In this study, the partner-ruled surfaces in Minkowski 3-space, which are defined according to the Frenet vectors of non-null space curves, are introduced with extra conditions that guarantee the existence of definite surface normals. First, the requirements of each pair of partner-ruled surfaces to be simultaneously developable and minimal (or maximal for spacelike surfaces) are investigated. The surfaces also simultaneously characterize the asymptotic, geodesic and curvature lines of the parameter curves of these surfaces. Finally, the study provides examples of timelike and spacelike partner-ruled surfaces and includes their graphs.
Citation: Yanlin Li, Kemal Eren, Soley Ersoy. On simultaneous characterizations of partner-ruled surfaces in Minkowski 3-space[J]. AIMS Mathematics, 2023, 8(9): 22256-22273. doi: 10.3934/math.20231135
[1] | Abdelkrim Salim, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On the nonlocal hybrid (k,φ)-Hilfer inverse problem with delay and anticipation. AIMS Mathematics, 2024, 9(8): 22859-22882. doi: 10.3934/math.20241112 |
[2] | Kangqun Zhang . Existence and uniqueness of positive solution of a nonlinear differential equation with higher order Erdélyi-Kober operators. AIMS Mathematics, 2024, 9(1): 1358-1372. doi: 10.3934/math.2024067 |
[3] | Dumitru Baleanu, Babak Shiri . Nonlinear higher order fractional terminal value problems. AIMS Mathematics, 2022, 7(5): 7489-7506. doi: 10.3934/math.2022420 |
[4] | Yujun Cui, Chunyu Liang, Yumei Zou . Existence and uniqueness of solutions for a class of fractional differential equation with lower-order derivative dependence. AIMS Mathematics, 2025, 10(2): 3797-3818. doi: 10.3934/math.2025176 |
[5] | Dumitru Baleanu, Babak Shiri . Generalized fractional differential equations for past dynamic. AIMS Mathematics, 2022, 7(8): 14394-14418. doi: 10.3934/math.2022793 |
[6] | Qi Wang, Chenxi Xie, Qianqian Deng, Yuting Hu . Controllability results of neutral Caputo fractional functional differential equations. AIMS Mathematics, 2023, 8(12): 30353-30373. doi: 10.3934/math.20231550 |
[7] | Wedad Albalawi, Muhammad Imran Liaqat, Fahim Ud Din, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Significant results in the pth moment for Hilfer fractional stochastic delay differential equations. AIMS Mathematics, 2025, 10(4): 9852-9881. doi: 10.3934/math.2025451 |
[8] | Jun Moon . The Pontryagin type maximum principle for Caputo fractional optimal control problems with terminal and running state constraints. AIMS Mathematics, 2025, 10(1): 884-920. doi: 10.3934/math.2025042 |
[9] | Wei Zhang, Jifeng Zhang, Jinbo Ni . New Lyapunov-type inequalities for fractional multi-point boundary value problems involving Hilfer-Katugampola fractional derivative. AIMS Mathematics, 2022, 7(1): 1074-1094. doi: 10.3934/math.2022064 |
[10] | Dehong Ji, Weigao Ge . A nonlocal boundary value problems for hybrid ϕ-Caputo fractional integro-differential equations. AIMS Mathematics, 2020, 5(6): 7175-7190. doi: 10.3934/math.2020459 |
In this study, the partner-ruled surfaces in Minkowski 3-space, which are defined according to the Frenet vectors of non-null space curves, are introduced with extra conditions that guarantee the existence of definite surface normals. First, the requirements of each pair of partner-ruled surfaces to be simultaneously developable and minimal (or maximal for spacelike surfaces) are investigated. The surfaces also simultaneously characterize the asymptotic, geodesic and curvature lines of the parameter curves of these surfaces. Finally, the study provides examples of timelike and spacelike partner-ruled surfaces and includes their graphs.
In 1998, Kahlig and Matkowski [1] proved in particular that every homogeneous bivariable mean M in (0,∞) can be represented in the form
M(x,y)=A(x,y)fM,A(x−yx+y), |
where A is the arithmetic mean and fM,A: (−1,1)⟶(0,2) is a unique single variable function (with the graph laying in a set of a butterfly shape), called an A-index of M.
In this paper we consider Seiffert function f:(0,1)→R which fulfils the following condition
t1+t≤f(t)≤t1−t. |
According to the results of Witkowski [2] we introduce the mean Mf of the form
Mf(x,y)={|x−y|2f(|x−y|x+y)x≠y,xx=y. | (1.1) |
In this paper a mean Mf:R2+⟶R is the function that is symmetric, positively homogeneous and internal in sense [2]. Basic result of Witkowski is correspondence between a mean Mf and Seiffert function f of Mf is given by the following formula
f(t)=tMf(1−t,1+t), | (1.2) |
where
t=|x−y|x+y. | (1.3) |
Therefore, f and Mf form a one-to-one correspondence via (1.1) and (1.2). For this reason, in the following we can rewrite f=:fM.
Throughout this article, we say x≠y, that is, t∈(0,1). For convenience, we note that M1<M2 means M1(x,y)<M2(x,y) holds for two means M1 and M2 with x≠y. Then there is a fact that the inequality fM1(t)>fM2(t) holds if and only if M1<M2. That is to say,
1fM1<1fM2⟺M1<M2. | (1.4) |
The above relationship (1.4) inspires us to ask a question: Can we transform the means inequality problem into the reciprocal inequality problem of the corresponding Seiffert functions? Witkowski [2] answers this question from the perspective of one-to-one correspondence. We find that these two kinds of inequalities are equivalent in similar linear inequalities. We describe this result in Lemma 2.1 as a support of this paper.
As we know, the study of inequalities for mean values has always been a hot topic in the field of inequalities. For example, two common means can be used to define some new means. The recent success in this respect can be seen in references [3,4,5,6,7,8]. In [2], Witkowski introduced the following two new means, one called sine mean
Msin(x,y)={|x−y|2sin(|x−y|x+y)x≠yxx=y, | (1.5) |
and the other called hyperbolic tangent mean
Mtanh(x,y)={|x−y|2tanh(|x−y|x+y)x≠yxx=y. | (1.6) |
Recently, Nowicka and Witkowski [9] determined various optimal bounds for the Msin(x,y) and Mtanh(x,y) by the arithmetic mean A(x,y)=(x+y)/2 and centroidal mean
Ce(x,y)=23x2+xy+y2x+y |
as follows:
Proposition 1.1. The double inequality
(1−α)A+αCe<Msin<(1−β)A+βCe |
holds if and only if α≤ 1/2 and β≥(3/sin1)−3≈0.5652.
Proposition 1.2. The double inequality
(1−α)A+αCe<Mtanh<(1−β)A+βCe |
holds if and only if α≤ (3/tanh1)−3≈0.9391 and β≥1.
Proposition 1.3. The double inequality
(1−α)C−1e+αA−1<M−1sin<(1−β)C−1e+βA−1 |
holds if and only if α≤ 4sin1−3≈0.3659 and β≥1/2.
Proposition 1.4. The double inequality
(1−α)C−1e+αA−1<M−1tanh<(1−β)C−1e+βA−1 |
holds if and only if α≤ 0 and β≥4tanh1−3≈0.0464.
Proposition 1.5. The double inequality
(1−α)A2+αC2e<M2sin<(1−β)A2+βC2e |
holds if and only if α≤ 1/2 and β≥(9cot21)/7≈0.5301.
Proposition 1.6. The double inequality
(1−α)A2+αC2e<M2tanh<(1−β)A2+βC2e |
holds if and only if α≤ (9(coth21−1))/7≈0.9309 and β≥1.
Proposition 1.7. The double inequality
(1−α)C−2e+αA−2<M−2sin<(1−β)C−2e+βA−2 |
holds if and only if α≤(16sin21−9)/7≈0.3327 and β≥1/2.
Proposition 1.8. The double inequality
(1−α)C−2e+αA−2<M−2tanh<(1−β)C−2e+βA−2 |
holds if and only if α≤0 and β≥(16tanh21−9)/7≈0.0401.
