Research article Special Issues

Approximate solutions to nonlinear fractional order partial differential equations arising in ion-acoustic waves

  • An approximative procedure named asymptotic homotopy perturbation method (AHPM) is introduced to obtain solutions of the non-linear fractional order models. The two special cases, FZK(3,3,3) and FZK(2,2,2) of fractional Zakharov-Kuznetsov equations are chosen for the illustrative purpose of our method. AHPM is a very recent new procedure as compare with other existing homotopy perturbation procedures. A new auxiliary function has been introduced in AHPM. The AHPM solutions are compared with solutions of fractional complex transform FCT using variational iteration method VIM and exact solutions. Further, the surface graph of AHPM solutions are compared with surface graph of solutions of homotopy perturbation transform method (HPTM) solutions. In comparison, the solutions computed by AHPM are in agreement with exact solutions of the problems. The simulation section reveals that our new developed procedure is effective and explicit.

    Citation: Samia Bushnaq, Sajjad Ali, Kamal Shah, Muhammad Arif. Approximate solutions to nonlinear fractional order partial differential equations arising in ion-acoustic waves[J]. AIMS Mathematics, 2019, 4(3): 721-739. doi: 10.3934/math.2019.3.721

    Related Papers:

    [1] Maysaa Al-Qurashi, Saima Rashid, Fahd Jarad, Madeeha Tahir, Abdullah M. Alsharif . New computations for the two-mode version of the fractional Zakharov-Kuznetsov model in plasma fluid by means of the Shehu decomposition method. AIMS Mathematics, 2022, 7(2): 2044-2060. doi: 10.3934/math.2022117
    [2] M. Ali Akbar, Norhashidah Hj. Mohd. Ali, M. Tarikul Islam . Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Mathematics, 2019, 4(3): 397-411. doi: 10.3934/math.2019.3.397
    [3] Harivan R. Nabi, Hajar F. Ismael, Nehad Ali Shah, Wajaree Weera . W-shaped soliton solutions to the modified Zakharov-Kuznetsov equation of ion-acoustic waves in (3+1)-dimensions arise in a magnetized plasma. AIMS Mathematics, 2023, 8(2): 4467-4486. doi: 10.3934/math.2023222
    [4] Aslı Alkan, Halil Anaç . The novel numerical solutions for time-fractional Fornberg-Whitham equation by using fractional natural transform decomposition method. AIMS Mathematics, 2024, 9(9): 25333-25359. doi: 10.3934/math.20241237
    [5] M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque . New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative. AIMS Mathematics, 2019, 4(2): 199-214. doi: 10.3934/math.2019.2.199
    [6] Baojian Hong, Jinghan Wang, Chen Li . Analytical solutions to a class of fractional coupled nonlinear Schrödinger equations via Laplace-HPM technique. AIMS Mathematics, 2023, 8(7): 15670-15688. doi: 10.3934/math.2023800
    [7] Sumbal Ahsan, Rashid Nawaz, Muhammad Akbar, Saleem Abdullah, Kottakkaran Sooppy Nisar, Velusamy Vijayakumar . Numerical solution of system of fuzzy fractional order Volterra integro-differential equation using optimal homotopy asymptotic method. AIMS Mathematics, 2022, 7(7): 13169-13191. doi: 10.3934/math.2022726
    [8] Volkan ALA, Ulviye DEMİRBİLEK, Khanlar R. MAMEDOV . An application of improved Bernoulli sub-equation function method to the nonlinear conformable time-fractional SRLW equation. AIMS Mathematics, 2020, 5(4): 3751-3761. doi: 10.3934/math.2020243
    [9] Azzh Saad Alshehry, Naila Amir, Naveed Iqbal, Rasool Shah, Kamsing Nonlaopon . On the solution of nonlinear fractional-order shock wave equation via analytical method. AIMS Mathematics, 2022, 7(10): 19325-19343. doi: 10.3934/math.20221061
    [10] Ali Khalouta, Abdelouahab Kadem . A new computational for approximate analytical solutions of nonlinear time-fractional wave-like equations with variable coefficients. AIMS Mathematics, 2020, 5(1): 1-14. doi: 10.3934/math.2020001
  • An approximative procedure named asymptotic homotopy perturbation method (AHPM) is introduced to obtain solutions of the non-linear fractional order models. The two special cases, FZK(3,3,3) and FZK(2,2,2) of fractional Zakharov-Kuznetsov equations are chosen for the illustrative purpose of our method. AHPM is a very recent new procedure as compare with other existing homotopy perturbation procedures. A new auxiliary function has been introduced in AHPM. The AHPM solutions are compared with solutions of fractional complex transform FCT using variational iteration method VIM and exact solutions. Further, the surface graph of AHPM solutions are compared with surface graph of solutions of homotopy perturbation transform method (HPTM) solutions. In comparison, the solutions computed by AHPM are in agreement with exact solutions of the problems. The simulation section reveals that our new developed procedure is effective and explicit.


    In recent decades, importance of fractional order models is well disclosed fact in many fields of engineering and science. Numerous fractional order partial differential equations(FPDEs) have been used by many authors to describe various important biological and physical processes like in the fields of chemistry, biology, mechanics, polymer, economics, biophysics control theory and aerodynamics. In this concern, many researchers have studied various schemes and aspects of PDEs and FPDEs as well, see [1,2,3,4,5,6,7,8,9,10]. However, the great attention has been given very recently to obtaining the solution of fractional models of the physical interest. Keeping in views, the computation complexities involved in fractional order models is very crucial and is the difficulty in solving these fractional models. Some times, the exact analytic solution of each and every FPDE can not be obtained using the traditional schemes and methods. However, there exists some schemes and methods, which have been proved to be efficient in obtaining the approximation to solution of the fractional order problems. Among them, we bring the attention of readers to these methods and schemes [11,12,13,14,15,16,17,18,19,20,21] which are used successfully. These methods and schemes have their own demerits and merits. Some of them provide a very good approximation with convenient way. For example, see the methods and schemes in the articles [22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39].

    The main aim of this work is to develop a new procedure which is easy with respect to application and more efficient as compare with existing procedures. In this concern, we introduced asymptotic homotopy perturbation method (AHPM) to obtain the solution of nonlinear fractional order models. It is a new version of perturbation techniques. In simulation section, we have testified our proposed procedure by considering the test problems of non linear fractional order Zakharov-Kuznetsov ZK(m,n,r) equations of the form [11,12]

    αu(x,y,t)tα+a0(um(x,y,t))x+a1(un(x,y,t))xxx+a2(ur(x,y,t))yyx=0,0<α1. (1.1)

    Where a0, a1, a2 are arbitrary constants and m,n,r are non zero integers. If α=1, then equation (1.1) becomes classical Zakharov-Kuznetsov ZK(m,n,r) equation given as:

    u(x,y,t)t+a0(um(x,y,t))x+a1(um(x,y,t))xxx+a2(ur(x,y,t))yyx=0. (1.2)

    The ZK equation has been firstly modelized for depicting weakly nonlinear ion-acoustic waves in strongly magnetized lossless plasma [40]. The ZK equation governs the behavior of weakly nonlinear ion-acoustic waves in plasma comprising cold ions and hot isothermal electrons in the presence of a uniform magnetic field [41,42].

    The plan of the rest paper is as follows: Section 2 provides theory of the AHPM; Section 3 provides implementation of AHPM. Finally, a brief conclusion and the further work has been listed.

    Here, we provide that the Caputo type fractional order derivative will be used throughout this paper for the computation of derivative.

    Let us consider the nonlinear problem in the form as

    T(u(x,y,t))+g(x,y,t)=0, (2.1)
    B(u(x,y,t),u(x,y,t)t)=0. (2.2)

    Where T(u(x,y,t)) denotes a differential operator which may consists ordinary, partial or space- fractional or time-fractional differential derivative. T(u(x,y,t)) can be expressed for fractional model as follows:

    αu(x,y,t)tα+N(u(x,y,t))+g(x,y,t)=0 (2.3)

    subject to the condition

    B(u(x,y,t),u(x,y,t)t)=0, (2.4)

    where the operator αtα denotes the Caputo derivative operator, N is non linear operator and B denotes a boundary operator, u(x,y,t) is unknown exact solution of Eq. (2.1), g(x,y,t) denotes known function and x,y and t denote special and temporal variables respectively. Let us construct a homotopy Φ(x,y,t;p):Ω×[0,1]R which satisfies

    αΦ(x,y,t;p)tα+g(x,y,t)p[N(Φ(x,y,t;p)]=0, (2.5)

    where p[0,1] is said to be an embedding parameter. At this phase of our work it is pertinent that our proposed deformation Eq. (2.5) is an alternate form of the deformation equations as

    (1p)[L(Φ(x,y,t;p))L(u0(x,y,t))+g(x,y,t)]+p[T(Φ(x,y,t;p)+g(x,y,t)]=0, (2.6)
    (1p)[L(Φ(x,y,t;p))L(u0(x,y,t))]=hp[T(Φ(x,y,t;p)+g(x,y,t)] (2.7)

    and

    (1p)[L(Φ(x,y,t;p))+g(x,y,t)]H(p)[T(Φ(x,y,t;p)+g(x,y,t)]=0. (2.8)

    in HPM, HAM, OHAM proposed by Liao in [43], He in [44] and Marinca in [45] respectively.

    Basically, according to homotopy definition, when p=0 and p=1 we have

    Φ(x,y,t;p)=u0(x,y,t),ϕ(x,y,t;p)=u(x,y,t).

    Obviously, when the embedding parameter p varies from 0 to 1, the defined homotopy ensures the convergence of ϕ(x,y,t;p) to the exact solution u(x,y,t). Consider ϕ(x,y,t;p) in the form

    Φ(x,y,t;p)=u0(x,y,t)+i=1ui(x,y,t)pi (2.9)

    and assuming N(Φ(x,y,t;p)) as follows

    N(Φ(x,y,t;p))=B1N0+i=1(im=0Bi+1mNm)pi,B1+B2+B3+...=1. (2.10)

    Where

    Bi=Bi(x,y,t,ci),for,i=1,2,3,. (2.11)

    are arbitrary auxiliary functions, will be discussed later. Thus, if p=0 and p=1 in Eq. (2.5), we have

    αu(x,y,t)tα+f(x)=0, and αu(x,y,t)tα+N(u(x,y,t))+g(x,y,t)=0,

    respectively.

    It is obvious that the construction of introduced auxiliary function in Eq. (2.10) is different from the auxiliary functions that are proposed in articles [43,44,45]. Hence the procedure proposed in our paper is different from the procedures proposed by Liao, He, Marinca in aforesaid papers [43,44,45] as well as Optimal Homotopy perturbation method (OHPM) in [46].

    Furthermore, when we substitute Eq. (2.9) and Eq. (2.10) in Eq. (2.5) and equate like power of p, the obtained series of simpler linear problems are

    p0:αu0(x,y,t)tα+g=0,p1:αu1(x,y,t)tα=B1N0,p2:αu2(x,y,t)tα=B2N0+B1N1,p3:αu3(x,y,t)tα=B3N0+B2N1+B1N2,pk:αuk(x,y,t)tα=k1i=0BkiNi.

    We obtain the series solutions by using the integral operator Jα on both sides of the above each simple fractional differential equation. The convergence of the series solution Eq. (2.9) to the exact solution depends upon the auxiliary parameters (functions) Bi(x,y,t,ci). The choice of Bi(x,y,t,ci) is purely on the basis of terms appear in nonlinear part of the Eq. (2.1). The Eq.(2.9) converges to the exact solution of Eq. (2.1) at p=1:

    ˜u(x,y,t)=u0(x,y,t)+k=1uk(x,y,t;ci), i=1,2,3,. (2.12)

    Particularly, we can truncate the Eq. (2.12) into finite m-terms to obtain the solution of nonlinear problem. The auxiliary convergence control constants c1,c2,c3, can be found by solving the system

    R(x1,y1)=R(x2,y2)=R(x3,,y3)==R(xm,,ym)=0,xi,yi[a,b]. (2.13)

    It can be verified to observe that HPM is only a case of Eq. (2.5) when p=p and

    N(Φ(x,y,t;p))=N0+i=1Nipi.

    The HAM is also a case of Eq. (2.5) when p=ph and

    N(Φ(x,y,t;p))=N0+i=1Nipi.

    The OHAM is also another case when

    Bk1=Bk2+hk(t,cj)+k2i=0h(k(i+1))(t,cj)Bi, and hk(t,cj)=ck

    in Eq. (2.10), we obtain exactly the series problems which are obtained by OHAM after expanding and equating the like power of p in deformation equation. Furthermore, concerning the Optimal Homotopy Asymptotic Method (OHAM) mentioned in this manuscript and presented in [45], that the version of OHAM proposed in 2008 was improved in time and the most recent improvement, which also contains an auxiliary functions, are presented in the papers [47,48]. We also have improved the version of OHAM by introducing a very new auxiliary function in Eq. (2.10). Our method proposed in this paper uses a very new and more general form of auxiliary function

    N(ϕ(x,y,t;p))=B1N0+i=1(im=0Bi+1mNm)pi

    which depends on arbitrary parameters B1,B2,B3, and is useful for adjusting and controlling the convergence of nonlinear part as well as linear part of the problem with simple way.

    In this portion, we apply AHPM to obtain solution of the following problems to show the accuracy and appropriateness of the new procedure for to solve nonlinear problems.

    Problem 3.1. Let us consider FZK(2,2,2) in the form:

    αu(x,y,t)tα+(u2(x,y,t))x+18(u2(x,y,t))xxx+18(u2(x,y,t))yyx=0,0<α1, (3.1)

    subject to the condition

    u(x,y,0)=43ksinh2(x+y).

    When α=1. Then the exact solution of Eq. (3.1):

    u(x,y,t)=43ksinh2(x+ykt).

    As in Eq. (3.1), the non linear part

    N(u(x,y,t))=(u2(x,y,t))x+18(u2(x,y,t))xxx+18(u2(x,y,t))yyx.

    Now, follow the procedure of AHPM, we obtain series of the simpler linear problems as:

    Zero order problem:

    αu0tα=0,u0=43ksinh2(x+y). (3.2)

    First order problem:

    αu1tα=B1N0,u1=0. (3.3)

    Second order problem:

    αu2tα=B2N0+B1N1,u2=0. (3.4)

    Third order problem:

    αu3tα=B3N0+B2N1+B1N2,u3=0. (3.5)

    Fourth order problem:

    αu4tα=B4N0+B3N1+B2N2+B1N3,u4=0 (3.6)

    and so on.

    Solving the above equations, the respective solutions from Eqs. (3.2)–(3.6) are given as follow:

    u0(x,y,t)=43ksinh2(z) (3.7)
    u1(x,y,t)=B1N0tαΓ(α+1) (3.8)
    u2(x,y,t)=B2N0tαΓ(α+1)+6427B12k3[13cosh(2z)70cosh(4z)+75cosh(6z)]t2αΓ(2α+1), (3.9)
    u3(x,y,t)=B3N0tαΓ(α+1)+6427B1B2k3[13cosh(2z)70cosh(4z)+75cosh(6z)]t2αΓ(2α+1)+B16481k3[B2(39cosh(2z)210cosh(4z)+225cosh(6z))t2αΓ(2α+1)+B12k(160sinh(2z)+320sinh(4z)2400sinh(6z)+3400sinh(8z))Γ(2α+1)t2α(Γ(α+1))2Γ(3α+1)+B12k(768sinh(2z)+9120sinh(4z)26400sinh(6z)+20400sinh(8z))t3αΓ(3α+1)] (3.10)
    u4(x,y,t)=B4N0tαΓ(α+1)+6427B1B3k3[13cosh(2z)70cosh(4z)+75cosh(6z)]t2αΓ(2α+1)+B26481k3[B2(39cosh(2z)210cosh(4z)+225cosh(6z))t2αΓ(2α+1)+B12k(160sinh(2z)+320sinh(4z)2400sinh(6z)+3400sinh(8z))Γ(2α+1)t2α(Γ(α+1))2Γ(3α+1)+B12k(768sinh(2z)+9120sinh(4z)26400sinh(6z)+20400sinh(8z))t3αΓ(3α+1)]+B164243k3[B13k2(1022400cosh(6z)15200cosh(4z)2502400cosh(8z)+1768000cosh(10z))2Γ(2α)t4αα(Γ(α))2Γ(4α+1)+B13k2(85248cosh(2z)1816320cosh(4z)+9878400cosh(6z)18278400cosh(8z)+10608000cosh(10z))t4αΓ(4α+1)+B3(117cosh(2z)630cosh(4z)+675cosh(6z))t2αΓ(2α+1)+B13k2(56640cosh(2z)+119040cosh(4z)+496800cosh(6z)2121600cosh(8z)+2340000cosh(10z))Γ(3α+1)t4αΓ(α+1)Γ(2α+1)Γ(4α+1)+B1B2k(1440sinh(2z)+2880sinh(4z)21600sinh(6z)+30600sinh(8z))Γ(2α+1)t3α(Γ(α+1))2Γ(3α+1)+B1B2k(4608sinh(2z)+54720sinh(4z)158400sinh(6z)+122400sinh(8z))t3αΓ(3α+1)] (3.11)

    so on .

    In similar way, we can compute the solution of the next simpler linear problems which are difficult to compute by using OHAM procedure. we choose B1=c1,B2=c2,B3=c3,B4=c4 and consider

    ˜u(x)=u0(x)+u1(x,c1)+u2(x,c1,c2)+u3(x,c1,c2,c3)+u4(x,c1,c2,c3,c4). (3.12)

    The residual:

    R(˜u(x,y,t))=α˜u(x,y,t)tα+(˜u2(x,y,t))x+18(˜u2(x,y,t))xxx+18(˜u2(x,y,t))yyx. (3.13)

    We obtain number of optimal values of auxiliary constants by using the Eq. (2.13) and choose those optimal values whose sum is in [1,0). Now, substituting the optimal values of auxiliary constants (from the Table 1) into the Eq. (3.12), we obtain the AHPM solutions for different values of α at k=0.001

    Table 1.  The auxiliary control constants for the problem 3.1.
    Aux.Const. α=1 α=0.75 α=0.67
    c1 0.03206298594 0.02857059949 0.02811316381
    c2 0.05626044816 0.09201640919 0.09255449827
    c3 0.03255192821 0.23864503710 0.24163106460
    c4 0.09230916402 0.58155364530 0.59008434920
    c1+c2+c3+c4 0.0286 0.4064 0.4129

     | Show Table
    DownLoad: CSV

    If α=1, then we have

    ˜u(x,y,t)=6.67e4cosh(2z)1.5e36cosh(2x2y)+1.52e10t2cosh(2z)8.2e10t2cosh(4z)9.82e19t4cosh(2z)1.96e17t4cosh(4z)3.44e16t4cosh(8z)+9.74e15t3sinh(2z)2.7e13t3sinh(4z)7.91e13t3sinh(8z)+2.45e16t4cosh(10z)+8.79e10t2cosh(6z)+1.56e16t4cosh(6z)+8.85e13t3sinh(6z)+1.02e7tsinh(2z)1.27e7tsinh(4z)6.67e4.

    If α=0.75, then we have

    ˜u(x,y,t)=6.67e4cosh(2z)1.5e36cosh(2z)9.63e19t3cosh(2z)5.12e17t3cosh(4z)+4.09e10t3/2cosh(2z)7.79e16t3cosh(8z)2.2e9t3/2cosh(4z)+1.57e6t3/4sinh(2z)1.97e6t3/4sinh(4z)+2.65e14t9/4sinh(2z)6.14e13t9/4sinh(4z)1.74e12t9/4sinh(8z)+5.34e16t3cosh(10z)+3.66e16t3cosh(6z)+2.36e9t3/2cosh(6z)+1.98e12t9/4sinh(6z)6.67e4.

    If α=0.67, then we have

    ˜u(x,y,t)=6.67e4cosh(2z)1.5e36cosh(2x2y)8.33e19t67/25cosh(2z)7.12e17t67/25cosh(4z)1.05e15t67/25cosh(8z)+4.57e10t67/50cosh(2z)2.46e9t67/50cosh(4z)+1.63e6t67/100sinh(2z)2.03e6t67/100sinh(4z)+3.45e14t201/100sinh(2z)7.54e13t201/100sinh(4z)2.1e12t201/100sinh(8z)+7.09e16t67/25cosh(10z)+4.97e16t67/25cosh(6z)+2.64e9t67/50cosh(6z)+2.41e12t201/100sinh(6z)6.67e4.

    Tables 2 and 3 show the AHPM solution, VIM solution, exact solution and absolute error of AHPM solution. It is obvious from Tables 2 and 3 that AHPM solution results are more accurate to the exact solution results as compare with VIM [11] solution results. The AHPM solution, exact solution and absolute error of AHPM solution are plotted for different values of α, x, y and t in Figures 1 and 2. The curves of AHPM and exact solution are exactly matching as compare with homotopy perturbation transform method (HPTM)[12]. It is obvious from the Tables 2 and 3, Figures 1 and 2, that the AHPM solution of the problem 3.1 is in very good agreement with exact solution.

    Table 2.  Solution of the problem 3.1 for various values of α, x, y and t at k=0.001.
    x y t VIM [1] (α=0.67) AHPM (α=0.67) VIM [1] (α=0.75) AHPM (α=0.75)
    0.1 0.1 0.2 5.312992862e5 0.000053661825095 5.325267164e5 0.000053719590053
    0.3 5.285029317e5 0.000053541299605 5.297615384e5 0.000053602860321
    0.4 5.260303851e5 0.000053433636044 5.272490734e5 0.000053495694982
    0.6 0.6 0.2 2.953543396e3 0.0029991909006 2.964363202e3 0.0030049612043
    0.3 2.928652795e3 0.0029871641418 2.939926307e3 0.0029932937681
    0.4 2.905913439e3 0.0029764476067 2.917239345e3 0.002982607386
    0.9 0.9 0.2 1.045289537e2 0.011096367296 1.064555345e2 0.011161869914
    0.3 0.990546789e2 0.010960230827 1.017186398e2 0.011029208413
    0.4 0.927982231e2 0.010839735959 0.960539982e2 0.010908463773

     | Show Table
    DownLoad: CSV
    Table 3.  Solution and absolute error of the problem 3.1 for various values of x, y and t at k=0.001,α=1.
    x y t VIM [1] AHPM Exact VIM [1] AHPM Error
    0.1 0.1 0.2 5.355612471e5 0.00005403406722 5.393877159e5 3.83e7 9.53e8
    0.3 5.331384269e5 0.000054026996643 5.388407669e5 5.7e7 1.43e7
    0.4 5.307396595e5 0.000054019939232 5.382941057e5 7.55e7 1.91e7
    0.6 0.6 0.2 2.991347666e3 0.0030365547595 3.036507411e3 4.52e5 4.73e8
    0.3 2.969760240e3 0.0030358658613 3.035778955e3 6.6e5 8.69e8
    0.4 2.948601126e3 0.0030351876618 3.035050641e3 8.64e5 1.37e7
    0.9 0.9 0.2 1.102746671e2 0.011526053047 1.153697757e2 5.1e4 1.09e5
    0.3 1.073227877e2 0.011518772848 1.153454074e2 8.02e4 1.58e5
    0.4 1.035600465e2 0.011511900292 1.153210438e2 0.00118 2.02e5

     | Show Table
    DownLoad: CSV
    Figure 1.  AHPM solution, exact solution and absolute error of AHPM solution of Problem 3.1 at α = 1 and t = 0.5 when k = 0.001.
    Figure 2.  AHPM solution of the Problem 3.1 for various values of x and y at t = 0.5 when k = 0.001.

    Problem 3.2. Now, we consider FZK(3,3,3) in the form:

    αu(x,y,t)tα+(u3(x,y,t))x+2(u3(x,y,t))xxx+2(u3(x,y,t))yyx=0,0<α1, (3.14)

    subject to condition

    u(x,y,0)=32ksinh(16(x+y)).

    When α=1. Then the exact solution of equation (3.14):

    u(x,y,t)=32ksinh(16(x+ykt)).

    As in Eq. (3.14), the non linear part:

    N(u(x,y,t))=(u3(x,y,t))x+2(u3(x,y,t))xxx+2(u3(x,y,t))yyx.

    Now, follow the procedure of AHPM, we obtain series of the simpler linear problems as follow:

    Zero order problem:

    αu0tα=0,u0=32ksinh(16(x+y)). (3.15)

    First order problem:

    αu1tα=B1N0,u1=0. (3.16)

    Second order problem:

    αu2tα=B2N0+B1N1,u2=0. (3.17)

    Third order problem:

    αu3tα=B3N0+B2N1+B1N2,u3=0. (3.18)

    Fourth order problem:

    αu4tα=B4N0+B3N1+B2N2+B1N3,u4=0. (3.19)

