Research article

Non-null slant ruled surfaces

  • Received: 20 December 2018 Accepted: 02 April 2019 Published: 19 April 2019
  • MSC : 53A25, 53C50, 14J26

  • In this study, we define some new types of non-null ruled surfaces called slant ruled surfaces in the Minkowski 3-space E31. We introduce some characterizations for a non-null ruled surface to be a slant ruled surface in E31. Moreover, we obtain some corollaries which give the relationships between a non-null slant ruled surface and its striction line.

    Citation: Mehmet Önder. Non-null slant ruled surfaces[J]. AIMS Mathematics, 2019, 4(3): 384-396. doi: 10.3934/math.2019.3.384

    Related Papers:

    [1] Ioannis D. Schizas, Vasileios Maroulas, Guohua Ren . Regularized kernel matrix decomposition for thermal video multi-object detection and tracking. Big Data and Information Analytics, 2018, 3(2): 1-23. doi: 10.3934/bdia.2018004
    [2] Weidong Bao, Wenhua Xiao, Haoran Ji, Chao Chen, Xiaomin Zhu, Jianhong Wu . Towards big data processing in clouds: An online cost-minimization approach. Big Data and Information Analytics, 2016, 1(1): 15-29. doi: 10.3934/bdia.2016.1.15
    [3] Marco Tosato, Jianhong Wu . An application of PART to the Football Manager data for players clusters analyses to inform club team formation. Big Data and Information Analytics, 2018, 3(1): 43-54. doi: 10.3934/bdia.2018002
    [4] Jinyuan Zhang, Aimin Zhou, Guixu Zhang, Hu Zhang . A clustering based mate selection for evolutionary optimization. Big Data and Information Analytics, 2017, 2(1): 77-85. doi: 10.3934/bdia.2017010
    [5] Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong . An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data and Information Analytics, 2017, 2(1): 23-37. doi: 10.3934/bdia.2017006
    [6] Bill Huajian Yang . Modeling path-dependent state transitions by a recurrent neural network. Big Data and Information Analytics, 2022, 7(0): 1-12. doi: 10.3934/bdia.2022001
    [7] Guojun Gan, Qiujun Lan, Shiyang Sima . Scalable Clustering by Truncated Fuzzy c-means. Big Data and Information Analytics, 2016, 1(2): 247-259. doi: 10.3934/bdia.2016007
    [8] Xiaoying Chen, Chong Zhang, Zonglin Shi, Weidong Xiao . Spatio-temporal Keywords Queries in HBase. Big Data and Information Analytics, 2016, 1(1): 81-91. doi: 10.3934/bdia.2016.1.81
    [9] Dongyang Yang, Wei Xu . Statistical modeling on human microbiome sequencing data. Big Data and Information Analytics, 2019, 4(1): 1-12. doi: 10.3934/bdia.2019001
    [10] M Supriya, AJ Deepa . Machine learning approach on healthcare big data: a review. Big Data and Information Analytics, 2020, 5(1): 58-75. doi: 10.3934/bdia.2020005
  • In this study, we define some new types of non-null ruled surfaces called slant ruled surfaces in the Minkowski 3-space E31. We introduce some characterizations for a non-null ruled surface to be a slant ruled surface in E31. Moreover, we obtain some corollaries which give the relationships between a non-null slant ruled surface and its striction line.




    [1] R. A. Abdel-Baky, Slant ruled surface in the Euclidean 3-space, Sci. Magna, 9 (2013), 107-112.
    [2] A. T. Ali and R. Lopez, Slant helices in Minkowski space E31, J. Korean Math. Soc., 48 (2011) 159-167.
    [3] A. T. Ali and M. Turgut, Position vector of a time-like slant helix in Minkowski 3-space, J. Math. Anal. Appl., 365 (2010) 559-569.
    [4] A. T. Ali, Position vectors of slant helices in Euclidean 3-space, J. Egypt. Math. Soc., 20 (2012) 1-6.
    [5] M. Barros, General helices and a theorem of Lancret, Proc. Amer. Math. Soc., 125 (1997) 1503-1509.
    [6] J. K. Beem and P. E. Ehrlich, Global Lorentzian Geometry, New York: Marcel Dekker, 1981.
    [7] N. Ekmekçi and H. H. Hacı}salihoğlu, On helices of a Lorentzian manifold, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 45 (1996) 45-50.
    [8] A. Ferrandez, A. Gimenez and P. Lucas, Null helices in Lorentzian space forms, Int. J. Mod. Phys. A, 16 (2001) 4845-4863.
    [9] S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turk. J. Math., 28 (2004) 153-163.
    [10] O. Kaya and M. Önder, Position vector of a developable h-slant ruled surface, TWMS J. App. Eng. Math., 7 (2017) 322-331.
    [11] O. Kaya and M. Önder, Position vector of a developable q-slant ruled surface, Korean J. Math., 26 (2018) 545-559.
    [12] E. Kasap and N. Kuruoğlu, The Bertrand offsets of ruled surfaces in IR31, Acta Math. Vietnam., 31 (2006) 39-48.
    [13] H. Kocayiğit and M. Önder, Timelike curves of constant slope in Minkowski space E41, J. Sci. Techn. Beykent Univ., 1 (2007) 311-318.
    [14] L. Kula and Y. Yaylı, On slant helix and its spherical indicatrix, Appl. Math. Comput., 169 (2005) 600-607.
    [15] A. Küçük, On the developable timelike trajectory ruled surfaces in Lorentz 3-space IR31, Appl. Math. Comput., 157 (2004) 483-489.
    [16] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, London: Academic Press, 1983.
    [17] M. Önder, Similar ruled surfaces with variable transformations in Minkowski 3-space, TWMS J. App. Eng. Math., 5}(2) (2015) 219-230.
    [18] M. Önder, H. Kocayiğit and M. Kazaz, Spacelike helices in Minkowski 4-space E41, Ann. Univ. Ferrara, 56 (2010) 335-343.
    [19] M. Önder and H. H. Uğurlu, Frenet frames and invariants of timelike ruled surfaces, Ain Shams Eng. J., 4 (2013) 507-513.
    [20] M. Önder and H. H. Uğurlu, On the developable Mannheim offsets of timelike ruled surfaces, Proc. Natl. Acad. Sci., India, Sect. A, 84 (2014) 541-548.
    [21] M. Önder and H. H. Uğurlu, Frenet frames and Frenet invariants of spacelike ruled surfaces, Dokuz Eylul Univ. Fac. Eng. J. Sci. Eng., 19 (2017) 712-722.
    [22] M. Önder and O. Kaya, Slant null scrolls in Minkowski 3-space E31, Kuwait J. Sci., 43 (2016) 31-47.
    [23] M. Önder and O. Kaya, Characterizations of slant ruled surfaces in the Euclidean 3-space, Caspian J. Math. Sci., 6 (2017) 31-46.
    [24] M. Önder, Slant ruled surfaces, Trans. J. Pure Appl. Math., 1 (2018) 63-82.
    [25] D. J. Struik, Lectures on Classical Differential Geometry, 2 Eds., Dover: Addison Wesley, 1988.
  • This article has been cited by:

    1. Laura Abatangelo, Susanna Terracini, Harmonic functions in union of chambers, 2015, 35, 1078-0947, 5609, 10.3934/dcds.2015.35.5609
    2. Matthieu Bonnivard, Antoine Lemenant, Filippo Santambrogio, Approximation of Length Minimization Problems Among Compact Connected Sets, 2015, 47, 0036-1410, 1489, 10.1137/14096061X
    3. Davide Zucco, Dirichlet conditions in Poincaré–Sobolev inequalities: the sub-homogeneous case, 2019, 58, 0944-2669, 10.1007/s00526-019-1547-7
    4. Paolo Tilli, Compliance estimates for two-dimensional problems with Dirichlet region of prescribed length, 2012, 7, 1556-181X, 127, 10.3934/nhm.2012.7.127
    5. Al-hassem Nayam, Asymptotics of an optimal compliance-network problem, 2013, 8, 1556-181X, 573, 10.3934/nhm.2013.8.573
    6. Bohdan Bulanyi, Partial regularity for the optimal p-compliance problem with length penalization, 2022, 61, 0944-2669, 10.1007/s00526-021-02073-8
    7. Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485
    8. Antoine Lemenant, A selective review on Mumford–Shah minimizers, 2016, 9, 1972-6724, 69, 10.1007/s40574-016-0056-2
    9. Paolo Tilli, Davide Zucco, Where Best to Place a Dirichlet Condition in an Anisotropic Membrane?, 2015, 47, 0036-1410, 2699, 10.1137/140999402
    10. A. Lemenant, A presentation of the average distance minimizing problem, 2012, 181, 1072-3374, 820, 10.1007/s10958-012-0717-3
    11. Bohdan Bulanyi, On the importance of the connectedness assumption in the statement of the optimal p-compliance problem, 2021, 499, 0022247X, 125064, 10.1016/j.jmaa.2021.125064
    12. Laura Abatangelo, Veronica Felli, Susanna Terracini, On the sharp effect of attaching a thin handle on the spectral rate of convergence, 2014, 266, 00221236, 3632, 10.1016/j.jfa.2013.11.019
    13. Al-hassem Nayam, Constant in two-dimensional p-compliance-network problem, 2014, 9, 1556-181X, 161, 10.3934/nhm.2014.9.161
    14. Antonin Chambolle, Jimmy Lamboley, Antoine Lemenant, Eugene Stepanov, Regularity for the Optimal Compliance Problem with Length Penalization, 2017, 49, 0036-1410, 1166, 10.1137/16M1070578
    15. Paolo Tilli, Davide Zucco, Asymptotics of the First Laplace Eigenvalue with Dirichlet Regions of Prescribed Length, 2013, 45, 0036-1410, 3266, 10.1137/130916825
    16. Antoine Lemenant, Edoardo Mainini, On convex sets that minimize the average distance, 2012, 18, 1292-8119, 1049, 10.1051/cocv/2011190
    17. Bohdan Bulanyi, Antoine Lemenant, Regularity for the planar optimalp-compliance problem, 2021, 27, 1292-8119, 35, 10.1051/cocv/2021035
    18. Filippo Santambrogio, 2023, Chapter 6, 978-3-031-45035-8, 243, 10.1007/978-3-031-45036-5_6
    19. Filippo Santambrogio, 2023, Chapter 7, 978-3-031-45035-8, 287, 10.1007/978-3-031-45036-5_7
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4098) PDF downloads(677) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog