
AIMS Mathematics, 2019, 4(3): 721739. doi: 10.3934/math.2019.3.721
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Approximate solutions to nonlinear fractional order partial differential equations arising in ionacoustic waves
1 Department of Basic Sciences, Princess Sumaya University for Technology, Amman 11941, Jordan
2 Department of Mathematics, Shaheed Benazir Bhutto University Sheringal Dir(U), Khyber Pakhtunkhwa, Pakistan
3 Department of Mathematics, University of Malakand, Dir(L), Khyber Pakhtunkhwa, Pakistan
4 Department of Mathematics, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
Received: , Accepted: , Published:
Special Issues: Initial and Boundary Value Problems for Differential Equations
References
1. A. R. Seadawy, The solutions of the Boussinesq and generalized fifthorder KdV equations by using the direct algebraic method, Appl. Math. Sci., 6 (2012), 40814090.
2. A. R. Seadawy, Stability analysis for twodimensional ionacoustic waves in quantum plasmas, Phys. Plasmas,21 (2014), Article ID: 052107.
3. A. R. Seadawy, Stability analysis of traveling wave solutions for generalized coupled nonlinear KdV equations, Appl. Math. Inf. Sci., 10 (2016), 209214.
4. A. R. Seadawy, Threedimensional nonlinear modified ZakharovKuznetsov equation of ionacoustic waves in a magnetized plasma, Comput. Math. Appl., 71 (2016), 201212.
5. A. R. Seadawy and D. Lu, Ion acoustic solitary wave solutions of threedimensional nonlinear extended ZakharovKuznetsov dynamical equation in a magnetized twoiontemperature dusty plasma, Results Phys., 6 (2016), 590593.
6. A. R. Seadawy, Ion acoustic solitary wave solutions of twodimensional nonlinear KadomtsevPetviashviliBurgers equation in quantum plasma, Math. Methods Appl. Sci., 40 (2017), 15981607.
7. A. R. Seadawy, Travellingwave solutions of a weakly nonlinear twodimensional higherorder KadomtsevPetviashvili dynamical equation for dispersive shallowwater waves, Eur. Phys. J. Plus, 132 (2017), Article: 29.
8. A. R. Seadawy, The generalized nonlinear higher order of KdV equations from the higher order nonlinear Schrödinger equation and its solutions, Optik Int. J. Light Electron Opt., 139 (2017), 3143.
9. A. R. Seadawy, Modulation instability analysis for the generalized derivative higher order nonlinear Schrödinger equation and its the bright and dark soliton solutions, J. Electromagn. Waves Appl., 31 (2017), 13531362.
10. A. R. Seadawy, Solitary wave solutions of twodimensional nonlinear KadomtsevPetviashvili dynamic equation in dustacoustic plasmas, Pramana,89 (2017), Article: 49.
11. Y. Rangkuti, B. M. Batiha and M. T. Shatnawi, Solutions of fractional Zakharov–Kuznetsov equations by fractional complex transform, Int. J. Appl. Math. Res., 5 (2016), 2428.
12. D. Kumar, J. Singh and S. Kumar, Numerical computation of nonlinear fractional Zakharov–Kuznetsov equation arising in ionacoustic waves, J. Egypt. Math. Soc., 22 (2014), 373378.
13. I. Podlubny, Fractional Differential Equations, Academic Press, Academic Press, New York, 1999.
14. I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal., 5 (2002), 367386.
15. J. H. He, Nonlinear oscillation with fractional derivative and its applications. In: International Conference on Vibrating Engineering'98, Dalian, China,1998 (1998), 288291.
16. J. H. He, Some applications of nonlinear fractional differential equations and their approximations, Bull. Sci. Technol., 15 (1999), 8690.
17. A. Luchko and R. Groneflo, The initial value problem for some fractional differential equations with the Caputo derivative, Preprint series A0898, Fachbreich Mathematik und Informatik, Freic Universitat Berlin, 1998.
18. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, Inc. New York, 1993.
19. K. B. Oldham and J. Spanier, The fractional calculus, New York: Academic Press, 1974.
20. M. Caputo, Linear models of dissipation whose Q is almost frequency independent. Part II, Geophys. J. Int., 13 (1967), 529539.
21. S. Ali, S. Bushnaq, K. Shah, et al. Numerical treatment of fractional order Cauchy reaction diffusion equations, Chaos Solitons Fractals, 103 (2017), 578587.
22. M. M. Meerschaert and C. Tadjeran, Finite difference approximations for twosided spacefractional partial differential equations, Appl. Numer. Math., 56 (2006), 8090.
23. C. Tadjeran and M. M. Meerschaert, A secondorder accurate numerical method for the twodimensional fractional diffusion equation, J. Comput. Phys., 220 (2007), 813823.
24. V. E. Lynch, B. A. Carrerasand, D. delCastilloNegrete, et al. Numerical methods for the solution of partial differential equations of fractional order, J. Comput. Phys., 192 (2003), 406421.
25. S. Momani and K. AlKhaled, Numerical solutions for systems of fractional differential equations by the decomposition method, Appl. Math. Comput., 162 (2005), 13511365.
26. S. Momani, An explicit and numerical solutions of the fractional KdV equation, Math. Comput. Simul., 70 (2005), 110118.
27. S. Momani, Nonperturbative analytical solutions of the space and timefractional Burgers equations, Chaos Solitons Fractals, 28 (2006), 930937.
28. S. Momani and Z. Odibat, Analytical solution of a timefractional NavierStokes equation by Adomian decomposition method, Appl. Math. Comput., 177 (2006), 488494.
29. Z. Odibat and S. Momani, Approximate solutions for boundary value problems of timefractional wave equation, Appl. Math. Comput., 181 (2006), 13511358.
30. Z. Odibat and S. Momani, Application of variational iteration method to nonlinear differential equations of fractional order, Int. J. Nonlinear Sci. Numer. Simul., 7 (2006), 2734.
31. S. Momani and Z. Odibat, Numerical comparison of methods for solving linear differential equations of fractional order, Chaos Solitons Fractals, 31 (2007), 12481255.
32. S. Momani and Z. Odibat, Numerical approach to differential equations of fractional order, J. Comput. Appl. Math., 207 (2007), 96110.
33. Z. Odibat and S. Momani, Numerical methods for solving nonlinear partial differential equations of fractional order, Appl. Math. Modell., 32 (2008), 2839.
34. Z. Odibat and S. Momani, Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order, Chaos Solitons Fractals, 36 (2008), 167174.
35. S. Momani and Z. Odibat, Comparison between homotopy perturbation method and the variational iteration method for linear fractional partial differential equations, Comput. Math. Appl., 54 (2007), 910919.
36. S. Momani and Z. Odibat, Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. Lett. A, 365 (2007), 345350.
37. A. Yıldırım and Y. Gülkanat, Analytical approach to fractional ZakharovKuznetsov equations by He's homotopy perturbation method, Commun. Theor. Phys., 53 (2010), 10051010.
38. Y. Khan, N. Faraz and A. Yildirim, New soliton solutions of the generalized Zakharov equations using He's variational approach, Appl. Math. Lett., 24 (2011), 965968.
39. S. Momani and A. Yıldırım, Analytical approximate solutions of the fractional convectiondiffusion equation with nonlinear source term by He's homotopy perturbation method, Int. J. Comput. Math., 87 (2010), 10571065.
40. V. E. Zakharov and E. A. Kuznetsov, On threedimensional solitons, Sov. Phys., 39 (1974), 285288.
41. S. Monro and E. J. Parkes, The derivation of a modified ZakharovKuznetsov equation and the stability of its solutions, J. Plasma Phys., 62 (1999), 305317.
42. S. Monro and E. J. Parkes, Stability of solitarywave solutions to a modified ZakharovKuznetsov equation, J. Plasma Phys., 64 (2000), 411426.
43. S. J. Liao, On the Proposed Analysis Technique for Nonlinear Problems and its Applications , In: Ph.D. Dissertation, Shanghai Jiao Tong University, Shanghai, China, 1992.
44. J. H. He, An approximation sol. technique depending upon an articial parameter, Commun. Nonlinear Sci. Numer. Simul., 3 (1998), 9297.
45. V. Marinca and N. Herisanu, Application of Optimal Homotopy Asymptotic Method for solving nonlinear equations arising in heat transfer, Int. Commun. Heat Mass Transfer, 35 (2008), 710715.
46. N. Herisanu and V. Marinca, Optimal homotopy perturbation method for a nonconservative dynamical system of a rotating electrical machine, Z. Naturforsch. A, 67 (2012), 509516.
47. N. Herisanu, V. Marinca, G. Madescu, et al. Dynamic response of a permanent magnet synchronous generator to a wind gust, Energies, 12 (2019), Article: 915.
48. V. Marinca and N. Herisanu, On the flow of a Walterstype B' viscoelastic fluid in a vertical channel with porous wall, Int. J. Heat Mass Transfer, 79 (2014), 146165.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)