    The respective solutions of the Eqs. (3.15)–(3.19) are given as follow:

    u0(x,y,t)=32ksinh(16z),u1(x,y,t)=B1N0tαΓ(α+1),u2(x,y,t)=B2N0tαΓ(α+1)+332k5B12[801sinh3(16z)+765sinh4(16z)+127sinh(16z)]t2αΓ(2α+1),
    u3(x,y,t)=B3N0tαΓ(α+1)+332k5B1B2[801sinh3(16z)+765sinh4(16z)+127sinh(16z)]t2αΓ(2α+1)+B138192k5[B2(1120sinh(16z)9936sinh(12z)+12240sinh(56z))t2αΓ(2α+1)B12k2(1350cosh(12z)+2770cosh(16z)29070cosh(56z)+32886cosh(76z))Γ(2α+1)t3α(Γ(α+1))2Γ(3α+1)B12k2(56079cosh(12z)4155cosh(16z)182835cosh(56z)+155295cosh(76z))t3αΓ(3α+1)],
    u4(x,y,t)=B4N0tαΓ(α+1)+332k5B1B3[801sinh3(16z)+765sinh4(16z)+127sinh(16z)]t2αΓ(2α+1)+B238192k5[B2(1120sinh(16z)9936sinh(12z)+12240sinh(56z))t2αΓ(2α+1)B12k2(1350cosh(12z)+2770cosh(16z)29070cosh(56z)+32886cosh(76z))Γ(2α+1)t3α(Γ(α+1))2Γ(3α+1)B12k2(56079cosh(12z)4155cosh(16z)182835cosh(56z)+155295cosh(76z))t3αΓ(3α+1)]+B11131072k5[B13k3(937040cosh(13z)36000cosh(23z)+16083360cosh(43z))Γ(3α+1)t4αΓ(α+1)Γ(2α+1)Γ(4α+1)+B3(476928sinh(12z)+53760sinh(16z)+587520sinh(56z))t2αΓ(2α+1)+B13k4(552744sinh(12z)+1771470sinh(32z)63900sinh(16z)275400sinh(56z)1479870sinh(76z))Γ(3α+1)t4α(Γ(α+1))2Γ(4α+1)+B13k4(2349000sinh(12z)+39956490sinh(32z)21300sinh(16z)+23555880sinh(56z)57758778sinh(76z))Γ(2α+1)t4α(Γ(α+1))2Γ(4α+1)+B13k4(2948400sinh(12z)+33461100sinh(32z)540600sinh(16z)+9510480sinh(56z)39704364sinh(76z)10167120cosh(z))Γ(3α+1)t4αΓ(α+1)Γ(2α+1)Γ(4α+1)+B13k4(24230988sinh(12z)+188683425sinh(32z)+903510sinh(16z)+147146220sinh(56z)300495825sinh(76z))t4αΓ(4α+1)+B1B2k2(5383584cosh(12z)398880cosh(16z)17552160cosh(56z)+14908320cosh(76z))t3αΓ(3α+1)+B1B2k(1399680sinh(z)108160sinh(13z)576000sinh(23z))Γ(2α+1)t3α(Γ(α+1))2Γ(3α+1)+B1B2k2(129600cosh(12z)+265920cosh(16z)2790720cosh(56z)+3157056cosh(76z))Γ(2α+1)t3α(Γ(α+1))2Γ(3α+1)]

    and so on.

    In similar way, we can compute the solution of the next simpler linear problems. We choose B1=c1,B2=c2,B3=c3,B4=c4 and consider

    ˜u(x)=u0(x)+u1(x,c1)+u2(x,c1,c2)+u3(x,c1,c2,c3)+u3(x,c1,c2,c3,c4). (3.20)

    We compute the residual;

    R(˜u(x,y,t))=α˜u(x,y,t)tα+(˜u3(x,y,t))x+2(˜u3(x,y,t))xxx+2(˜u3(x,y,t))yyx.

    We obtain number of optimal values of auxiliary constants by using the Eq. (2.13) and choose those optimal values whose sum is in [1,0). Now, substituting the optimal values of auxiliary constants (from Table 4) into the Eq. (3.20), we obtain the AHPM solutions for different values of α at k=0.001.

    Table 4.  The auxiliary control constants for the problem 3.2.
    Aux.Const. α=1 α=0.75 α=0.67
    c1 0.5877657093 0.6018150968 0.2216842316
    c2 0.1517357373 0.1655454563 1.594288158
    c3 0.3855312838 0.3415880346 5.172517408
    c4 0.1250311669 0.10894720410 4.35654487
    c1+c2+c3+c4 1.0000 1.0000 1.0000

     | Show Table
    DownLoad: CSV

    If α=1, then we have

    ˜u(x,y,t)=1.5e3sinh(0.17z)1.3e21t3cosh(0.5z)6.2e16t2sinh(0.5z)6.4e28t4sinh(0.5z)3.4e21t3cosh(1.2z)1.4e21t3cosh(1.2z)2.1e26t4sinh(1.2z)+1.8e24t4cosh(1.3z)+1.1e25t4cosh(0.33z)2.2e23t3cosh(0.17z)4.1e27t4cosh(0.67z)8.9e24t3ccosh(0.17z)+1.4e20t3sinh(0.33z)+2.3e17t2sinh(0.17z)+7.7e20t3sinh(0.67z)+4.6e17t2sinh(0.17z)4.3e29t4sinh(0.17z)+1.4e26t4sinh(1.5z)+5.3e21t3cosh(0.83z)+5.1e16t2sinh(0.83z)+8.4e27t4sinh(0.83z)+2.5e16t2sinh(0.83z)1.2e24t4cosh(z)1.9e19t3sinh(z)3.8e10tcosh(0.17z)(9.0cosh2(0.17z)8)+3.1e17t2sinh(0.17z)(800.0sinh2(0.17z)+766sinh4(0.17z)+133).

    If α=0.75, then we have

    ˜u(x,y,t)=1.5e3sinh(0.17z)3.3e21t2.25cosh(0.5z)3.3e27t3sinh(0.5z)9.1e16t1.5sinh(0.5z)8.3e21t2.25cosh(1.2z)3.6e21t2.25cosh(1.2z)8e26t3sinh(1.2z)+5.6e24t3cosh(1.3z)+3.3e25t3cosh(0.33z)8.2e24t2.25cosh(0.17z)1.3e26t3cosh(0.67z)3.5e24t2.25cosh(0.17z)+3.1e20t(2.25sinh(0.33z)+3.9e17t1.5sinh(0.17z)+1.6e19t2.25sinh(0.67z)7.8e29t3sinh(0.17z)+6.3e17t1.5sinh(0.17z)+5.5e26t3sinh(1.5z)+13e21t2.25cosh(0.83z)+3.4e26t3sinh(0.83z)+11.2e16t1.5sinh(0.83z)3.5e24t3cosh(z)4e19t2.25sinh(z)4.1e10t0.75cosh(0.17z)(9cosh2(0.17z)8)+4.7e17t1.5sinh(0.17z)(800sinh2(0.17z)+766sinh4(0.17z)+133).

    If α=0.67, then we have

    ˜u(x,y,t)=1.5e3sinh(0.17z)2.6e21t2.01cosh(0.5z)9.3e29t2.68sinh(0.5z)5.3e15t1.34sinh(0.5z)3.3e21t2.01cosh(1.2z)5.8e21t2.01cosh(1.2z)2.1e27t2.68sinh(1.2z)+1.4e25t2.68cosh(1.3z)+7.9e27t2.68cosh(0.33z)+1.6e24t2.01cosh(0.17z)3.0e28t2.68cosh(0.67z)+2.7e24t2.01cosh(0.17z)+4.7e20t2.01sinh(0.33z)+9.9e16t1.34sinh(0.17z)+2.5e19t2.01sinh(0.67z)1.4e30t2.68sinh(0.17z)3.9e16t1.34sinh(0.17z)+1.4e27t2.68sinh(1.5z)+10e21t2.01cosh(0.83z)+9.0e28t2.68sinh(0.83z)4.3e15t1.34sinh(0.83z)+1.1e14t1.34sinh(0.83z)8.6e26t2.68cosh(z)6.1e19t2.01sinh(z)4.2e10t0.67cosh(0.17z)(9cosh2(0.17z)8)5.8e17t1.34sinh(0.17z)(800sinh2(0.17z)+766sinh4(0.17z)+133).

    Tables 57 show the AHPM solution, VIM solution, exact solution and absolute error of AHPM solution. The AHPM solution, exact solution and absolute error of AHPM solution are plotted for different values of α, x, y and t in Figures 3 and 4. It is obvious from the Tables 57, Figures 3 and 4, that the AHPM solution of the problem 3.2 is in very good agreement with exact solution.

    Table 5.  Solution of the problem 3.2 for varios values of α, x, y and t at k=0.001.
    x y t VIM [1] (α=0.67) AHPM (α=0.67) VIM [1] (α=0.75) AHPM (α=0.75)
    0.1 0.1 0.2 5.000911707e5 0.000050009117063 5.000913646e5 0.000050009136457
    0.3 5.000907252e5 0.000050009072517 5.000909264e5 0.000050009092629
    0.4 5.000903274e5 0.000050009032711 5.000905240e5 0.00005000905238
    0.6 0.6 0.2 3.020038072e4 0.00030200380721 3.020038341e4 0.00030200383392
    0.3 3.020037458e4 0.00030200374584 3.020037735e4 0.00030200377354
    0.4 3.020036910e4 0.000302003691 3.020037181e4 0.00030200371809
    0.9 0.9 0.2 4.567801693e4 0.00045678016935 4.567802061e4 0.00045678020615
    0.3 4.567800847e4 0.00045678008481 4.567801231e4 0.00045678012298
    0.4 4.567800092e4 0.00045678000927 4.567800467e4 0.0004567800466

     | Show Table
    DownLoad: CSV
    Table 6.  Solution and absolute error of the problem 3.2 for various values of x, y and t at k=0.001 and α=1.
    x y t VIM [1] AHPM Exact
    0.1 0.1 0.2 5.000918398e5 0.000050009183981 4.995923204e5
    0.3 5.000914609e5 0.000050009146085 4.993421817e5
    0.4 5.000910820e5 0.000050009108189 4.990920434e5
    0.6 0.6 0.2 3.020038992e4 0.0003020038994 3.019530008e4
    0.3 3.020038472e4 0.00030200384719 3.019274992e4
    0.4 3.020037950e4 0.00030200379498 3.019019978e4
    0.9 0.9 0.2 4.567802964e4 0.00045678029634 4.567281735e4
    0.3 4.567802242e4 0.00045678022442 4.567020404e4
    0.4 4.567801525e4 0.00045678015251 4.566759074e4

     | Show Table
    DownLoad: CSV
    Table 7.  AHPM solution and exact solution and absolute error of AHPM solution of the problem 3.2 for various values of α, x, y and t at k=0.001.
    x y t AHPM (α=0.67) AHPM (α=0.75) AHPM (α=1) Exact (α=1) Error
    1 1 0.2 0.00050931053201 0.0005093105733 0.0005093106745 0.00050925803257 5.26e8
    0.4 0.00050931035239 0.00050931039427 0.00050931051311 0.00050920522983 1.05e7
    0.6 0.00050931020147 0.00050931023732 0.00050931035172 0.00050915242765 1.58e7
    0.8 0.00050931006661 0.00050931009319 0.00050931019033 0.00050909962604 2.11e7
    1 0.00050930994256 0.00050930995788 0.00050931002895 0.00050904682499 2.63e7
    5 5 0.2 0.003829187741 0.0038291908792 0.00382919857 0.0038290737537 1.25e7
    0.4 0.0038291740912 0.0038291772737 0.0038291863046 0.003828936676 2.5e7
    0.6 0.0038291626226 0.0038291653465 0.0038291740396 0.0038287996024 3.74e7
    0.8 0.0038291523746 0.0038291543934 0.003829161775 0.0038286625332 4.99e7
    1 0.0038291429482 0.003829144112 0.0038291495107 0.0038285254682 6.24e7
    10 10 0.2 0.020993470055 0.020993944094 0.02099510678 0.020996261505 1.15e6
    0.4 0.020991408888 0.020991888681 0.02099325193 0.020995559858 2.31e6
    0.6 0.020989679031 0.020990088717 0.020991398624 0.020994858233 3.46e6
    0.8 0.020988134787 0.020988437313 0.020989546856 0.020994156633 4.61e6
    1 0.020986715582 0.02098688854 0.020987696623 0.020993455055 5.76e6

     | Show Table
    DownLoad: CSV
    Figure 3.  AHPM solution, exact solution and absolute error of AHPM solution of Problem 3.2 at α = 1 and t = 0.2 when k = 0.001.
    Figure 4.  AHPM solution, exact solution and absolute error of AHPM solution of Problem 3.2 at α = 1 and k = 0.0001.

    In this article, asymptotic homotopy perturbation method (AHPM) is developed to solve non-linear fractional models. It is a different procedure from the procedures of HAM, HPM and OHAM. The two special cases, ZK(2,2,2) and ZK(3,3,3) of fractional Zakharov-Kuznetsov model are considered to illustrate a very simple procedure of the homotopy methods. The numerical results in simulation section of AHPM solutions are more accurate to the exact solutions as comparing with fractional complex transform (FCT) using variational iteration method (VIM). In the field of fractional calculus, it is necessary to introduce various procedures and schemes to compute the solution of non-linear fractional models. In this concern, we expect that this new proposed procedure is a best effort. The best improvement and the application of this new procedures to the solution of advanced non-linear fractional models with computer software codes will be our further consideration.

    The authors would like to thank anonymous referees for their careful corrections to and valuable comments on the original version of this paper.

    The authors declare no conflict of interest.



    [1] A. R. Seadawy, The solutions of the Boussinesq and generalized fifth-order KdV equations by using the direct algebraic method, Appl. Math. Sci., 6 (2012), 4081-4090.
    [2] A. R. Seadawy, Stability analysis for two-dimensional ion-acoustic waves in quantum plasmas, Phys. Plasmas,21 (2014), Article ID: 052107.
    [3] A. R. Seadawy, Stability analysis of traveling wave solutions for generalized coupled nonlinear KdV equations, Appl. Math. Inf. Sci., 10 (2016), 209-214. doi: 10.18576/amis/100120
    [4] A. R. Seadawy, Three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in a magnetized plasma, Comput. Math. Appl., 71 (2016), 201-212. doi: 10.1016/j.camwa.2015.11.006
    [5] A. R. Seadawy and D. Lu, Ion acoustic solitary wave solutions of three-dimensional nonlinear extended Zakharov-Kuznetsov dynamical equation in a magnetized two-ion-temperature dusty plasma, Results Phys., 6 (2016), 590-593. doi: 10.1016/j.rinp.2016.08.023
    [6] A. R. Seadawy, Ion acoustic solitary wave solutions of two-dimensional nonlinear Kadomtsev-Petviashvili-Burgers equation in quantum plasma, Math. Methods Appl. Sci., 40 (2017), 1598-1607. doi: 10.1002/mma.4081
    [7] A. R. Seadawy, Travelling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev-Petviashvili dynamical equation for dispersive shallow-water waves, Eur. Phys. J. Plus, 132 (2017), Article: 29.
    [8] A. R. Seadawy, The generalized nonlinear higher order of KdV equations from the higher order nonlinear Schrödinger equation and its solutions, Optik Int. J. Light Electron Opt., 139 (2017), 31-43. doi: 10.1016/j.ijleo.2017.03.086
    [9] A. R. Seadawy, Modulation instability analysis for the generalized derivative higher order nonlinear Schrödinger equation and its the bright and dark soliton solutions, J. Electromagn. Waves Appl., 31 (2017), 1353-1362. doi: 10.1080/09205071.2017.1348262
    [10] A. R. Seadawy, Solitary wave solutions of two-dimensional nonlinear Kadomtsev-Petviashvili dynamic equation in dust-acoustic plasmas, Pramana,89 (2017), Article: 49.
    [11] Y. Rangkuti, B. M. Batiha and M. T. Shatnawi, Solutions of fractional Zakharov–Kuznetsov equations by fractional complex transform, Int. J. Appl. Math. Res., 5 (2016), 24-28. doi: 10.14419/ijamr.v5i1.5759
    [12] D. Kumar, J. Singh and S. Kumar, Numerical computation of nonlinear fractional Zakharov–Kuznetsov equation arising in ion-acoustic waves, J. Egypt. Math. Soc., 22 (2014), 373-378. doi: 10.1016/j.joems.2013.11.004
    [13] I. Podlubny, Fractional Differential Equations, Academic Press, Academic Press, New York, 1999.
    [14] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal., 5 (2002), 367-386.
    [15] J. H. He, Nonlinear oscillation with fractional derivative and its applications. In: International Conference on Vibrating Engineering'98, Dalian, China,1998 (1998), 288-291.
    [16] J. H. He, Some applications of nonlinear fractional differential equations and their approximations, Bull. Sci. Technol., 15 (1999), 86-90.
    [17] A. Luchko and R. Groneflo, The initial value problem for some fractional differential equations with the Caputo derivative, Preprint series A08-98, Fachbreich Mathematik und Informatik, Freic Universitat Berlin, 1998.
    [18] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, Inc. New York, 1993.
    [19] K. B. Oldham and J. Spanier, The fractional calculus, New York: Academic Press, 1974.
    [20] M. Caputo, Linear models of dissipation whose Q is almost frequency independent. Part II, Geophys. J. Int., 13 (1967), 529-539. doi: 10.1111/j.1365-246X.1967.tb02303.x
    [21] S. Ali, S. Bushnaq, K. Shah, et al. Numerical treatment of fractional order Cauchy reaction diffusion equations, Chaos Solitons Fractals, 103 (2017), 578-587. doi: 10.1016/j.chaos.2017.07.016
    [22] M. M. Meerschaert and C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56 (2006), 80-90. doi: 10.1016/j.apnum.2005.02.008
    [23] C. Tadjeran and M. M. Meerschaert, A second-order accurate numerical method for the two-dimensional fractional diffusion equation, J. Comput. Phys., 220 (2007), 813-823. doi: 10.1016/j.jcp.2006.05.030
    [24] V. E. Lynch, B. A. Carrerasand, D. del-Castillo-Negrete, et al. Numerical methods for the solution of partial differential equations of fractional order, J. Comput. Phys., 192 (2003), 406-421. doi: 10.1016/j.jcp.2003.07.008
    [25] S. Momani and K. Al-Khaled, Numerical solutions for systems of fractional differential equations by the decomposition method, Appl. Math. Comput., 162 (2005), 1351-1365.
    [26] S. Momani, An explicit and numerical solutions of the fractional KdV equation, Math. Comput. Simul., 70 (2005), 110-118. doi: 10.1016/j.matcom.2005.05.001
    [27] S. Momani, Non-perturbative analytical solutions of the space- and time-fractional Burgers equations, Chaos Solitons Fractals, 28 (2006), 930-937. doi: 10.1016/j.chaos.2005.09.002
    [28] S. Momani and Z. Odibat, Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method, Appl. Math. Comput., 177 (2006), 488-494.
    [29] Z. Odibat and S. Momani, Approximate solutions for boundary value problems of time-fractional wave equation, Appl. Math. Comput., 181 (2006), 1351-1358.
    [30] Z. Odibat and S. Momani, Application of variational iteration method to nonlinear differential equations of fractional order, Int. J. Nonlinear Sci. Numer. Simul., 7 (2006), 27-34.
    [31] S. Momani and Z. Odibat, Numerical comparison of methods for solving linear differential equations of fractional order, Chaos Solitons Fractals, 31 (2007), 1248-1255. doi: 10.1016/j.chaos.2005.10.068
    [32] S. Momani and Z. Odibat, Numerical approach to differential equations of fractional order, J. Comput. Appl. Math., 207 (2007), 96-110. doi: 10.1016/j.cam.2006.07.015
    [33] Z. Odibat and S. Momani, Numerical methods for solving nonlinear partial differential equations of fractional order, Appl. Math. Modell., 32 (2008), 28-39. doi: 10.1016/j.apm.2006.10.025
    [34] Z. Odibat and S. Momani, Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order, Chaos Solitons Fractals, 36 (2008), 167-174. doi: 10.1016/j.chaos.2006.06.041
    [35] S. Momani and Z. Odibat, Comparison between homotopy perturbation method and the variational iteration method for linear fractional partial differential equations, Comput. Math. Appl., 54 (2007), 910-919. doi: 10.1016/j.camwa.2006.12.037
    [36] S. Momani and Z. Odibat, Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. Lett. A, 365 (2007), 345-350. doi: 10.1016/j.physleta.2007.01.046
    [37] A. Yıldırım and Y. Gülkanat, Analytical approach to fractional Zakharov-Kuznetsov equations by He's homotopy perturbation method, Commun. Theor. Phys., 53 (2010), 1005-1010. doi: 10.1088/0253-6102/53/6/02
    [38] Y. Khan, N. Faraz and A. Yildirim, New soliton solutions of the generalized Zakharov equations using He's variational approach, Appl. Math. Lett., 24 (2011), 965-968. doi: 10.1016/j.aml.2011.01.006
    [39] S. Momani and A. Yıldırım, Analytical approximate solutions of the fractional convection-diffusion equation with nonlinear source term by He's homotopy perturbation method, Int. J. Comput. Math., 87 (2010), 1057-1065. doi: 10.1080/00207160903023581
    [40] V. E. Zakharov and E. A. Kuznetsov, On three-dimensional solitons, Sov. Phys., 39 (1974), 285-288.
    [41] S. Monro and E. J. Parkes, The derivation of a modified Zakharov-Kuznetsov equation and the stability of its solutions, J. Plasma Phys., 62 (1999), 305-317. doi: 10.1017/S0022377899007874
    [42] S. Monro and E. J. Parkes, Stability of solitary-wave solutions to a modified Zakharov-Kuznetsov equation, J. Plasma Phys., 64 (2000), 411-426. doi: 10.1017/S0022377800008771
    [43] S. J. Liao, On the Proposed Analysis Technique for Nonlinear Problems and its Applications , In: Ph.D. Dissertation, Shanghai Jiao Tong University, Shanghai, China, 1992.
    [44] J. H. He, An approximation sol. technique depending upon an articial parameter, Commun. Nonlinear Sci. Numer. Simul., 3 (1998), 92-97. doi: 10.1016/S1007-5704(98)90070-3
    [45] V. Marinca and N. Herisanu, Application of Optimal Homotopy Asymptotic Method for solving nonlinear equations arising in heat transfer, Int. Commun. Heat Mass Transfer, 35 (2008), 710-715. doi: 10.1016/j.icheatmasstransfer.2008.02.010
    [46] N. Herisanu and V. Marinca, Optimal homotopy perturbation method for a non-conservative dynamical system of a rotating electrical machine, Z. Naturforsch. A, 67 (2012), 509-516. doi: 10.5560/znb.2012-0118
    [47] N. Herisanu, V. Marinca, G. Madescu, et al. Dynamic response of a permanent magnet synchronous generator to a wind gust, Energies, 12 (2019), Article: 915.
    [48] V. Marinca and N. Herisanu, On the flow of a Walters-type B' viscoelastic fluid in a vertical channel with porous wall, Int. J. Heat Mass Transfer, 79 (2014), 146-165. doi: 10.1016/j.ijheatmasstransfer.2014.07.094
  • This article has been cited by:

    1. ZAIN UL ABADIN ZAFAR, ZAHIR SHAH, NIGAR ALI, EBRAHEEM O. ALZAHRANI, MESHAL SHUTAYWI, MATHEMATICAL AND STABILITY ANALYSIS OF FRACTIONAL ORDER MODEL FOR SPREAD OF PESTS IN TEA PLANTS, 2021, 29, 0218-348X, 2150008, 10.1142/S0218348X21500080
    2. D. Gopal, S. Saleem, S. Jagadha, Farooq Ahmad, A. Othman Almatroud, N. Kishan, Numerical analysis of higher order chemical reaction on electrically MHD nanofluid under influence of viscous dissipation, 2021, 60, 11100168, 1861, 10.1016/j.aej.2020.11.034
    3. Jiabin Xu, Hassan Khan, Rasool Shah, A.A. Alderremy, Shaban Aly, Dumitru Baleanu, The analytical analysis of nonlinear fractional-order dynamical models, 2021, 6, 2473-6988, 6201, 10.3934/math.2021364
    4. Alamgeer Khan, Muhammad Farooq, Rashid Nawaz, Muhammad Ayaz, Hijaz Ahmad, Hanaa Abu-Zinadah, Yu-Ming Chu, Analysis of couple stress fluid flow with variable viscosity using two homotopy-based methods, 2021, 19, 2391-5471, 134, 10.1515/phys-2021-0015
    5. Haji Gul, Sajjad Ali, Kamal Shah, Shakoor Muhammad, Thanin Sitthiwirattham, Saowaluck Chasreechai, Application of Asymptotic Homotopy Perturbation Method to Fractional Order Partial Differential Equation, 2021, 13, 2073-8994, 2215, 10.3390/sym13112215
    6. Muhammad Farooq, Hijaz Ahmad, Dilber Uzun Ozsahin, Alamgeer Khan, Rashid Nawaz, Bandar Almohsen, A study of heat and mass transfer flow of a variable viscosity couple stress fluid between inclined plates, 2024, 38, 0217-9849, 10.1142/S0217984923502317
    7. Murugesan Manigandan, Saravanan Shanmugam, Mohamed Rhaima, Elango Sekar, Existence of Solutions for Caputo Sequential Fractional Differential Inclusions with Nonlocal Generalized Riemann–Liouville Boundary Conditions, 2024, 8, 2504-3110, 441, 10.3390/fractalfract8080441
    8. Razia Begum, Sajjad Ali, Nahid Fatima, Kamal Shah, Thabet Abdeljawad, Dynamical behavior of whooping cough SVEIQRP model via system of fractal fractional differential equations, 2024, 12, 26668181, 100990, 10.1016/j.padiff.2024.100990
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5622) PDF downloads(1599) Cited by(8)

Figures and Tables

Figures(4)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog