AIMS Mathematics, 2019, 4(3): 779-791. doi: 10.3934/math.2019.3.779

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

The new class $L_{z,p,E}$ of $s-$ type operators

Department of Mathematics, Düzce University, Konuralp, Duzce, Turkey

The purpose of this study is to introduce the class of s-type $Z\left(u,v;l_{p}\left( E\right) \right) $ operators, which we denote by $%L_{z,p,E}\left(X,Y\right) $, we prove that this class is an operator ideal and quasi-Banach operator ideal by a quasi-norm defined on this class. Then we define classes using other examples of $ s$-number sequences. We conclude by investigating which of these classes are injective, surjective or symmetric.
  Article Metrics


1. A. Maji, P. D. Srivastava, On operator ideals using weightedCesàro sequence space, Journal of the Egyptian Mathematical Society, 22 (2014), 446-452.    

2.A. Grothendieck, Produits Tensoriels Topologiques et Espaces Nucléaires, American Mathematical Soc., 16 (1955).

3.E. Schmidt, Zur theorie der linearen und nichtlinearen integralgleichungen, Mathematische Annalen, 63 (1907), 433-476.    

4.A. Pietsch, Einigie neu Klassen von Kompakten linearenAbbildungen, Revue Roum. Math. Pures et Appl., 8 (1963), 427-447.

5.A. Pietsch, s-Numbers of operators in Banach spaces, StudiaMath., 51 (1974), 201-223.

6.A. Pietsch, Operator Ideals, VEB Deutscher Verlag derWissenschaften, Berlin, 1978.

7.B.Carl, A.Hinrichs, On s-numbers and Weyl inequalities ofoperators in Banach spaces, Bull.Lond. Math. Soc., 41 (2009), 332-340.    

8.A. Pietsch, Eigenvalues and s-numbers, CambridgeUniversity Press, New York, 1986.

9. E. Malkowsky and E. Savaş, Matrix transformations betweensequence spaces of generalized weighted means, Appl. Math. Comput., 147 (2004), 333-345.

10. J. S. Shiue, On the Cesaro sequence spaces, Tamkang J. Math., 1 (1970), 19-25.

11. S. Saejung, Another look at Cesàro sequence spaces, J. Math. Anal. Appl., 366 (2010), 530-537.    

12. G. Constantin, Operators of $ces-p$ type, Rend. Acc. Naz. Lincei., 52 (1972), 875-878.

13. M. Kirişci, The Hahn sequence space defined by the Cesaro mean, Abstr. Appl. Anal., {\bf 2013 (2013), 1-6.

14. N. Tita, On Stolz mappings, Math. Japonica, 26 (1981), 495-496.

15.E. E. Kara, M. İlkhan, On a new class of s-typeoperators, Konuralp Journal of Mathematics, 3 (2015), 1-11.

16.A. Maji, P. D. Srivastava, Some class of operator ideals, Int.J. Pure Appl. Math., 83 (2013), 731-740.

17. S. E. S. Demiriz, The norm of certain matrix operators on the new block sequence space, Conference Proceedings of Science and Technology, 1 (2018), 7-10.

18.A. Maji, P. D. Srivastava, Some results of operator idealson $s-$type $\left \vert A,p\right \vert $ operators, Tamkang J. Math., 45 (2014), 119-136.    

19.N. şimşek,V. Karakaya, H. Polat, Operators idealsof generalized modular spaces of Cesaro type defined by weighted means, J. Comput. Anal. Appl., 19 (2015), 804-811.

20.E. Erdoǧan, V. Karakaya, Operator ideal of s-type operators using weighted mean sequence space, Carpathian J. Math., 33 (2017), 311-318.

21.D. Foroutannia, On the block sequence space $l_p(E)$ andrelated matrix transformations, Turk. J. Math., 39 (2015), 830-841.    

22.H. Roopaei, D. Foroutannia, The norm of certain matrix operatorson new difference sequence spaces, Jordan J. Math. Stat., 8 (2015), 223-237.

23. H. Roopaei, D. Foroutannia, A new sequence space and norm ofcertain matrix operators on this space, Sahand Communications inMathematical Analysis, 3 (2016), 1-12.

24.P. Z. Alp, E. E. Kara, A new class of operator ideals on the block sequence space $l_p(E)$, Adv. Appl. Math. Sci., 18 (2018), 205-217.

25.P. Z. Alp, E. E. Kara, Some equivalent quasinorms on $L_{\phi,E}$, Facta Univ. Ser. Math. Inform., 33 (2018), 739-749.

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved