Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Research article

Existence of positive weak solutions for a nonlocal singular elliptic system

  • Received: 18 April 2019 Accepted: 27 June 2019 Published: 05 July 2019
  • MSC : Primary 35A15; Secondary 35S15, 47G20, 46E35

  • Let Ω be a bounded domain in Rn with C1,1 boundary, and let s(0,1) be such that s<n2. We give sufficient conditions for the existence of a weak solution (u,v)Hs(Rn)×Hs(Rn) of the nonlocal singular system (Δ)su=adγ1Ωvβ1 in Ω, (Δ)sv=bdγ2Ωuβ2 in Ω, u=v=0 in RnΩ, u>0 in Ω, v>0 in Ω, where a and b are nonnegative bounded measurable functions such that infΩa>0 and infΩb>0. For the found weak solution (u,v), the behavior of u and v near Ω is also investigated.

    Citation: Tomas Godoy. Existence of positive weak solutions for a nonlocal singular elliptic system[J]. AIMS Mathematics, 2019, 4(3): 792-804. doi: 10.3934/math.2019.3.792

    Related Papers:

    [1] Xiulin Hu, Lei Wang . Positive solutions to integral boundary value problems for singular delay fractional differential equations. AIMS Mathematics, 2023, 8(11): 25550-25563. doi: 10.3934/math.20231304
    [2] Md. Asaduzzaman, Md. Zulfikar Ali . Existence of positive solution to the boundary value problems for coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2019, 4(3): 880-895. doi: 10.3934/math.2019.3.880
    [3] Sadam Hussain, Muhammad Sarwar, Kottakkaran Sooppy Nisar, Kamal Shah . Controllability of fractional differential evolution equation of order γ(1,2) with nonlocal conditions. AIMS Mathematics, 2023, 8(6): 14188-14206. doi: 10.3934/math.2023726
    [4] Tomas Godoy, Alfredo Guerin . Multiple finite-energy positive weak solutions to singular elliptic problems with a parameter. AIMS Mathematics, 2018, 3(1): 233-252. doi: 10.3934/Math.2018.1.233
    [5] Mouataz Billah Mesmouli, Taher S. Hassan . On the positive solutions for IBVP of conformable differential equations. AIMS Mathematics, 2023, 8(10): 24740-24750. doi: 10.3934/math.20231261
    [6] Abdelouaheb Ardjouni . Positive solutions for nonlinear Hadamard fractional differential equations with integral boundary conditions. AIMS Mathematics, 2019, 4(4): 1101-1113. doi: 10.3934/math.2019.4.1101
    [7] Mohamed Houas, Kirti Kaushik, Anoop Kumar, Aziz Khan, Thabet Abdeljawad . Existence and stability results of pantograph equation with three sequential fractional derivatives. AIMS Mathematics, 2023, 8(3): 5216-5232. doi: 10.3934/math.2023262
    [8] Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions. AIMS Mathematics, 2024, 9(1): 218-239. doi: 10.3934/math.2024013
    [9] Fengfei Jin, Baoqiang Yan . Existence and global behavior of the solution to a parabolic equation with nonlocal diffusion. AIMS Mathematics, 2021, 6(5): 5292-5315. doi: 10.3934/math.2021313
    [10] Haohao Jia, Feiyao Ma, Weifeng Wo . Large positive solutions to an elliptic system of competitive type with nonhomogeneous terms. AIMS Mathematics, 2021, 6(8): 8191-8204. doi: 10.3934/math.2021474
  • Let Ω be a bounded domain in Rn with C1,1 boundary, and let s(0,1) be such that s<n2. We give sufficient conditions for the existence of a weak solution (u,v)Hs(Rn)×Hs(Rn) of the nonlocal singular system (Δ)su=adγ1Ωvβ1 in Ω, (Δ)sv=bdγ2Ωuβ2 in Ω, u=v=0 in RnΩ, u>0 in Ω, v>0 in Ω, where a and b are nonnegative bounded measurable functions such that infΩa>0 and infΩb>0. For the found weak solution (u,v), the behavior of u and v near Ω is also investigated.


    Singular elliptic problems of the form

    {Δu=g(.,u) in Ω,u=0 on Ω,u>0 in Ω, (1.1)

    with g such that lims0+g(x,s)=, have been extensively studied in the literature. Starting with the pioneering works [9,10,17], a vast amount of works was devoted to these problems, see for instance, [2,5,8,12,13,14,16,19,20,25,26,27,30], and [37].

    In particular, [26] gives an existence result for classical solutions to problem (1.1), in the case when g(.,u)=adγΩuβ, with 0aCσ(¯Ω) for some σ(0,1), β>0 and γ<2; and [13] gives an existence result for very weak solutions of the same problem. Notice that, in this case, g(x,s) becomes singular at s=0 and also at xΩ. Let us mention also that existence and uniqueness results for singular problems involving the p-laplacian operator on exterior domains were recently obtained in [6].

    The existence of positive solutions of singular elliptic systems is addressed (in the local case), in [22], [29], and [1]. In [22] and [29] the results are obtained via the sub-supersolutions method, while in [1] (where appear also multiplicity results), the methods are variational and topological.

    A systematic study of local singular elliptic problems, as well as additional references, can be found in [21,33]. For a thorough introduction to the variational analysis of nonlinear problems described by nonlocal operators, we refer the reader to the reference [28].

    Concerning nonlocal elliptic problems, let us mention that in [32], existence and multiplicity results were obtained for some singular elliptic problems driven by fractional powers of the p-Laplacian operator. In [11], global bifurcation problems for the fractional p-Laplacian were studied and, in [3], existence and multiplicity results were obtained for singular bifurcation problems of the form (Δ)su=f(x)uβ+λup in Ω, u=0 in RnΩ, u>0 in Ω, in the case where Ω is a bounded and regular enough domain in Rn, s(0,1), n>2s, β>0, p>1, λ>0, and f is a nonnegative function belonging to a suitable Lebesgue space. There, it was proved the existence of at least two solutions for this problem when λ is positive and small enough. In [23], a more precise existence and multiplicity result was obtained for the same problem in the case when f1 and the nonlinearity has critical growth at infinity, (i.e., when p=2s1, with 2s=2nn2s). In fact, in [23], it was proved that, under these assumptions, there exists Λ>0 such that:

    ⅰ) There exist exactly two positive solutions when 0<λ<Λ,

    ⅱ) There exists at least one positive solution when λ=Λ,

    ⅲ) No solution exists when λ>Λ.

    Also, in [24], it was investigated the existence of positive weak solutions to problems like (Δ)su=auβ+λh in Ω, u=0 in RnΩ, u>0 in Ω, in the case where s(0,1), n>2s, β(0,1), λ>0, and where a and h are nonnegative bounded functions with h0.

    Our aim in this work is to obtain sufficient conditions on β1, β2, γ1 and γ2 for the existence of positive weak solutions to the following problem

    {(Δ)su=adγ1Ωvβ1 in Ω,(Δ)sv=bdγ2Ωuβ2 in Ω,u=v=0 in RnΩ,u,vHs(Rn)u>0 in Ω, v>0 in Ω. (1.2)

    Here, and from now on, Ω is a bounded domain in Rn with C1,1 boundary, s(0,1), dΩ:=dist(.,Ω), β1(0,1), β2(0,1), γ1<2s, γ2<2s, a and b belong to L(Ω), and satisfy infΩa>0 and infΩb>0.

    Before stating our main results, let us recall the definition of the fractional Sobolev space Hs(Rn) and some well known facts related to this space. For s(0,1) and nN, let

    Hs(Rn):={uL2(Rn):Rn×Rn|u(x)u(y)|2|xy|n+2sdxdy<},

    and for uHs(Rn), let

    uHs(Rn):=(Rnu2+Rn×Rn|u(x)u(y)|2|xy|n+2sdxdy)12,

    and let

    Xs0(Ω):={uHs(Rn):u=0 a.e. in RnΩ},

    and for uXs0(Ω), let

    uXs0(Ω):=(Rn×Rn|u(x)u(y)|2|xy|n+2sdxdy)12.

    With these norms, Hs(Rn) and Xs0(Ω) are Hilbert spaces (see [36], Lemma 7), Cc(Ω) is dense in Xs0(Ω) (see [18], Theorem 6). Also, Xs0(Ω) is a closed subspace of Hs(Rn), and from the fractional Poincarè inequality (as stated e.g., in [15], Theorem 6.5; see also Remark 2.1 below), if n>2s then .Xs0(Ω) and .Hs(Rn) are equivalent norms on Xs0(Ω).

    For fL1loc(Ω) we will write f(Xs0(Ω)) to mean that exists a positive constant c such that |Ωfφ|cuXs0(Ω) for any φXs0(Ω). For f(Xs0(Ω)) we will write ((Δ)s)1f for the unique weak solution u (given by the Riesz theorem) of the problem

    {(Δ)su=f in Ω,u=0 in RnΩ. (1.3)

    The notion of weak solution that we use in this work is the given by the following definition:

    Definition 1.1. Let s(0,1), let f:ΩR be a Lebesgue measurable function such that fφL1(Ω) for any φXs0(Ω). We say that u:RnR is a weak solution to the problem

    {(Δ)su=f in Ω,u=0 in RnΩ

    if uXs0(Ω), u=0 in RnΩ and, for any φ Xs0(Ω),

    Rn×Rn(u(x)u(y))(φ(x)φ(y))|xy|n+2sdxdy=Ωfφ.

    For uXs0(Ω) and fL1loc(Ω), we will write (Δ)suf in Ω (respectively (Δ)suf in Ω) to mean that, for any nonnegative φHs0(Ω), it hold that fφL1(Ω) and

    Rn×Rn(u(x)u(y))(φ(x)φ(y))|xy|n+2sdxdyΩfφ (resp. Ωfφ).

    For u,vXs0(Ω), we will write (Δ)su(Δ)sv in Ω (respectively (Δ)su(Δ)sv in Ω), to mean that (Δ)s(uv)0 in Ω (resp. (Δ)s(uv)0 in Ω).

    If f and g are measurable real valued functions defined on Ω, we will write fg to mean that there exists a positive constant c, such that c1fgcf a.e. in Ω. We will write f (respectively f\gtrapprox g in \Omega ) to mean that, for some positive constant c, f\leq cg a.e. in \Omega (resp. f\geq cg a.e. in \Omega ).

    Also, we set \omega_{0}: = 2diam\left(\Omega\right). With these notations, our main results read as follow:

    Theorem 1.2. Let \beta_{1}\in\left(0, 1\right), \beta_{2}\in\left(0, 1\right), let \gamma_{1} < 2s, \gamma_{2} < 2s, and let a and b be functions in L^{\infty}\left(\Omega\right) such that a\approx1, b\approx1. Assume that one of the following three conditions i) - iii) holds:

    i) \gamma_{1}+s\beta_{1} < s and \gamma_{2}+s\beta_{2} < s,

    ii) \gamma_{1}+s\beta_{1} < s and \gamma_{2}+s\beta_{2} = s,

    iii) \gamma_{1}+s\beta_{1} = s and \gamma_{2}+s\beta_{2} < s.

    Then problem has a weak solution \left(u, v\right) \in X_{0}^{s}\left(\Omega\right) \times X_{0}^{s}\left(\Omega\right) such that u\approx\vartheta_{1} and v\approx\vartheta_{2} in \Omega, where

    \begin{align*} \mathit{\text{}}\vartheta_{1} & : = d_{\Omega}^{s}\mathit{\text{ and }}\vartheta_{2} : = d_{\Omega}^{s}\mathit{\text{if i) holds}}, \\ \vartheta_{1} & : = d_{\Omega}^{s}\mathit{\text{ and }}\vartheta_{2}: = d_{\Omega}^{s} \ln\left( \frac{\omega_{0}}{d_{\Omega}}\right) \mathit{\text{ if ii) holds}}\\ \vartheta_{1} & : = d_{\Omega}^{s}\mathit{\text{ and }}\vartheta_{2}: = d_{\Omega} ^{s}\mathit{\text{ if iii) holds}}. \end{align*}

    Theorem 1.3. Let \beta_{1}\in\left(0, 1\right), \beta_{2}\in\left(0, 1\right), let \gamma_{1} < 2s, \gamma_{2} < 2s, and let a and b be functions in L^{\infty}\left(\Omega\right) such that a\approx1, b\approx1. Assume that \gamma_{1}+s\beta_{1} = s and \gamma_{2}+s\beta _{2} = s. Then problem (1.2) has a weak solution \left(u, v\right) \in X_{0}^{s}\left(\Omega\right) \times X_{0}^{s}\left(\Omega\right) such that d_{\Omega}^{s}\lessapprox u\lessapprox d_{\Omega }^{s}\ln\left(\frac{\omega_{0}}{d_{\Omega}}\right) and d_{\Omega} ^{s}\lessapprox v\lessapprox d_{\Omega}^{s}\ln\left(\frac{\omega_{0} }{d_{\Omega}}\right) in \Omega.

    Theorem 1.4. Let \beta_{1}\in\left(0, 1\right), \beta_{2}\in\left(0, 1\right), let \gamma_{1} < 2s, \gamma_{2} < 2s, and let a and b be functions in L^{\infty}\left(\Omega\right) such that a\approx1, b\approx1. Assume that one of the following two conditions holds:

    i) \gamma_{1}+s\beta_{1} < s and s < \gamma_{2}+s\beta_{2} < \min\left\{ 2s, \frac{1}{2}+s\right\},

    ii) s < \gamma_{1}+s\beta_{1} < \min\left\{ 2s, \frac{1}{2}+s\right\} and \gamma_{2}+\beta_{2}s < s.

    Then problem (1.2) has a weak solution \left(u, v\right) \in X_{0}^{s}\left(\Omega\right) \times X_{0}^{s}\left(\Omega\right) such that u\approx\vartheta_{1} and v\approx\vartheta_{2} in \Omega, where

    \begin{align*} \vartheta_{1} & : = d_{\Omega}^{s}\mathit{\text{ and }}\vartheta_{2}: = d_{\Omega }^{2s-\gamma_{2}-s\beta_{2}}\mathit{\text{if i) holds}}, \\ \vartheta_{1} & : = d_{\Omega}^{2s-\gamma_{1}-s\beta_{1}}\mathit{\text{ and }} \vartheta_{2}: = d_{\Omega}^{s}\mathit{\text{if ii) holds.}} \end{align*}

    The article is organized as follows: In Section 2, we quote some known facts and state some preliminary results. Lemma 2.2 quotes a result from [7], which gives accurate two side estimates for the values of the Green operator on negative powers of the distance function d_{\Omega} (where the Green operator is the associated to the fractional laplacian with homogeneous Dirichlet condition on \mathbb{R}^{n}\setminus\Omega ). Using this result and some of its consequences, Lemmas 2.4 and 2.5 states that, if the assumptions of Theorem 1.2 (respectively of Theorem 1.4) are assumed, and if \vartheta_{1} and \vartheta_{2} are as given in the statement of the respective Theorem, then d_{\Omega}^{-\gamma_{1}}\vartheta_{2}^{-\beta_{1}} and d_{\Omega}^{-\gamma_{2}}\vartheta_{1}^{-\beta_{2}} belong to \left(X_{0}^{s}\left(\Omega\right) \right) ^{\prime}, \left(\left(-\Delta\right) ^{s}\right) ^{-1}\left(d_{\Omega}^{-\gamma_{1}} \vartheta_{2}^{-\beta_{1}}\right) \approx\vartheta_{1}, and \left(\left(-\Delta\right) ^{s}\right) ^{-1}\left(d_{\Omega}^{-\gamma_{2}} \vartheta_{1}^{-\beta_{2}}\right) \approx\vartheta_{2} in \Omega. Similarly, using again Lemma 2.2, Lemma 2.6 states that if \gamma+\beta s = s and \vartheta: = d_{\Omega}^{s}\ln\left(\frac{\omega_{0}}{d_{\Omega}}\right), then d_{\Omega}^{-\gamma}\vartheta^{-\beta} belongs to \left(X_{0} ^{s}\left(\Omega\right) \right) ^{\prime} and d_{\Omega}^{s} \lessapprox\left(\left(-\Delta\right) ^{s}\right) ^{-1}\left(d_{\Omega}^{-\gamma}\vartheta^{-\beta}\right) \lessapprox\vartheta.

    In Section 3, Lemmas 3.1 and 3.2 adapt, to our setting, the ideas of the sub-supersolution method developed, for (local) elliptic systems, in ([29], Theorem 3.2).

    In Lemma 3.1 we consider, for \varepsilon > 0 and under the hypothesis of either Theorem 1.2 or Theorem 1.4, the set \mathcal{C}_{\varepsilon}: = \left\{ \left(\zeta_{1}, \zeta_{2}\right) \in L^{2}\left(\Omega\right) \times L^{2}\left(\Omega\right) :\varepsilon\vartheta_{i}\leq\zeta_{i}\leq\varepsilon^{-1}\vartheta_{i}\text{ for }i = 1, 2\right\}, and the operator T:\mathcal{C}_{\varepsilon }\rightarrow L^{2}\left(\Omega\right) \times L^{2}\left(\Omega\right) defined by

    T\left( \zeta_{1}, \zeta_{2}\right) : = \left( \left( \left( -\Delta\right) ^{s}\right) ^{-1}\left( ad_{\Omega}^{-\gamma_{1}}\zeta_{2}^{-\beta_{1} }\right) , \left( \left( -\Delta\right) ^{s}\right) ^{-1}\left( bd_{\Omega}^{-\gamma_{2}}\zeta_{1}^{-\beta_{2}}\right) \right) ;

    and we show that T is a continuous and compact map and that, for \varepsilon small enough, T\left(\mathcal{C}_{\varepsilon}\right) \subset\mathcal{C}_{\varepsilon}. Lemma 3.2 says that the same conclusions hold if the hypothesis of Theorem 1.3 are assumed and \mathcal{C}_{\varepsilon} is defined by

    \mathcal{C}_{\varepsilon}: = \left\{ \left( \zeta_{1}, \zeta_{2}\right) \in L^{2}\left( \Omega\right) \times L^{2}\left( \Omega\right) :\varepsilon \vartheta_{i}\leq\zeta_{i}\leq\varepsilon^{-1}\vartheta_{i}\text{ for }i = 1, 2\right\} .

    Finally, Theorems 1.2, 1.3, and 1.4 are proved using the Schauder fixed point theorem combined with Lemmas 3.1 and 3.2.

    Remark 2.1. (ⅰ) (see e.g., [34], Proposition 4.1 and Corollary 4.2) The following comparison principle holds: If u, v\in X_{0} ^{s}\left(\Omega\right) and \left(-\Delta\right) ^{s}u\geq\left(-\Delta\right) ^{s}v in \Omega, then u\geq v in \Omega. In particular, if v\in X_{0}^{s}\left(\Omega\right), \left(-\Delta\right) ^{s} v\geq0 in \Omega, and v\geq0 in \mathbb{R}^{n}\setminus\Omega, then v\geq0 in \Omega.

    (ⅱ) (see e.g., [34], Lemma 7.3) Let f:\Omega\rightarrow\mathbb{R} be a nonnegative and nonidentically zero measurable function such that f\in\left(X_{0}^{s}\left(\Omega\right) \right) ^{\prime}, and let u be the weak solution of problem (1.3). Then u satisfies, for some positive constant c,

    \begin{equation} u\geq cd_{\Omega}^{s}\text{ in }\Omega. \end{equation} (2.1)

    (ⅲ) (see e.g., [35], Proposition 1.1) If f\in L^{\infty}\left(\Omega\right) then the weak solution u of problem (1.3) belongs to C^{s}\left(\mathbb{R}^{n}\right). In particular, there exists a positive constant c such that

    \begin{equation} \left\vert u\right\vert \leq cd_{\Omega}^{s}\text{ in }\Omega. \end{equation} (2.2)

    For additional regularity resuls see, for instance, [4] and [28].

    (ⅳ) (Poincarè inequality, see [15], Theorem 6.5) Let s\in\left(0, 1\right), let n > 2s, and let 2_{s}^{\ast}: = \frac{2n} {n-2s}. Then there exists a positive constant C = C\left(n, s\right) such that, for any measurable and compactly supported function f:\mathbb{R} ^{n}\rightarrow\mathbb{R} ,

    \left\Vert f\right\Vert _{L^{2_{s}^{\ast}}\left( \mathbb{R}^{n}\right) }\leq C\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\frac{\left( f\left( x\right) -f\left( y\right) \right) ^{2}}{\left\vert x-y\right\vert ^{n+sp}}dxdy.

    (ⅴ) From the Hölder's inequality and the Poincarè inequality it follows that v\in\left(X_{0}^{s}\left(\Omega\right) \right) ^{\prime} for any v\in L^{\left(2_{s}^{\ast}\right) ^{\prime}}\left(\Omega\right).

    (ⅵ) (Hardy inequality, see [32], Theorem 2.1) There exists a positive constant c such that, for any \varphi\in X_{0}^{s}\left(\Omega\right),

    \begin{equation} \left\Vert d_{\Omega}^{-s}\varphi\right\Vert _{2}\leq c^{\prime}\left\Vert \varphi\right\Vert _{X_{0}^{s}\left( \Omega\right) }. \end{equation} (2.3)

    (ⅶ) Let G:\Omega\times\Omega\rightarrow\mathbb{R\cup}\left\{ \infty\right\} be the Green function for \left(-\Delta\right) ^{s} in \Omega, with homogeneous Dirichlet boundary condition on \mathbb{R}^{n}\setminus\Omega. Then, for any f\in C\left(\overline{\Omega}\right), the weak solution u of problem (1.3) is given by u\left(x\right) = \int_{\Omega}G\left(x, y\right) f\left(y\right) dy for x\in\Omega and by u\left(x\right) = 0 for x\in\mathbb{R}^{n}\setminus\Omega.

    Let us recall the following result of [7]:

    Lemma 2.2. (See [7], Lemma 2) Let G be the Green function for \left(-\Delta\right) ^{s} in \Omega, with homogeneous Dirichlet boundary condition on \mathbb{R}^{n}\setminus\Omega. Then

    \begin{align*} \int_{\Omega}G\left( ., y\right) d_{\Omega}^{-\rho}\left( y\right) dy & \approx d_{\Omega}^{s}\mathit{\text{ if }}\rho \lt s, \\ \int_{\Omega}G\left( ., y\right) d_{\Omega}^{-\rho}\left( y\right) dy & \approx d_{\Omega}^{s}\ln\left( \frac{\omega_{0}}{d_{\Omega}}\right) \mathit{\text{ if }}\rho = s, \\ \int_{\Omega}G\left( ., y\right) d_{\Omega}^{-\rho}\left( y\right) dy & \approx d_{\Omega}^{2s-\rho}\mathit{\text{ if }}s \lt \rho \lt s+1. \end{align*}

    As a consequence of Lemma 2.2, we have the following

    Lemma 2.3. Let \rho\in\left[0, s+\frac{1}{2}\right). Then d_{\Omega}^{-\rho}\in\left(X_{0}^{s}\left(\Omega\right) \right) ^{\prime} and

    \begin{align} \left( \left( -\Delta\right) ^{s}\right) ^{-1}\left( d_{\Omega}^{-\rho }\right) & \approx d_{\Omega}^{s}\mathit{\text{ if }}\rho \lt s, \\ \left( \left( -\Delta\right) ^{s}\right) ^{-1}\left( d_{\Omega}^{-\rho }\right) & \approx d_{\Omega}^{s}\ln\left( \frac{\omega_{0}}{d_{\Omega} }\right) \mathit{\text{ if }}\rho = s, \\ \left( \left( -\Delta\right) ^{s}\right) ^{-1}\left( d_{\Omega}^{-\rho }\right) & \approx d_{\Omega}^{2s-\rho}\mathit{\text{ if }}s \lt \rho \lt s+\frac{1} {2} \end{align} (2.4)

    Proof. Let \varphi\in X_{0}^{s}\left(\Omega\right). Since d_{\Omega}^{s-\rho }\in L^{2}\left(\Omega\right), the Holder and the Hardy inequalities give \int_{\Omega}\left\vert d_{\Omega}^{-\rho}\varphi\right\vert \leq\int _{\Omega}d_{\Omega}^{s-\rho}\left\vert \frac{\varphi}{d_{\Omega}^{s} }\right\vert \leq c\left\Vert d_{\Omega}^{s-\rho}\right\Vert _{2}\left\Vert \varphi\right\Vert _{X_{0}^{s}\left(\Omega\right) }\leq c^{\prime }\left\Vert \varphi\right\Vert _{X_{0}^{s}\left(\Omega\right) } with c and c^{\prime} positive constants independent of \varphi. Thus d_{\Omega }^{-\rho}\in\left(X_{0}^{s}\left(\Omega\right) \right) ^{\prime}.

    Let G be the Green function for \left(-\Delta\right) ^{s} in \Omega, with homogeneous Dirichlet boundary condition on \mathbb{R} ^{n}\setminus\Omega. To prove (2.4) it is enough (thanks to Lemma 2.2) to show that \left(\left(-\Delta\right) ^{s}\right) ^{-1}\left(d_{\Omega}^{-\rho}\right) = \int_{\Omega}G\left(., y\right) d_{\Omega}^{-\rho}\left(y\right) dy. Let \left\{ \varepsilon_{j}\right\} _{j\in N}\subset\left(0, 1\right) be a decreasing sequence such that \lim_{j\rightarrow\infty}\varepsilon _{j} = 0, and for j\in\mathbb{N}, let u_{\varepsilon_{j}}\in X_{0} ^{s}\left(\Omega\right) be the weak solution of the problem

    \begin{align} \left( -\Delta\right) ^{s}u_{\varepsilon_{j}} & = \left( d_{\Omega }+\varepsilon_{j}\right) ^{-\rho}\text{ in }\Omega , \\ u_{\varepsilon_{j}} & = 0\text{ on }\mathbb{R}^{n}\setminus\Omega. \end{align} (2.5)

    Thus u_{\varepsilon_{j}} = \int_{\Omega}G\left(., y\right) \left(d_{\Omega }\left(y\right) +\varepsilon_{j}\right) ^{-\rho}dy in \Omega and, by Lemma 2.2, there exists a positive constant c, independent of j, such that u_{\varepsilon_{j}}\leq cd_{\Omega}^{s} if \rho < s, u_{\varepsilon_{j}}\leq cd_{\Omega}^{s}\ln\left(\frac{\omega_{0} }{d_{\Omega}}\right) if \rho = s, and \ u_{\varepsilon_{j}}\leq cd_{\Omega}^{2s-\rho} if s < \rho < \frac{1}{2}+s. In particular, there exists a positive constant c^{\prime} such that \int_{\Omega}u_{\varepsilon_{j} }d_{\Omega}^{-\rho}\leq c^{\prime} for all j\in\mathbb{N}. Let u\left(x\right) : = \lim_{j\rightarrow\infty}u_{\varepsilon_{j}}\left(x\right). By the monotone convergence theorem, u\left(x\right) = \int_{\Omega }G\left(x, y\right) d_{\Omega}^{-\beta}\left(y\right) dy. Taking u_{\varepsilon_{j}} as a test function in (2.5) we get

    \begin{align*} \int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\frac{\left( u_{\varepsilon_{j} }\left( x\right) -u_{\varepsilon_{j}}\left( y\right) \right) ^{2} }{\left\vert x-y\right\vert ^{n+2s}}dxdy & = \int_{\Omega}u_{\varepsilon_{j} }\left( y\right) \left( d_{\Omega}\left( y\right) +\varepsilon _{j}\right) ^{-\rho}dy\\ & \leq\int_{\Omega}u_{\varepsilon_{j}}d_{\Omega}^{-\rho}\leq c^{\prime}, \end{align*}

    with c^{\prime} independent of j. For j\in\mathbb{N}, let U_{\varepsilon_{j}} and U be the functions, defined on \mathbb{R} ^{n}\times\mathbb{R}^{n}, by

    U_{\varepsilon_{j}}\left( x, y\right) : = u_{\varepsilon_{j}}\left( x\right) -u_{\varepsilon_{j}}\left( y\right) , \text{ }U\left( x, y\right) : = u\left( x\right) -u\left( y\right) .

    Then \left\{ U_{\varepsilon_{j}}\right\} _{j\in\mathbb{N}} is bounded in \mathcal{H} = L^{2}\left(\mathbb{R}^{n}\times\mathbb{R}^{n}, \frac {1}{\left\vert x-y\right\vert ^{n+2s}}dxdy\right). Thus, after pass to a subsequence if necessary, we can assume that \left\{ U_{\varepsilon_{j} }\right\} _{j\in\mathbb{N}} is weakly convergent in \mathcal{H} to some V\in\mathcal{H}. Since \left\{ U_{\varepsilon_{j}}\right\} _{j\in \mathbb{N}} converges pointwise to U on \mathbb{R}^{n}\times\mathbb{R} ^{n}, we conclude that U\in\mathcal{H} and that \left\{ U_{\varepsilon _{j}}\right\} _{j\in\mathbb{N}} converges weakly to U in \mathcal{H}. Thus u\in X_{0}^{s}\left(\Omega\right) and, for any \varphi\in X_{0}^{s}\left(\Omega\right),

    \begin{align*} & \int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\frac{\left( u\left( x\right) -u\left( y\right) \right) \left( \varphi\left( x\right) -\varphi\left( y\right) \right) }{\left\vert x-y\right\vert ^{n+2s}}dxdy\\ & = \lim\limits_{j\rightarrow\infty}\int_{\mathbb{R}^{n}\times\mathbb{R}^{n}} \frac{\left( u_{\varepsilon_{j}}\left( x\right) -u_{\varepsilon_{j}}\left( y\right) \right) \left( \varphi\left( x\right) -\varphi\left( y\right) \right) }{\left\vert x-y\right\vert ^{n+2s}}dxdy\\ & = \lim\limits_{j\rightarrow\infty}\int_{\Omega}\left( d_{\Omega}+\varepsilon _{j}\right) ^{-\beta}\varphi = \int_{\Omega}d_{\Omega}^{-\beta}\varphi, \end{align*}

    Therefore u = \left(\left(-\Delta\right) ^{s}\right) ^{-1}\left(d_{\Omega}^{-\rho}\right) and so \left(\left(-\Delta\right) ^{s}\right) ^{-1}\left(d_{\Omega}^{-\rho}\right) = \int_{\Omega}G\left(x, y\right) d_{\Omega}^{-\beta}\left(y\right) dy.

    Lemma 2.4. Assume the hypothesis of Theorem 1.2 and let \vartheta_{1} and \vartheta_{2} be as given there. Then, in each one of the cases i) and ii) of Theorem 1.2, d_{\Omega}^{-\gamma_{1}}\vartheta_{2}^{-\beta_{1}}\in\left(X_{0}^{s}\left(\Omega\right) \right) ^{\prime}, d_{\Omega}^{-\gamma_{2}}\vartheta _{1}^{-\beta_{2}}\in\left(X_{0}^{s}\left(\Omega\right) \right) ^{\prime }, \left(\left(-\Delta\right) ^{s}\right) ^{-1}\left(d_{\Omega }^{-\gamma_{1}}\vartheta_{2}^{-\beta_{1}}\right) \approx\vartheta_{1}, and \left(\left(-\Delta\right) ^{s}\right) ^{-1}\left(d_{\Omega} ^{-\gamma_{2}}\vartheta_{1}^{-\beta_{2}}\right) \approx\vartheta_{2} in \Omega.

    Proof. When the condition i) of Theorem 1.2 holds we have \vartheta_{1} = \vartheta_{2} = d_{\Omega}^{s}, and the lemma follows directly from Lemma 2.3. If the condition ii) holds, then \gamma_{1}+s\beta_{1} < s, \gamma_{2}+s\beta_{2} = s, \vartheta _{1} = d_{\Omega}^{s} and \vartheta_{2} = d_{\Omega}^{s}\ln\left(\frac {\omega_{0}}{d_{\Omega}}\right). Since \left(\ln\left(\frac{\omega _{0}}{d_{\Omega}}\right) \right) ^{-\beta_{1}}\in L^{\infty}\left(\Omega\right) we have d_{\Omega}^{-\gamma_{1}}\vartheta_{2}^{-\beta_{1} } = d_{\Omega}^{-\gamma_{1}-s\beta_{1}}\left(\ln\left(\frac{\omega_{0} }{d_{\Omega}}\right) \right) ^{-\beta_{1}}\lessapprox d_{\Omega} ^{-\gamma_{1}-s\beta_{1}} and so, by Lemma 2.3, d_{\Omega}^{-\gamma_{1}}\vartheta_{2}^{-\beta_{1}}\in\left(X_{0}^{s}\left(\Omega\right) \right) ^{\prime} and \left(\left(-\Delta\right) ^{s}\right) ^{-1}\left(d_{\Omega}^{-\gamma_{1}}\vartheta_{2}^{-\beta_{1} }\right) \lessapprox d_{\Omega}^{s} = \vartheta_{1} in \Omega. Also, for \delta > 0 we have \inf_{\Omega}d_{\Omega}^{-\delta}\left(\ln\left(\frac{\omega_{0}}{d_{\Omega}}\right) \right) \theta^{-\beta_{1}} > 0, and so

    \begin{align*} d_{\Omega}^{-\gamma_{1}}\vartheta_{2}^{-\beta_{1}} & = d_{\Omega} ^{-\gamma_{1}-s\beta_{1}}\left( \ln\left( \frac{\omega_{0}}{d_{\Omega} }\right) \right) ^{-\beta_{1}} = d_{\Omega}^{-\left( \gamma_{1}+s\beta _{1}-\delta\right) }d_{\Omega}^{-\delta}\left( \ln\left( \frac{\omega_{0} }{d_{\Omega}}\right) \right) ^{-\beta_{1}}\\ & \gtrapprox d_{\Omega}^{-\left( \gamma_{1}+s\beta_{1}-\delta\right) }\text{ in }\Omega. \end{align*}

    Then, by the comparison principle of Remark 2.1 ⅰ), and by Lemma 2.3,

    \left( \left( -\Delta\right) ^{s}\right) ^{-1}\left( d_{\Omega} ^{-\gamma_{1}}\vartheta_{2}^{-\beta_{1}}\right) \gtrapprox\left( \left( -\Delta\right) ^{s}\right) ^{-1}\left( d_{\Omega}^{-\left( \gamma _{1}+s\beta_{1}-\delta\right) }\right) \approx d_{\Omega}^{s} = \vartheta_{1}

    On the other hand, d_{\Omega}^{-\gamma_{2}}\vartheta_{1}^{-\beta_{2} } = d_{\Omega}^{-\gamma_{2}-s\beta_{2}} = d_{\Omega}^{-s}, and so, again by Lemma 2.3, d_{\Omega}^{-\gamma_{2}}\vartheta_{1} ^{-\beta_{2}}\in\left(X_{0}^{s}\left(\Omega\right) \right) ^{\prime} and \left(\left(-\Delta\right) ^{s}\right) ^{-1}\left(d_{\Omega }^{-\gamma_{2}}\vartheta_{1}^{-\beta_{2}}\right) \approx d_{\Omega}^{s} \ln\left(\frac{\omega_{0}}{d_{\Omega}}\right) = \vartheta_{2} in \Omega.

    By replacing \beta_{1}, \gamma_{1}, \vartheta_{1} and \vartheta_{2} by \beta_{2}, \gamma_{2}, \vartheta_{2} and \vartheta_{1} respectively, the same argument proves the lemma in the case iii).

    Lemma 2.5. Assume the hypothesis of Theorem 1.4 and let \vartheta_{1} and \vartheta_{2} be as given there. Then the conclusions of Lemma 2.4 remain true for \vartheta_{1} and \vartheta_{2}.

    Proof. Consider the case when the condition i) of Theorem 1.4 holds, i.e., the case when \gamma_{1}+s\beta_{1} < s, s < \gamma_{2}+s\beta _{2} < \min\left\{ 2s, \frac{1}{2}+s\right\}, \vartheta_{1} = d_{\Omega}^{s} and \vartheta_{2} = d_{\Omega}^{2s-\gamma_{2}-s\beta_{2}}. Then d_{\Omega }^{-\gamma_{1}}\vartheta_{2}^{-\beta_{1}} = d_{\Omega}^{-\gamma_{1}-\beta _{1}\left(2s-\gamma_{2}-s\beta_{2}\right) }. Since 0 < \gamma_{1}+\beta _{1}\left(2s-\gamma_{2}-s\beta_{2}\right) < \gamma_{1}+s\beta_{1} < s, Lemma 2.3 gives that d_{\Omega}^{-\gamma_{1}}\vartheta _{2}^{-\beta_{1}}\in\left(X_{0}^{s}\left(\Omega\right) \right) ^{\prime } and that \left(\left(-\Delta\right) ^{s}\right) ^{-1}\left(d_{\Omega}^{-\gamma_{1}}\vartheta_{2}^{-\beta_{1}}\right) \approx d_{\Omega }^{s} = \vartheta_{1} in \Omega. On the other hand, d_{\Omega} ^{-\gamma_{2}}\vartheta_{1}^{-\beta_{2}} = d_{\Omega}^{-\gamma_{2}-s\beta_{2}} and s < \gamma_{2}+s\beta_{2} < \min\left\{ 2s, \frac{1}{2}+s\right\}, and so, by Lemma 2.3,

    d_{\Omega}^{-\gamma_{2}}\vartheta_{1}^{-\beta_{2}}\in\left( X_{0}^{s}\left( \Omega\right) \right) ^{\prime}\text{ and }\left( \left( -\Delta\right) ^{s}\right) ^{-1}\left( d_{\Omega}^{-\gamma_{2}}\vartheta_{1}^{-\beta_{2} }\right) \approx d_{\Omega}^{2s-\gamma_{2}-s\beta_{2}} = \vartheta_{2}\text{ in }\Omega.

    The proof when the condition ii) holds is similar.

    Lemma 2.6. Let \vartheta: = d_{\Omega}^{s}\ln\left(\frac{\omega_{0}}{d_{\Omega}}\right). If \gamma+s\beta = s and \beta > 0, then d_{\Omega}^{-\gamma}\vartheta^{-\beta}\in\left(X_{0}^{s}\left(\Omega\right) \right) ^{\prime} and d_{\Omega}^{s}\lessapprox\left(\left(-\Delta\right) ^{s}\right) ^{-1}\left(d_{\Omega}^{-\gamma }\vartheta^{-\beta}\right) \lessapprox\vartheta in \Omega.

    Proof. Since \left(\ln\left(\frac{\omega_{0}}{d_{\Omega}}\right) \right) ^{-\beta}\in L^{\infty}\left(\Omega\right), we have d_{\Omega}^{-\gamma }\vartheta^{-\beta} = d_{\Omega}^{-s}\left(\ln\left(\frac{\omega_{0} }{d_{\Omega}}\right) \right) ^{-\beta}\lessapprox d_{\Omega}^{-s}. Then, by Lemma 2.3 and the comparison principle, d_{\Omega }^{-\gamma}\vartheta^{-\beta}\in\left(X_{0}^{s}\left(\Omega\right) \right) ^{\prime} and \left(\left(-\Delta\right) ^{s}\right) ^{-1}\left(d_{\Omega}^{-\gamma}\vartheta^{-\beta}\right) \lessapprox\left(\left(-\Delta\right) ^{s}\right) ^{-1}\left(d_{\Omega}^{-s}\right) \approx d_{\Omega}^{s}\ln\left(\frac{\omega_{0}}{d_{\Omega}}\right) = \vartheta in \Omega. On the other hand, since \inf_{\Omega}d_{\Omega }^{-\delta}\left(\ln\left(\frac{\omega_{0}}{d_{\Omega}}\right) \right) ^{-\beta_{1}} > 0 for any \delta > 0, we have

    d_{\Omega}^{-\gamma}\vartheta^{-\beta} = d_{\Omega}^{-\left( \gamma +s\beta-\delta\right) }d_{\Omega}^{-\delta}\left( \ln\left( \frac {\omega_{0}}{d_{\Omega}}\right) \right) ^{-\beta_{1}}\gtrapprox d_{\Omega }^{-\left( \gamma+s\beta-\delta\right) }\text{ in }\Omega,

    and then so, by Lemma 2.3 and the comparison principle, \left(\left(-\Delta\right) ^{s}\right) ^{-1}\left(d_{\Omega}^{-\gamma}\vartheta^{-\beta}\right) \gtrapprox\left(\left(-\Delta\right) ^{s}\right) ^{-1}\left(d_{\Omega}^{-\left(\gamma +s\beta-\delta\right) }\right) \approx d_{\Omega}.

    Lemma 3.1. Assume the hypothesis of Theorem 1.2 (respectively of Theorem 1.4), and let \vartheta_{1} and \vartheta_{2} be as defined there. For \varepsilon > 0, let

    \mathcal{C}_{\varepsilon}: = \left\{ \left( \zeta_{1}, \zeta_{2}\right) \in L^{2}\left( \Omega\right) \times L^{2}\left( \Omega\right) :\varepsilon \vartheta_{i}\leq\zeta_{i}\leq\frac{1}{\varepsilon}\vartheta_{i}\mathit{\text{ for }}i = 1, 2\right\} ,

    and let T:\mathcal{C}_{\varepsilon}\rightarrow L^{2}\left(\Omega\right) \times L^{2}\left(\Omega\right) be defined by

    \begin{equation} T\left( \zeta_{1}, \zeta_{2}\right) = \left( \left( \left( -\Delta\right) ^{s}\right) ^{-1}\left( ad_{\Omega}^{-\gamma_{1}}\zeta_{2}^{-\beta_{1} }\right) , \left( \left( -\Delta\right) ^{s}\right) ^{-1}\left( bd_{\Omega}^{-\gamma_{2}}\zeta_{1}^{-\beta_{2}}\right) \right) . \end{equation} (3.1)

    Then:

    1) \mathcal{C}_{\varepsilon} is a closed convex set in L^{2}\left(\Omega\right) \times L^{2}\left(\Omega\right).

    2) T\left(\mathcal{C}_{\varepsilon}\right) \subset\mathcal{C}_{\varepsilon} for any \varepsilon positive and small enough.

    3) T:\mathcal{C} _{\varepsilon}\rightarrow L^{2}\left(\Omega\right) \times L^{2}\left(\Omega\right) is continuous

    4) T:\mathcal{C}_{\varepsilon }\rightarrow L^{2}\left(\Omega\right) \times L^{2}\left(\Omega\right) is a compact map.

    Proof. Clearly \mathcal{C}_{\varepsilon} is a closed convex set in L^{2}\left(\Omega\right) \times L^{2}\left(\Omega\right). To see 2), note that, for any \left(\zeta_{1}, \zeta_{2}\right) \in\mathcal{C}_{\varepsilon} , ad_{\Omega}^{-\gamma_{1}}\zeta_{2}^{-\beta_{1}}\approx d_{\Omega} ^{-\gamma_{1}}\vartheta_{2}^{-\beta_{1}} and bd_{\Omega}^{-\gamma_{2}} \zeta_{1}^{-\beta_{2}}\approx d_{\Omega}^{-\gamma_{2}}\vartheta_{1} ^{-\beta_{2}} and then, when the hypothesis of Theorem 1.2 hold (respectively of Theorem 1.4 hold), Lemma 2.5 (resp. Lemma 2.4) gives that T is well defined on \mathcal{C}_{\varepsilon} and that T\left(\mathcal{C}_{\varepsilon}\right) \subset X_{0}^{s}\left(\Omega\right) \times X_{0}^{s}\left(\Omega\right) \subset L^{2}\left(\Omega\right) \times L^{2}\left(\Omega\right).

    To see 2) observe that, for any \left(\zeta_{1}, \zeta_{2}\right) \in\mathcal{C}_{\varepsilon},

    \begin{align*} \varepsilon^{\beta_{1}}\inf\limits_{\Omega}\left( a\right) d_{\Omega}^{-\gamma_{1} }\vartheta_{2}^{-\beta_{1}} & \leq ad_{\Omega}^{-\gamma_{1}}\zeta _{2}^{-\beta_{1}}\leq\varepsilon^{-\beta_{1}}\sup\limits_{\Omega}\left( a\right) d_{\Omega}^{-\gamma_{1}}\vartheta_{2}^{-\beta_{1}}\text{ in }\Omega, \\ \varepsilon^{\beta_{2}}\inf\limits_{\Omega}\left( b\right) d_{\Omega}^{-\gamma_{2} }\vartheta_{1}^{-\beta_{2}} & \leq ad_{\Omega}^{-\gamma_{2}}\zeta _{1}^{-\beta_{2}}\leq\varepsilon^{-\beta_{2}}\sup\limits_{\Omega}\left( b\right) d_{\Omega}^{-\gamma_{2}}\vartheta_{1}^{-\beta_{2}}\text{ in }\Omega \end{align*}

    and then, by the comparison principle and by Lemmas 2.5 and 2.4, there exist positive constants c_{1} and c_{2}, both independent of \varepsilon, \zeta_{1} and \zeta_{2}, such that

    \begin{align*} c_{1}\varepsilon^{\beta_{1}}\vartheta_{1} & \leq\left( \left( -\Delta\right) ^{s}\right) ^{-1}\left( \varepsilon^{\beta_{1}}\inf\limits_{\Omega }\left( a\right) d_{\Omega}^{-\gamma_{1}}\vartheta_{2}^{-\beta_{1}}\right) \leq\left( \left( -\Delta\right) ^{s}\right) ^{-1}\left( ad_{\Omega }^{-\gamma_{1}}\zeta_{2}^{-\beta_{1}}\right) \\ & \leq\left( \left( -\Delta\right) ^{s}\right) ^{-1}\left( \varepsilon^{-\beta_{1}}\sup\limits_{\Omega}\left( a\right) d_{\Omega}^{-\gamma _{1}}\vartheta_{2}^{-\beta_{1}}\right) \leq c_{2}\varepsilon^{-\beta_{1} }\vartheta_{1}\text{ in }\Omega \end{align*}

    and, similarly,

    c_{1}\varepsilon^{\beta_{2}}\vartheta_{2}\leq\left( \left( -\Delta\right) ^{s}\right) ^{-1}\left( ad_{\Omega}^{-\gamma_{2}}\zeta_{1}^{-\beta_{2} }\right) \leq c_{2}\varepsilon^{-\beta_{2}}\vartheta_{2}\text{ in }\Omega,

    Since 0 < \beta_{1} < 1 and 0 < \beta_{2} < 1, for \varepsilon small enough we have

    \begin{equation} \varepsilon\leq c_{1}\varepsilon^{\beta_{1}}, \varepsilon\leq c_{1} \varepsilon^{\beta_{2}}, c_{2}\varepsilon^{-\beta_{1}}\leq\varepsilon ^{-1}, \text{and } c_{2}\varepsilon^{-\beta_{2}}\leq\varepsilon^{-1}. \end{equation} (3.2)

    Thus, for such a \varepsilon, T\left(\mathcal{C}_{\varepsilon}\right) \subset\mathcal{C}_{\varepsilon}.

    To prove that T:\mathcal{C} _{\varepsilon}\rightarrow L^{2}\left(\Omega\right) \times L^{2}\left(\Omega\right) is continuous, consider an arbitrary \left(\zeta_{1}, \zeta_{2}\right) \in\mathcal{C}_{\varepsilon}, and a sequence \left\{ \left(\zeta_{1, j}, \zeta_{2, j}\right) \right\} _{j\in\mathbb{N}} \subset\mathcal{C}_{\varepsilon} that converges to \left(\zeta_{1}, \zeta_{2}\right) in L^{2}\left(\Omega\right) \times L^{2}\left(\Omega\right). After pass to a subsequence we can assume that \left\{ \left(\zeta_{1, j}, \zeta_{2, j}\right) \right\} _{j\in\mathbb{N}} converges to \left(\zeta_{1}, \zeta_{2}\right) a.e. in \Omega. Since 0\leq ad_{\Omega}^{–\gamma_{1}}\zeta_{2, j}^{-\beta_{1}}\leq\sup_{\Omega}\left(a\right) \varepsilon^{-\beta_{1}}d_{\Omega}^{-\gamma_{1}}\vartheta _{2}^{-\beta_{1}} and since, by Lemmas 2.5 and 2.4, d_{\Omega}^{-\gamma_{1}}\vartheta _{2}^{-\beta_{1}}\in\left(X_{0}^{1}\left(\Omega\right) \right) ^{\prime }, it follows that \left\{ ad_{\Omega}^{-\gamma_{1}}\zeta_{2, j}^{-\beta _{1}}\right\} _{j\in\mathbb{N}} is bounded in \left(X_{0}^{1}\left(\Omega\right) \right) ^{\prime}. Similarly, \left\{ ad_{\Omega} ^{-\gamma_{2}}\zeta_{1, j}^{-\beta_{2}}\right\} _{j\in\mathbb{N}} is bounded in \left(X_{0}^{1}\left(\Omega\right) \right) ^{\prime}. Let \left(\xi_{1, j}, \xi_{2, j}\right) : = T\left(\zeta_{1, j}, \zeta_{2, j}\right). Then \left\{ \left(\xi_{1, j}, \xi_{2, j}\right) \right\} _{j\in\mathbb{N}} is bounded in X_{0}^{1}\left(\Omega\right) \times X_{0}^{1}\left(\Omega\right). After pass to a further subsequence if necessary, we can assume that there exists \left(\xi_{1}, \xi_{2}\right) \in X_{0}^{1}\left(\Omega\right) \times X_{0}^{1}\left(\Omega\right) such that \left\{ \left(\xi_{1, j}, \xi_{2, j}\right) \right\} _{j\in\mathbb{N}} converges to \left(\xi_{1}, \xi_{2}\right) in L^{2}\left(\Omega\right) \times L^{2}\left(\Omega\right), \left\{ \left(\xi_{1, j}, \xi_{2, j}\right) \right\} _{j\in\mathbb{N}} converges \left(\xi_{1}, \xi_{2}\right) a.e. in \Omega, and \left\{ \xi_{1, j}, \xi_{2, j}\right\} _{j\in \mathbb{N}} converges weakly to \left(\xi_{1}, \xi_{2}\right) in X_{0}^{1}\left(\Omega\right) \times X_{0}^{1}\left(\Omega\right). Let \varphi\in X_{0}^{1}\left(\Omega\right). We have, for each j,

    \begin{align} \int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\frac{\left( \xi_{1, j}\left( x\right) -\xi_{1, j}\left( y\right) \right) \left( \varphi\left( x\right) -\varphi\left( y\right) \right) }{\left\vert x-y\right\vert ^{n+2s}}dxdy & = \int_{\Omega}ad_{\Omega}^{-\gamma_{1}}\zeta_{2, j} ^{-\beta_{1}}\varphi, \end{align} (3.3)
    \begin{align} \int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\frac{\left( \xi_{2, j}\left( x\right) -\xi_{2, j}\left( y\right) \right) \left( \varphi\left( x\right) -\varphi\left( y\right) \right) }{\left\vert x-y\right\vert ^{n+2s}}dxdy & = \int_{\Omega}bd_{\Omega}^{-\gamma_{2}}\zeta_{1, j} ^{-\beta_{2}}\varphi. \end{align} (3.4)

    Now, \left\{ \left(\zeta_{1, j}, \zeta_{2, j}\right) \right\} _{j\in\mathbb{N}}\subset\mathcal{C}_{\varepsilon} and so \left\vert ad_{\Omega}^{-\gamma_{1}}\zeta_{2, j}^{-\beta_{1}}\varphi\right\vert \leq\varepsilon^{-\beta_{1}}\left\Vert a\right\Vert _{\infty}\left\vert d_{\Omega}^{-\gamma_{1}}\vartheta_{2}^{-\beta_{1}}\varphi\right\vert \in L^{1}\left(\Omega\right). Therefore, by the Lebesgue dominated convergence theorem,

    \begin{equation} \lim\limits_{j\rightarrow\infty}\int_{\Omega}ad_{\Omega}^{-\gamma_{1}}\zeta _{2, j}^{-\beta_{1}}\varphi = \int_{\Omega}ad_{\Omega}^{-\gamma_{1}}\zeta _{2}^{-\beta_{1}}\varphi. \end{equation} (3.5)

    Similarly,

    \begin{equation} \lim\limits_{j\rightarrow\infty}\int_{\Omega}bd_{\Omega}^{-\gamma_{2}}\zeta _{1, j}^{-\beta_{2}}\varphi = \int_{\Omega}bd_{\Omega}^{-\gamma_{2}}\zeta _{1}^{-\beta_{2}}\varphi. \end{equation} (3.6)

    Then

    \begin{align} \int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\frac{\left( \xi_{1}\left( x\right) -\xi_{1}\left( y\right) \right) \left( \varphi\left( x\right) -\varphi\left( y\right) \right) }{\left\vert x-y\right\vert ^{n+2s}}dxdy & = \int_{\Omega}ad_{\Omega}^{-\gamma_{1}}\zeta_{2}^{-\beta_{1}} \varphi, \end{align} (3.7)
    \begin{align} \int_{\mathbb{R}^{n}\times\mathbb{R}^{n}}\frac{\left( \xi_{2}\left( x\right) -\xi_{2}\left( y\right) \right) \left( \varphi\left( x\right) -\varphi\left( y\right) \right) }{\left\vert x-y\right\vert ^{n+2s}}dxdy & = \int_{\Omega}bd_{\Omega}^{-\gamma_{1}}\zeta_{1}^{-\beta_{1}}\varphi. \end{align} (3.8)

    and so \left(\xi_{1}, \xi_{2}\right) = T\left(\zeta_{1}, \zeta_{2}\right). Then \left\{ T\left(\zeta_{1, j}, \zeta_{2, j}\right) \right\} _{j\in\mathbb{N}} converges to T\left(\zeta_{1}, \zeta_{2}\right) in L^{2}\left(\Omega\right) \times L^{2}\left(\Omega\right). Thus, for any sequence \left\{ \left(\zeta_{1, j}, \zeta_{2, j}\right) \right\} _{j\in\mathbb{N}}\subset\mathcal{C}_{\varepsilon} that converges to \left(\zeta_{1}, \zeta_{2}\right) in L^{2}\left(\Omega\right) \times L^{2}\left(\Omega\right), we have found a subsequence \left\{ \left(\zeta_{1, j_{k}}, \zeta_{2, j_{k}}\right) \right\} _{k\in\mathbb{N}} such that \left\{ T\left(\zeta_{1, j_{k}}, \zeta_{2, j_{k}}\right) \right\} _{k\in\mathbb{N}} converges to T\left(\zeta_{1}, \zeta_{2}\right) in L^{2}\left(\Omega\right) \times L^{2}\left(\Omega\right). Therefore T is continuous.

    To see that T:\mathcal{C}_{\varepsilon}\rightarrow L^{2}\left(\Omega\right) \times L^{2}\left(\Omega\right) is a compact map, consider a bounded sequence \left\{ \left(\zeta_{1, j}, \zeta _{2, j}\right) \right\} _{j\in\mathbb{N}}\subset\mathcal{C}_{\varepsilon}. Then 0\leq ad_{\Omega}^{-\gamma_{1}}\zeta_{2, j}^{-\beta_{1}}\leq\sup_{\Omega }\left(a\right) \varepsilon^{-\beta_{1}}d_{\Omega}^{-\gamma_{1}} \vartheta_{2}^{-\beta_{1}} and so, as above, \left\{ ad_{\Omega} ^{-\gamma_{1}}\zeta_{2, j}^{-\beta_{1}}\right\} _{j\in\mathbb{N}} is bounded in \left(X_{0}^{1}\left(\Omega\right) \right) ^{\prime}. Then \left\{ \left(\left(-\Delta\right) ^{s}\right) ^{-1}\left(ad_{\Omega}^{-\gamma_{1}} \zeta_{2, j}^{-\beta_{1}}\right) \right\} _{j\in\mathbb{N}} is bounded in X_{0}^{1}\left(\Omega\right). Thus there exists a subsequence \left\{ \left(\zeta_{1, j_{k}}, \zeta_{2, j_{k}}\right) \right\} _{k\in\mathbb{N}} such that \left(\left(\left(-\Delta\right) ^{s}\right) ^{-1}\left(ad_{\Omega} ^{-\gamma_{1}}\zeta_{2, j}^{-\beta_{1}}\right) \right\} _{j\in\mathbb{N}} converges in L^{2}\left(\Omega\right). Since 0\leq ad_{\Omega} ^{-\gamma_{2}}\zeta_{1, j_{k}}^{-\beta_{2}}\leq\sup_{\Omega}\left(b\right) \varepsilon^{-\beta_{2}}d_{\Omega}^{-\gamma_{1}}\vartheta_{1}^{-\beta_{2}} we can repeat the above argument to obtain (after pass to a further subsequence if necessary) that \left\{ \left(\left(-\Delta\right)^{s}\right) ^{-1}\left(ad_{\Omega }^{-\gamma_{2}}\zeta_{1, j_{k}}^{-\beta_{2}}\right) \right\} _{k\in \mathbb{N}} converges in L^{2}\left(\Omega\right). Therefore \left\{ T\left(\zeta_{1, j_{k}}, \zeta_{2, j_{k}}\right) \right\} _{j\in\mathbb{N}} converges in L^{2}\left(\Omega\right) \times L^{2}\left(\Omega\right).

    Lemma 3.2. Assume the hypothesis of Theorem 1.3, and let \vartheta be as given in Lemma 2.6. For \varepsilon > 0, let

    \mathcal{C}_{\varepsilon}: = \left\{ \left( \zeta_{1}, \zeta_{2}\right) \in L^{2}\left( \Omega\right) \times L^{2}\left( \Omega\right) :\varepsilon d_{\Omega}\leq\zeta_{i}\leq\frac{1}{\varepsilon}\vartheta\mathit{\text{ for }}i = 1, 2\right\} ,

    and let T:\mathcal{C}_{\varepsilon}\rightarrow L^{2}\left(\Omega\right) \times L^{2}\left(\Omega\right) be defined by (3.1). Then, for \varepsilon positive and small enough, the conclusions 1)-4) of Lemma 3.1 hold for \mathcal{C}_{\varepsilon} and T.

    Proof. The proof of the lemma is similar to the proof of Lemma 3.1. Clearly 1) holds. To prove 2), consider an arbitrary \left(\zeta_{1}, \zeta_{2}\right) \in\mathcal{C}_{\varepsilon}. Since 0\leq ad_{\Omega}^{-\gamma_{1}}\zeta_{2}^{-\beta_{1}}\leq \varepsilon^{-\beta_{1}}\sup_{\Omega}\left(a\right) d_{\Omega}^{-s} and 0\leq bd_{\Omega}^{-\gamma_{2}}\zeta_{1}^{-\beta_{2}}\leq\varepsilon ^{-\beta_{1}}\sup_{\Omega}\left(b\right) d_{\Omega}^{-s} a.e. in \Omega, we have that ad_{\Omega}^{-\gamma_{1}}\zeta_{2}^{-\beta_{1}} and bd_{\Omega}^{-\gamma_{2}}\zeta_{1}^{-\beta_{2}} belong to \left(X_{0} ^{s}\left(\Omega\right) \right) ^{\prime}. Then T\left(\zeta_{1}, \zeta_{2}\right) is well defined and belongs to L^{2}\left(\Omega\right) \times L^{2}\left(\Omega\right). Also, \varepsilon ^{\beta_{1}}\inf_{\Omega}\left(a\right) d_{\Omega}^{-\gamma_{1}} \vartheta^{-\beta_{1}}\leq ad_{\Omega}^{-\gamma_{1}}\zeta_{2}^{-\beta_{1}} \leq\varepsilon^{-\beta_{1}}\sup_{\Omega}\left(a\right) d_{\Omega}^{-s} in \Omega, and \varepsilon^{\beta_{2}}\inf_{\Omega}\left(b\right) d_{\Omega}^{-\gamma_{2}}\vartheta^{-\beta_{2}}\leq ad_{\Omega}^{-\gamma_{2} }\zeta_{1}^{-\beta_{2}}\leq\varepsilon^{-\beta_{2}}\sup_{\Omega}\left(b\right) d_{\Omega}^{-s} in \Omega. Then, by the comparison principle and Lemma 2.6, there exist positive constants c_{1} and c_{2}, both independent of \varepsilon, \zeta_{1}, and \zeta_{2}, such that

    \begin{align*} c_{1}\varepsilon^{\beta_{1}}d_{\Omega}^{s} & \leq\left( \left( -\Delta\right) ^{s}\right) ^{-1}\left( ad_{\Omega}^{-\gamma_{1}}\zeta _{2}^{-\beta_{1}}\right) \text{ }\leq c_{2}\varepsilon^{-\beta_{1} }\vartheta\text{ in }\Omega, \text{ and}\\ c_{1}\varepsilon^{\beta_{2}}d_{\Omega}^{s} & \leq\left( \left( -\Delta\right) ^{s}\right) ^{-1}\left( ad_{\Omega}^{-\gamma_{2}}\zeta _{1}^{-\beta_{1}}\right) \leq c_{2}\varepsilon^{-\beta_{2}} \vartheta\text{ in }\Omega, \end{align*}

    and so, as in Lemma 3.1, (3.2) holds for \varepsilon small enough. Then, for such a \varepsilon, T\left(\mathcal{C}_{\varepsilon}\right) \subset\mathcal{C}_{\varepsilon}.

    To prove 3), consider an arbitrary \left(\zeta_{1}, \zeta _{2}\right) \in\mathcal{C}_{\varepsilon}, and a sequence \left\{ \left(\zeta_{1, j}, \zeta_{2, j}\right) \right\} _{j\in\mathbb{N}}\subset \mathcal{C}_{\varepsilon} that converges to \left(\zeta_{1}, \zeta _{2}\right) in L^{2}\left(\Omega\right) \times L^{2}\left(\Omega\right). After pass to a subsequence we can assume that \left\{ \left(\zeta_{1, j}, \zeta_{2, j}\right) \right\} _{j\in\mathbb{N}} converges to \left(\zeta_{1}, \zeta_{2}\right) a.e. in \Omega. Since 0\leq ad_{\Omega}^{–\gamma_{1}}\zeta_{2, j}^{-\beta_{1}}\leq\sup_{\Omega}\left(a\right) \varepsilon^{-\beta_{1}}d_{\Omega}^{-s}, and 0\leq bd_{\Omega }^{–\gamma_{2}}\zeta_{1, j}^{-\beta_{2}}\leq\sup_{\Omega}\left(b\right) \varepsilon^{-\beta_{1}}d_{\Omega}^{-s}, and taking into account that d_{\Omega}^{-s}\in\left(X_{0}^{1}\left(\Omega\right) \right) ^{\prime }, it follows that \left\{ ad_{\Omega}^{-\gamma_{1}}\zeta_{2, j}^{-\beta _{1}}\right\} _{j\in\mathbb{N}} and \left\{ bd_{\Omega}^{-\gamma_{2}} \zeta_{1, j}^{-\beta_{2}}\right\} _{j\in\mathbb{N}} are bounded in \left(X_{0}^{1}\left(\Omega\right) \right) ^{\prime}. Let \left(\xi _{1, j}, \xi_{2, j}\right) : = T\left(\zeta_{1, j}, \zeta_{2, j}\right). Then \left\{ \left(\xi_{1, j}, \xi_{2, j}\right) \right\} _{j\in\mathbb{N}} is bounded in X_{0}^{1}\left(\Omega\right) \times X_{0}^{1}\left(\Omega\right). Therefore, after pass to a further subsequence if necessary, we can assume that, for some \left(\xi_{1}, \xi_{2}\right) \in X_{0} ^{1}\left(\Omega\right) \times X_{0}^{1}\left(\Omega\right), \left\{ \left(\xi_{1, j}, \xi_{2, j}\right) \right\} _{j\in\mathbb{N}} converges to \left(\xi_{1}, \xi_{2}\right) in L^{2}\left(\Omega\right) \times L^{2}\left(\Omega\right) and a.e. in \Omega; and that \left\{ \xi_{1, j}, \xi_{2, j}\right\} _{j\in\mathbb{N}} converges weakly to \left(\xi_{1}, \xi_{2}\right) in X_{0}^{1}\left(\Omega\right) \times X_{0} ^{1}\left(\Omega\right). Let \varphi\in X_{0}^{1}\left(\Omega\right). Since \left\{ \left(\zeta_{1, j}, \zeta_{2, j}\right) \right\} _{j\in\mathbb{N}}\subset\mathcal{C}_{\varepsilon} and \gamma_{1}+s\beta _{1} = s, we have \left\vert ad_{\Omega}^{-\gamma_{1}}\zeta_{2, j}^{-\beta_{1} }\varphi\right\vert \leq\varepsilon^{-\beta_{1}}\left\Vert a\right\Vert _{\infty}\left\vert d_{\Omega}^{-s}\varphi\right\vert and by the Hardy inequality, \left\vert d_{\Omega}^{-s}\varphi\right\vert \in L^{1}\left(\Omega\right). Then, from (3.3) and (3.4), the Lebesgue dominated convergence theorem gives (3.5). (3.6) is obtained similarly. Then (3.7) and (3.8) hold. Thus \left(\xi _{1}, \xi_{2}\right) = T\left(\zeta_{1}, \zeta_{2}\right) and so \left\{ T\left(\zeta_{1, j}, \zeta_{2, j}\right) \right\} _{j\in\mathbb{N}} converges to T\left(\zeta_{1}, \zeta_{2}\right) in L^{2}\left(\Omega\right) \times L^{2}\left(\Omega\right). Then, as in the proof of Lemma 3.1, the conclusion that T is continuous is reached.

    To see 4), consider a bounded sequence \left\{ \left(\zeta_{1, j}, \zeta_{2, j}\right) \right\} _{j\in\mathbb{N}}\subset \mathcal{C}_{\varepsilon}. We have 0\leq ad_{\Omega}^{-\gamma_{1}} \zeta_{2, j}^{-\beta_{1}}\leq\sup_{\Omega}\left(a\right) \varepsilon ^{-\beta_{1}}d_{\Omega}^{-s} and 0\leq bd_{\Omega}^{-\gamma_{2}} \zeta_{1, j_{k}}^{-\beta_{2}}\leq\sup_{\Omega}\left(b\right) \varepsilon ^{-\beta_{2}}d_{\Omega}^{-s} in \Omega, and so \left\{ ad_{\Omega }^{-\gamma_{1}}\zeta_{2, j}^{-\beta_{1}}\right\} _{j\in\mathbb{N}} and \left\{ bd_{\Omega}^{-\gamma_{2}}\zeta_{1, j}^{-\beta_{2}}\right\} _{j\in\mathbb{N}} are bounded in \left(X_{0}^{1}\left(\Omega\right) \right) ^{\prime}. Now 4) follows as in the proof of Lemma 3.1

    Proof of Theorems 1.2, 1.3, and 1.4. Theorems 1.2, 1.3 and 1.4 follow from the Schauder fixed point theorem (as stated e.g., in [31], Theorem 3.2.20), combined with Lemma 3.1 in the case of Theorems 1.2 and 1.4; and with Lemma 3.2 in the case of Theorem 1.3.

    The author declare no conflicts of interest in this paper.



    [1] C. Alves, Multiplicity of positive solutions for amixed boundary value problem, Rocky MT J. Math., 38 (2008), 19-39. doi: 10.1216/RMJ-2008-38-1-19
    [2] I. Bachar, H. Mâagli and V.Rădulescu, Singular solutions of a nonlinear elliptic equation ina punctured domain, Electron. J. Qual. Theo., 94 (2017), 1-19.
    [3] B. Barrios, I. De Bonis, M. Medina, et al.Semilinear problems for the fractional laplacian with a singularnonlinearity, Open Math., 13 (2015), 390-407.
    [4] U. Biccari, M Warma and E. Zuazua,Local elliptic regularity for the Dirichlet fractional laplacian,Adv. Nonlinear Stud., 17 (2017), 387-409.
    [5] A. Callegari and A. Nachman, A nonlinear singularboundary-value problem in the theory of pseudoplastic fluids, SIAM J. Appl.Math., 38 (1980), 275-281. doi: 10.1137/0138024
    [6] M. Chhetri, P. Drabek, R. Shivaji, Analysis ofpositive solutions for classes of quasilinear singular problems on exteriordomains, Adv. Nonlinear Anal., 6 (2017), 447-459.
    [7] M. B. Chrouda, Existence and nonexistence ofpositive solutions to the fractional equation {\Delta ^{\frac{\alpha }{2}}}u = - {u^\gamma } in bounded domains, Annales Academiæ Scientiarum Fennicæ Mathematica, 42 (2017), 997-1007. doi: 10.5186/aasfm.2017.4262
    [8] F. Cîrstea, M. Ghergu and V.Rădulescu, Combined effects of asymptotically linear and singularnonlinearities in bifurcation problems of Lane-Emden-Fowler type, J. Math.Pure. Appl., 84 (2005), 493-508. doi: 10.1016/j.matpur.2004.09.005
    [9] D. S. Cohen and H. B. Keller, Some positive problemssuggested by nonlinear heat generators, J. Math. Mech., 16 (1967), 1361-1376.
    [10] M. G. Crandall, P. H. Rabinowitz and L. Tartar, Ona Dirichlet problem with a singular nonlinearity, Commun. Part. Diff.Eq., 2 (1977), 193-222. doi: 10.1080/03605307708820029
    [11] L. M. Del Pezzo and A. Quaas, Globalbifurcation for fractional p-laplacian and an application, Zeitschriftfür Analysis und ihre Anwendungen, 35 (2016), 411-447.%doi: 10.4171/ZAA/1572. doi: 10.4171/ZAA/1572
    [12] M. A. del Pino, A global estimate for the gradientin a singular elliptic boundary value problem, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 122 (1992), 341-352. doi: 10.1017/S0308210500021144
    [13] J. I. Diaz, J. Hernandez and J. M. Rakotoson,On very weak positive solutions to some semilinear elliptic problemswith simultaneous singular nonlinear and spatial dependence terms, Milan J.Math., 79 (2011), 233.
    [14] J. I. Díaz, J. M. Morel and L. Oswald, Anelliptic equation with singular nonlinearity, Commun. Part. Diff.Eq., 12 (1987), 1333-1344. doi: 10.1080/03605308708820531
    [15] E. Di Nezza, G. Palatucci and E. Valdinoci,Hitchhiker's guide to the fractional Sobolev spaces, B. Sci. Math.,136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004
    [16] L. Dupaigne, M. Ghergu and V.Rădulescu, Lane-Emden-Fowler equations with convection andsingular potential, J. Math. Pure. Appl., 87 (2007), 563-581. doi: 10.1016/j.matpur.2007.03.002
    [17] OK. W. Fulks and J. S. Maybee, A singularnonlinear equation, Osaka J. Math., 12 (1960), 1-19.
    [18] A. Fiscella, R. Servadei and E.Valdinoci, Density properties for fractional Sobolev Spaces, Ann.Acad. Sci. Fenn. Math., 40 (2015), 235-253. doi: 10.5186/aasfm.2015.4009
    [19] L. Gasiński and N. S. Papageorgiou,Nonlinear elliptic equations with singular terms and combinednonlinearities, Ann. Henri Poincaré, 13 (2012), 481-512. doi: 10.1007/s00023-011-0129-9
    [20] M. Ghergu, V. Liskevich and Z. Sobol, Singularsolutions for second-order non-divergence type elliptic inequalities inpunctured balls, J. Anal. Math., 123 (2014), 251-279. doi: 10.1007/s11854-014-0020-y
    [21] M. Ghergu, V. Rădulescu, Singularelliptic problems: bifurcation and asymptotic analysis, Oxford Lecture Seriesin Mathematics and its Applications, The Clarendon Press, OxfordUniversity Press, Oxford, 2008.
    [22] J. Giacomoni, J. Hernandez and P. Sauvy,Quasilinear and singular elliptic systems, Adv. Nonlinear Anal.,2 (2013), 1-41. doi: 10.1515/anona-2012-0019
    [23] J. Giacomoni, T. Mukherjee, K. Sreenadh,Positive solutions of fractional elliptic equation with critical andsingular nonlinearity, Adv. Nonlinear Anal., 6 (2017), 327-354.
    [24] T. Godoy, A semilnear singular problem for thefractional laplacian, AIMS Mathematics, 3 (2018), 464-484. doi: 10.3934/Math.2018.4.464
    [25] A. C. Lazer and P. J. McKenna, On a singularnonlinear elliptic boundary value problem, Proc. Amer. Math. Soc.,111 (1991), 721-730. doi: 10.1090/S0002-9939-1991-1037213-9
    [26] H. Mâagli, Asymptotic behavior of positivesolutions of a semilinear Dirichlet problem, Nonlinear Analysis: Theory, Methods \& Applications, 74 (2011), 2941-2947.
    [27] H. Mâagli and M. Zribi, Existence andestimates of solutions for singular nonlinear elliptic problems, J. Math.Anal. Appl., 263 (2001), 522-542. doi: 10.1006/jmaa.2001.7628
    [28] G. Molica Bisci, V. Rădulescu and R. Servadei,Variational methods for nonlocal fractional problems, Encyclopedia ofMathematics and its Applications, Cambridge University Press,Cambridge, 2016.
    [29] M. Montenegro and A. Suárez, Existenceof a positive solution for a singular system, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 140 (2010), 435-447. doi: 10.1017/S0308210509000705
    [30] N. S. Papageorgiou and G. Smyrlis,Nonlinear elliptic equations with singular reaction, Osaka J. Math.,53 (2016), 489-514.
    [31] N. S. Papageorgiou, D. D. Repov and V.D. Rădulescu, Nonlinear analysis-theory and methods, SpringerMonographs in Mathematics, Springer, Cham, 2019.
    [32] K. Ho, K. Perera, I. Sim, et al.A note on fractional p-laplacian problems with singular weights, J.Fixed Point Theory A., 19 (2017), 157-173. doi: 10.1007/s11784-016-0344-6
    [33] V. D. Rădulescu, Singular phenomena innonlinear elliptic problems. From blow-up boundary solutions to equations withsingular nonlinearities, In: Handbook of Differential Equations: StationaryPartial Differential Equations (M. Chipot, Editor), North-HollandElsevier Science, Amsterdam, 4 (2007), 483-591.
    [34] X. Ros-Oton, Nonlocal elliptic equations in boundeddomains: a survey, Publ. Mat., 60 (2016), 3-26. doi: 10.5565/PUBLMAT_60116_01
    [35] X. Ros Oton and J. Serra, The Dirichletproblem fot the fractional laplacian: Regularity up to the boundary, J. Math.Pure. Appl., 101 (2014), 275-302. doi: 10.1016/j.matpur.2013.06.003
    [36] R. Servadei and E. Valdinoci, Variationalmethods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst.,33 (2013), 2105-2137.
    [37] Z. Zhang, The asymptotic behaviour of the uniquesolution for the singular Lane-Emden-Fowler equation, J. Math. Anal. Appl.,312 (2005), 33-43. doi: 10.1016/j.jmaa.2005.03.023
  • This article has been cited by:

    1. Abdelhamid Gouasmia, Nonlinear fractional and singular systems: Nonexistence, existence, uniqueness, and Hölder regularity, 2022, 45, 0170-4214, 5283, 10.1002/mma.8106
    2. Umberto Guarnotta, Roberto Livrea, Salvatore A. Marano, Some recent results on singular p -Laplacian systems, 2022, 0, 1937-1632, 0, 10.3934/dcdss.2022170
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4614) PDF downloads(978) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog