universitatis, Series: Mathematics and Informatics, 30 (2015), 489-499. |
[18] | A. M. Ostrowski, Über die absolutabweichung einer differentierbaren Funktion von ihren Integralmittelwert, Comment. Math. Helv., 10 (1938), 226-227. |
[19] |
M. E. Özdemir, H. Kavurmaci, E. Set, Ostrowski's type inequalities for (α, m)-convex functions, Kyungpook Mathematical Journal, 50 (2010), 371-378. doi: 10.5666/KMJ.2010.50.3.371
![]() |
[20] | M. E. Özdemir, A. O. Akdemir, E. Set, A new Ostrowski type inequality for double integrals, J. Inequal. Spec. Funct., 2 (2011), 27-34. |
[21] | M. E. Özdemir, A. O. Akdemir, E. Set, On the Ostrowski-Grüss type inequality for twice differentiable functions, Hacet. J. Math. Stat., 41 (2012), 651-655. |
[22] | M. Z. Sarıkaya, E. Set, On new Ostrowski type integral inequalities, Thai J. Math., 12 (2014), 145-154. |
[23] | M. Z. Sarıkaya, E. Set, M. E. Özdemir, Some Ostrowski's type inequalities for functions whose second derivatives are s-convex in the second sense, Demonstratio Mathematica, 47 (2014), 37-47. |
[24] | E. Set, J. Choi, A. Gözpınar, Hermite-Hadamard type inequalities for new fractional conformable integral operators, 2018. Available from: https://www.researchgate.net/publication/322936389. |
[25] | E. Set, A. Gözpınar, F. Demirci, Hermite-Hadamard type inequalities for quasi-convex functions via new fractional conformable integrals, AIP Conference Proceedings, 1991 (2018), 20002. |
[26] | E. Set, A. Karaoğlan, A. Gözpınar, Some inequalities related to different convex functions via new fractional conformable integrals, 2018. |
[27] |
E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl., 63 (2012), 1147-1154. doi: 10.1016/j.camwa.2011.12.023
![]() |
[28] | H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012. |
[29] | A. Atangana and Z. Hammouch, Fractional calculus with power law: The cradle of our ancestors?, Eur. Phys. J. Plus, 134 (2019), 429. |
[30] |
F. Jarad, T. Abdeljawad and Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos, Solitons and Fractals, 117 (2018), 16-20. doi: 10.1016/j.chaos.2018.10.006
![]() |
[31] |
M. A. Imran, M. Aleem, M. B. Riaz, et al. A comprehensive report on convective flow of fractional (ABC) and (CF) MHD viscous fluid subject to generalized boundary conditions, Chaos, Solitons and Fractals, 118 (2019), 274-289. doi: 10.1016/j.chaos.2018.12.001
![]() |
[32] | N. A. Asif, Z. Hammouch, M. B. Riaz, et al. Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative, Eur. Phys. J. Plus, 133 (2018), 272. |
[33] | M. B. Riaz and A. Zafar, Exact solutions for the blood flow through a circular tube under the influence of a magnetic field using fractional Caputo-Fabrizio derivatives, Math. Model. Nat. Pheno., 13 (2018), 8. |
[34] |
M. B. Riaz, N. A. Asif, A. Atangana, et al. Couette flows of a viscous fluid with slip effect and non-integer order derivative without singular kernel, Discrete and Continuous Dynamical Systems Series-S, 12 (2019), 645-664. doi: 10.3934/dcdss.2019041
![]() |
[35] | H. Yepez-Martinez and J. F. Gomez-Aguilar, Optical solitons solution of resonance nonlinear Schrodinger type equation with Atangana's-conformable derivative using sub-equation method, Waves in Random and Complex Media, (2019), 1-24. |
[36] | F. Gomez and B. Ghanbari, Optical soliton solutions of the Ginzburg-Landau equation with conformable derivative and Kerr law nonlinearity, Rev. Mex. Fis., 65 (2018), 73-81. |
[37] |
V. F. Morales-Delgado, J. F. Gomez-Aguilar, R. F. Escobar-Jimenez, Fractional conformable attractors with low fractality, Math. Method. Appl. Sci., 41 (2018), 6378-6400. doi: 10.1002/mma.5146
![]() |
[38] |
V. F. Morales-Delgado, J. F. Gomez-Aguilar, R. F. Escobar-Jimenez, et al. Fractional conformable derivatives of Liouville-Caputo type with low-fractionality, Physica A: Statistical Mechanics and its Applications, 503 (2018), 424-438. doi: 10.1016/j.physa.2018.03.018
![]() |
[39] | J. E. S. Perez, J. F. Gomez-Aguilar, D. Baleanu, et al. Chaotic Attractors with Fractional Conformable Derivatives in the Liouville-Caputo Sense and Its Dynamical Behaviors, Entropy, 20 (2018), 384. |
[40] |
H. Yepez-Martinez and J. F. Gomez-Aguilar, Fractional sub-equation method for Hirota-Satsumacoupled KdV equation and coupled mKdV equation using the Atangana's conformable derivative, Waves in Random and Complex Media, 29 (2019), 678-693. doi: 10.1080/17455030.2018.1464233
![]() |
[41] | H. Yepez-Martinez, J. F. Gomez-Aguilar and A. Atangana, First integral method for non-linear differential equations with conformable derivative, Math. Model. Nat. Pheno., 13 (2018), 14. |
[42] |
V. F. Morales-Delgado, J. F. Gomez-Aguilar and M. A. Taneco-Hernandez, Analytical solutions of electrical circuits described by fractional conformable derivatives in Liouville-Caputo sense, AEU-Int. J. Electron. C., 85 (2018), 108-117. doi: 10.1016/j.aeue.2017.12.031
![]() |