In essence, the above results are how the two new means Msin and Mtanh are expressed linearly, harmoniously, squarely, and harmoniously in square by the two classical means Ce(x,y) and A(x,y). In this paper, we study the following two-sided inequalities in exponential form for nonzero number p∈R
(1−αp)Ap+αpCep<Mpsin<(1−βp)Ap+βpCep, | (1.7) |
(1−λp)Ap+λpCep<Mptanh<(1−μp)Ap+μpCep | (1.8) |
in order to reach a broader conclusion including all the above properties. The main conclusions of this paper are as follows:
Theorem 1.1. Let x,y>0, x≠y, p≠0 and
p♣=3cos2+sin2+13sin2−cos2−3≈4.588. |
Then the following are considered.
(i) If p≥p♣, the double inequality
(1−αp)Ap+αpCep<Mpsin<(1−βp)Ap+βpCep | (1.9) |
holds if and only if αp≤3p(1−sinp1)/[(sinp1)(4p−3p)] and βp≥1/2.
(ii) If 0<p≤12/5, the double inequality
(1−αp)Ap+αpCep<Mpsin<(1−βp)Ap+βpCep | (1.10) |
holds if and only if αp≤1/2 and βp≥3p(1−sinp1)/[(sinp1)(4p−3p)].
(iii) If p<0, the double inequality
(1−βp)Ap+βpCep<Mpsin<(1−αp)Ap+αpCep | (1.11) |
holds if and only if αp≤1/2 and βp≥3p(1−sinp1)/[(sinp1)(4p−3p)].
Theorem 1.2. Let x,y>0, x≠y, p≠0 and
p∗=−16cosh2−3cosh4+4sinh2+3cosh4−12sinh2+15≈−3.4776. |
Then the following are considered:
(i) If p>0, the double inequality
(1−λp)Ap+λpCep<Mptanh<(1−μp)Ap+μpCep | (1.12) |
holds if and only if λp≤((coth1)p−1)/((4/3)p−1) and μp≥1.
(ii) If p∗≤p<0,
(1−μp)Ap+μpλpCep<Mptanh<(1−λp)Ap+λpCep | (1.13) |
holds if and only if λp≤((coth1)p−1)/((4/3)p−1) and μp≥1.
We first introduce a theoretical support of this paper.
Lemma 2.1. ([10]) Let K(x,y),R(x,y), and N(x,y) be three means with two positive distinct parameters x and y; fK(t), fR(t), and fN(t) be the corresponding Seiffert functions of the former, ϑ1,ϑ2,θ1,θ2,p∈R, and p≠0. Then
ϑ1Kp(x,y)+ϑ2Np(x,y)≤Rp(x,y)≤θ1Kp(x,y)+θ2Np(x,y) | (2.1) |
⟺ϑ1fpK(t)+ϑ2fpN(t)≤1fpR(t)≤θ1fpK(t)+θ2fpN(t). | (2.2) |
It must be mentioned that the key steps to prove the above results are following:
Mf(u,v)=Mf(λ2xx+y,λ2yx+y)=λMf(2xx+y,2yx+y)=λMf(1−t,1+t)=λtfM(t), | (2.3) |
where
{u=λ2xx+yv=λ2yx+y, 0<x<y, λ>0. |
and 0<t<1,
t=y−xx+y. |
In order to prove the main conclusions, we shall introduce some very suitable methods which are called the monotone form of L'Hospital's rule (see Lemma 2.2) and the criterion for the monotonicity of the quotient of power series (see Lemma 2.3).
Lemma 2.2. ([11,12]) For −∞<a<b<∞, let f,g:[a,b]→R be continuous functions that are differentiable on (a,b), with f(a)=g(a)=0 or f(b)=g(b)=0. Assume that g′(t)≠0 for each x in (a,b). If f′/g′ is increasing (decreasing) on (a,b), then so is f/g.
Lemma 2.3. ([13]) Let an and bn (n=0,1,2,⋅⋅⋅) be real numbers, and let the power series A(x)=∑∞n=0anxn and B(x)=∑∞n=0bnxn be convergent for |x|<R (R≤+∞). If bn>0 for n=0,1,2,⋅⋅⋅, and if εn=an/bn is strictly increasing (or decreasing) for n=0,1,2,⋅⋅⋅, then the function A(x)/B(x) is strictly increasing (or decreasing) on (0,R) (R≤+∞).
Lemma 2.4. ([14,15]) Let B2n be the even-indexed Bernoulli numbers. Then we have the following power series expansions
cotx=1x−∞∑n=122n(2n)!|B2n|x2n−1, 0<|x|<π, | (2.4) |
1sin2x=csc2x=−(cotx)′=1x2+∞∑n=122n(2n−1)(2n)!|B2n|x2n−2, 0<|x|<π. | (2.5) |
Lemma 2.5. ([16,17,18,19,20]) Let B2n the even-indexed Bernoulli numbers, n=1,2,…. Then
22n−1−122n+1−1(2n+2)(2n+1)π2<|B2n+2||B2n|<22n−122n+2−1(2n+2)(2n+1)π2. |
Lemma 2.6. Let l1(t) be defined by
l1(t)=s1(t)r1(t), |
where
s1(t)=6t2+2t4−12sin2t−2t3costsint+6tcostsintsin2t,r1(t)=8t2sin2t+2t4sin2t−6t2−2t4−6sin2t+12tcostsintsin2t. |
Then the double inequality
125<l1(t)<p♣=3cos2+sin2+13sin2−cos2−3≈4.588 | (2.6) |
holds for all t∈(0,1), where the constants 12/5 and (3cos2+sin2+1)/(3sin2−cos2−3)≈4.588 are the best possible in (2.6).
Proof. Since
1l1(t)=r1(t)s1(t), |
and
r1(t)=8t2sin2t+2t4sin2t−6t2−2t4−6sin2t+12tcostsintsin2t=8t2−2t41sin2t−6t21sin2t+2t4+12tcostsint−6=8t2−2t4[1t2+∞∑n=122n(2n−1)(2n)!|B2n|t2n−2]−6t2[1t2+∞∑n=122n(2n−1)(2n)!|B2n|t2n−2]+2t4+12t[1t−∞∑n=122n(2n)!|B2n|t2n−1]−6=23t4−∞∑n=3[22n−1(2n−3)(2n−2)!|B2n−2|+6⋅22n(2n+1)(2n)!|B2n|]t2n=:∞∑n=2ant2n, |
where
a2=23,an=−[22n−1(2n−3)(2n−2)!|B2n−2|+6⋅22n(2n+1)(2n)!|B2n|], n=3,4,…, |
s1(t)=6t2+2t4−12sin2t−2t3costsint+6tcostsintsin2t=6t21sin2t+2t41sin2t+6tcostsint−2t3costsint−12=6t2[1t2+∞∑n=122n(2n−1)(2n)!|B2n|t2n−2]+2t4[1t2+∞∑n=122n(2n−1)(2n)!|B2n|t2n−2]+6t[1t−∞∑n=122n(2n)!|B2n|t2n−1]−2t3[1t−∞∑n=122n(2n)!|B2n|t2n−1]−12=∞∑n=212⋅22n(n−1)(2n)!|B2n|t2n+∞∑n=14n⋅22n(2n)!|B2n|t2n+2=∞∑n=212⋅22n(n−1)(2n)!|B2n|t2n+∞∑n=2(n−1)⋅22n(2n−2)!|B2n−2|t2n=∞∑n=2[12⋅22n(n−1)(2n)!|B2n|+(n−1)⋅22n(2n−2)!|B2n−2|]t2n=85t4+∞∑n=3[12⋅22n(n−1)(2n)!|B2n|+(n−1)⋅22n(2n−2)!|B2n−2|]t2n=:∞∑n=2bnt2n, |
where
b2=85,bn=12⋅22n(n−1)(2n)!|B2n|+(n−1)⋅22n(2n−2)!|B2n−2|>0, n=3,4,…. |
Setting
qn=anbn, n=2,3,…, |
we have
q2=512=0.41667,qn=−22n−1(2n−3)(2n−2)!|B2n−2|+6⋅22n(2n+1)(2n)!|B2n|12⋅22n(n−1)(2n)!|B2n|+(n−1)⋅22n(2n−2)!|B2n−2|, n=3,4,…. |
Here we prove that the sequence {qn}n≥2 decreases monotonously. Obviously, q2>0>q3. We shall prove that for n≥3,
qn>qn+1⟺−22n−1(2n−3)(2n−2)!|B2n−2|+6⋅22n(2n+1)(2n)!|B2n|12⋅22n(n−1)(2n)!|B2n|+(n−1)⋅22n(2n−2)!|B2n−2|>−22n+1(2n−1)(2n)!|B2n|+6⋅22n+2(2n+3)(2n+2)!|B2n+2|12⋅22n+2n(2n+2)!|B2n+2|+n⋅22n+2(2n)!|B2n|⟺22n−1(2n−3)(2n−2)!|B2n−2|+6⋅22n(2n+1)(2n)!|B2n|12⋅22n(n−1)(2n)!|B2n|+(n−1)⋅22n(2n−2)!|B2n−2|<22n+1(2n−1)(2n)!|B2n|+6⋅22n+2(2n+3)(2n+2)!|B2n+2|12⋅22n+2n(2n+2)!|B2n+2|+n⋅22n+2(2n)!|B2n|, |
that is,
2(2n)!(2n−2)!|B2n−2||B2n|+24(4n−3)(2n−2)!(2n+2)!|B2n+2||B2n−2||B2n||B2n|>24(4n−1)((2n)!)2+864(2n)!(2n+2)!|B2n+2||B2n|. | (2.7) |
By Lemma 2.5 we have
2(2n)!(2n−2)!|B2n−2||B2n|+24(4n−3)(2n−2)!(2n+2)!|B2n+2||B2n−2||B2n||B2n|>2(2n)!(2n−2)!22n−122n−2−1π2(2n)(2n−1)+24(4n−3)(2n−2)!(2n+2)!22n−1−122n+1−1(2n+2)(2n+1)π222n−122n−2−1π2(2n)(2n−1)=2π2(2n)!(2n)!22n−122n−2−1+24(4n−3)(2n)!(2n)!22n−1−122n+1−122n−122n−2−1, |
and
24(4n−1)(2n)!2+864(2n)!(2n+2)!|B2n+2||B2n|<24(4n−1)(2n)!2+864(2n)!(2n+2)!22n−122n+2−1(2n+2)(2n+1)π2=24(4n−1)(2n)!2+864(2n)!(2n)!22n−122n+2−11π2. |
So we can complete the prove (2.7) when proving
2π2(2n)!(2n)!22n−122n−2−1+24(4n−3)(2n)!(2n)!22n−1−122n+1−122n−122n−2−1>24(4n−1)((2n)!)2+864(2n)!(2n)!22n−122n+2−11π2 |
or
2π2(22n−1)22n−2−1+24(4n−3)22n−1−122n+1−122n−122n−2−1>24(4n−1)+22n−122n+2−1864π2. |
In fact,
2π2(22n−1)22n−2−1+24(4n−3)22n−1−122n+1−122n−122n−2−1−[24(4n−1)+22n−122n+2−1864π2]=:8H(n)π2(22n+2−1)(22n−4)(22n+1−1), |
where
H(n)=8⋅26n(π+3)(π−3)(π2+3)+2⋅24n(72π2n+60π2−7π4+594)−22n(36π2n+123π2−7π4+1404)+(24π2−π4+432)>0 |
for all n≥3.
So the sequence {qn}n≥2 decreases monotonously. By Lemma 2.3 we obtain that r1(t)/s1(t) is decreasing on (0,1), which means that the function l1(t) is increasing on (0,1). In view of
lim |
the proof of this lemma is complete.
Lemma 2.7. Let l_{2}(t) be defined by
\begin{equation*} l_{2}\left( t\right) = 2\cdot \frac{ 3\cosh 4t-12t^{2}\cosh 2t-4t^{4}\cosh 2t+2 t^{3}\sinh 2t-6t\sinh 2t-3}{ t^{2}\cosh 4t-3\cosh 4t+24t\sinh 2t-25t^{2}- 8t^{4}+3} = :2\frac{ B(t)}{A(t)}, \text{ }0 < t < \infty , \end{equation*} |
where
\begin{eqnarray*} A(t) & = & t^{2}\cosh 4t-3\cosh 4t+24t\sinh 2t-25t^{2}- 8t^{4}+3 , \\ B(t) & = &3\cosh 4t-12t^{2}\cosh 2t-4t^{4}\cosh 2t+2 t^{3}\sinh 2t-6t\sinh 2t-3. \end{eqnarray*} |
Then l_{2}(t) is strictly decreasing on \left(0, \infty \right) .
Proof. Let's take the power series expansions
\begin{equation*} \sinh kt = \sum\limits_{n = 0}^{\infty }\frac{k^{2n+1}}{\left( 2n+1\right) !}t^{2n+1}, \text{ }\cosh kt = \sum\limits_{n = 0}^{\infty }\frac{k^{2n}}{\left( 2n\right) !}t^{2n} \end{equation*} |
into A(t) and B(t) , and get
\begin{equation*} A(t) = \sum\limits_{n = 2}^{\infty }c_{n}t^{2n+2}, \text{ }B(t) = \sum\limits_{n = 2}^{\infty }d_{n}t^{2n+2}, \end{equation*} |
where
\begin{eqnarray*} c_{2} & = &0, \\ c_{n} & = &\left[ \frac{ 2\left( 3n+2n^{2}-23\right) 2^{2n}+48\left( 2n+2\right) }{\left( 2n+2\right) !}\right] 2^{2n}, \text{ } n = 3, 4, \ldots , \\ d_{n} & = &\left[ \frac{48\cdot 2^{2n} -8\left( n+1\right) \left( 5n-n^{2}+2n^{3}+6\right) }{\left( 2n+2\right) !}\right] 2^{2n}, \text{ } n = 2, 3, \ldots , \end{eqnarray*} |
Setting
\begin{equation*} k_{n} = \frac{c_{n}}{d_{n}} = \frac{ 48\left( n+1\right) + 2^{2n}\left( 3n+2n^{2}-23\right) }{ 4\left( 6\cdot 2^{2n}-11n-4n^{2}-n^{3}-2n^{4}-6\right) }, \text{ }n = 2, 3, \ldots , \end{equation*} |
Here we prove that the sequence \{k_{n}\}_{n\geq 2} decreases monotonously. Obviously, k_{2} = 0 < k_{3} . For n\geq 3,
\begin{eqnarray*} k_{n} & < &k_{n+1} \\ &\Longleftrightarrow & \\ &&\frac{ 48\left( n+1\right) + 2^{2n}\left( 3n+2n^{2}-23\right) }{ 4\left( 6\cdot 2^{2n}-11n-4n^{2}-n^{3}-2n^{4}-6\right) } \\ & < &\frac{ 48\left( n+2\right) + 2^{2n+2}\left( 3\left( n+1\right) +2\left( n+1\right) ^{2}-23\right) }{ 4\left( 6\cdot 2^{2n+2}-11\left( n+1\right) -4\left( n+1\right) ^{2}-\left( n+1\right) ^{3}-2\left( n+1\right) ^{4}-6\right) } \\ &\Longleftrightarrow & \\ &&\frac{ 48\left( n+1\right) + 2^{2n}\left( 3n+2n^{2}-23\right) }{ 6\cdot 2^{2n}-11n-4n^{2}-n^{3}-2n^{4}-6} \\ & < & \frac{48n+96+ 2^{2n+2}\left( 7n+2n^{2}-18\right) }{ 6\cdot 2^{2n+2}-30n-19n^{2}-9n^{3}-2n^{4}-24} \end{eqnarray*} |
follows from \Delta (n) > 0 for all n\geq 2 , where
\begin{eqnarray*} \Delta (n) & = &\left( 48n+96+ 2^{2n+2}\left( 7n+2n^{2}-18\right) \right) \left( 6\cdot 2^{2n}-11n-4n^{2}-n^{3}-2n^{4}-6\right) \\ &&-\left( 48\left( n+1\right) + 2^{2n}\left( 3n+2n^{2}-23\right) \right) \left( 6\cdot 2^{2n+2}-30n-19n^{2}-9n^{3}-2n^{4}-24\right) \\ & = & 24\cdot 2^{4n}\left( 4n+5\right) -2^{2n}\left( 858n+367n^{2}+218n^{3}-103n^{4}+40n^{5}+12n^{6}+696\right) \\ &&+1248n+1440n^{2}+1056n^{3}+288 n^{4}+576 \\ & = :&2^{2n}\left[ j(n)2^{2n}- i(n)\right] +w(n) \end{eqnarray*} |
with
\begin{eqnarray*} j(n) & = & 24\left( 4n+5\right) , \\ i(n) & = &858n+367n^{2}+218n^{3}-103n^{4}+40n^{5}+12n^{6}+696, \\ w(n) & = &1248n+1440n^{2}+1056n^{3}+288 n^{4}+576 > 0. \end{eqnarray*} |
We have that \Delta (2) = 5376 > 0 and shall prove that
\begin{eqnarray} j(n)2^{2n}- i(n) & > &0\Longleftrightarrow \\ 2^{2n} & > &\frac{ i(n)}{j(n)} \end{eqnarray} | (2.8) |
holds for all n\geq 3 . Now we use mathematical induction to prove (2.8) . When n = 3 , the left-hand side and right-hand side of (2.8) are 2^{6} = 64 and i(3)/j(3) = 941/17\thickapprox 55.\, 353 , which implies (2.8) holds for n = 3 . Assuming that (2.8) holds for n = m , that is,
\begin{equation} 2^{2m} > \frac{i(m)}{j(m)}. \end{equation} | (2.9) |
Next, we prove that (2.8) is valid for n = m+1 . By (2.9) we have
\begin{equation*} 2^{2\left( m+1\right) } = 4\cdot 2^{2m} > 4\frac{i(m)}{j(m)}, \end{equation*} |
in order to complete the proof of (2.8) it suffices to show that
\begin{equation*} 4\frac{i(m)}{j(m)} > \frac{i(m+1)}{j(m+1)}\Longleftrightarrow 4i(m)j(m+1)-i(m+1)j(m) > 0. \end{equation*} |
In fact,
\begin{eqnarray*} &&4i(m)j(m+1)-i(m+1)j(m) \\ & = & 17\, 280m^{7}+90\, 720m^{6}-60\, 000m^{5}-97\, 176m^{4}+ 1169\, 232m^{3}+2266\, 104m^{2} \\ &&+3581\, 136m+2154\, 816 \\ & = &146\, 337\, 408+234\, 401\, 616\left( m-3\right) +189\, 746\, 328 \left( m-3\right) ^{2}+92\, 580\, 720\left( m-3\right) ^{3} \\ &&+27\, 579\, 624\left( m-3\right) ^{4}+ 4838\, 880\left( m-3\right) ^{5}+453\, 600\left( m-3\right) ^{6}+17\, 280 \left( m-3\right) ^{7} \\ & > &0 \end{eqnarray*} |
for m\geq 3 due to the coefficients of the power square of \left(m-1\right) are positive.
By Lemma 2.3 we get that A(t)/B(t) is strictly increasing on \left(0, \infty \right). So the function l_{2}(x) is strictly decreasing on \left(0, \infty \right) .
The proof of Lemma 2.7 is complete.
Via (1.3) and (1.2) we can obtain
\begin{eqnarray*} f_{\mathbf{A}}(t) & = &t, \\ f_{\mathbf{C}_{e}}(t) & = &\frac{3t}{3+t^{2}}, \\ f_{\mathbf{M}_{\sin }}(t) & = &\sin t, \\ f_{\mathbf{M}_{\tanh }}(t) & = &\tanh t. \end{eqnarray*} |
Then by Lemma 2.1 and \left(2.3\right) we have
\begin{eqnarray*} \alpha _{p} & < &\frac{\mathbf{M}_{\sin }^{p}-\mathbf{A}^{p}}{\mathbf{Ce}^{p}- \mathbf{A}^{p}} < \beta _{p}\Longleftrightarrow \alpha _{p} < \frac{\left( \frac{ 1}{\sin t}\right) ^{p}-\left( \frac{1}{t}\right) ^{p}}{\left( \frac{3+t^{2}}{ 3t}\right) ^{p}-\left( \frac{1}{t}\right) ^{p}} < \beta _{p}, \\ \lambda _{p} & < &\frac{\mathbf{M}_{\tanh }^{p}-\mathbf{A}^{p}}{\mathbf{Ce} ^{p}-\mathbf{A}^{p}} < \mu _{p}\Longleftrightarrow \lambda _{p} < \frac{\left( \frac{1}{\tanh t}\right) ^{p}-\left( \frac{1}{t}\right) ^{p}}{\left( \frac{ 3+t^{2}}{3t}\right) ^{p}-\left( \frac{1}{t}\right) ^{p}} < \mu _{p}. \end{eqnarray*} |
So we turn to the proof of the following two theorems.
Theorem 3.1. Let t\in (0, 1) and
\begin{equation*} p^{\clubsuit } = \frac{3\cos 2+\sin 2+1}{3\sin 2-\cos 2-3}\thickapprox 4.\, 588. \end{equation*} |
Then,
(i) if p\geq p^{\clubsuit } , the double inequality
\begin{equation} \alpha _{p} < \frac{\left( \frac{1}{\sin t}\right) ^{p}-\left( \frac{1}{t} \right) ^{p}}{\left( \frac{3+t^{2}}{3t}\right) ^{p}-\left( \frac{1}{t} \right) ^{p}} < \beta _{p} \end{equation} | (3.1) |
holds if and only if \alpha _{p}\leq 3^{p}\left(1-\sin ^{p}1\right) /\left[\left(\sin ^{p}1\right) \left(4^{p}-3^{p}\right) \right] and \beta _{p}\geq 1/2 ;
(ii) if 0\neq p\leq 12/5 = 2.\, 4 and p\neq 0 the double inequality
\begin{equation} \beta _{p} < \frac{\left( \frac{1}{\sin t}\right) ^{p}-\left( \frac{1}{t} \right) ^{p}}{\left( \frac{3+t^{2}}{3t}\right) ^{p}-\left( \frac{1}{t} \right) ^{p}} < \alpha _{p} \end{equation} | (3.2) |
holds if and only if \alpha _{p}\leq 1/2 and \beta \geq 3^{p}\left(1-\sin ^{p}1\right) /\left[\left(\sin ^{p}1\right) \left(4^{p}-3^{p}\right) \right].
Theorem 3.2. Let t\in (0, 1) and
\begin{equation*} p^{\ast } = -\frac{16\cosh 2-3\cosh 4+4\sinh 2+3}{\cosh 4-12\sinh 2+15} \thickapprox - 3.\, 477\, 6. \end{equation*} |
If 0\neq p\geq - 3.\, 477\, 6 , the double inequality
\begin{equation} \lambda _{p} < \frac{\left( \frac{1}{\tanh t}\right) ^{p}-\left( \frac{1}{t} \right) ^{p}}{\left( \frac{3+t^{2}}{3t}\right) ^{p}-\left( \frac{1}{t} \right) ^{p}} < \mu _{p} \end{equation} | (3.3) |
holds if and only if \lambda _{p}\leq \left(\left(\coth 1\right) ^{p}-1\right) /\left(\left(4/3\right) ^{p}-1\right) and \mu _{p}\geq 1 .
Let
\begin{eqnarray*} F(t) & = &\frac{\left( \frac{1}{\sin t}\right) ^{p}-\left( \frac{1}{t}\right) ^{p}}{\left( \frac{3+t^{2}}{3t}\right) ^{p}-\left( \frac{1}{t}\right) ^{p}} = \frac{\left( \frac{t}{\sin t}\right) ^{p}-1}{\left( \frac{3+t^{2}}{3}\right) ^{p}-1} \\ & = :&\frac{f(t)}{g(t)} = \frac{f(t)-f(0^{+})}{g(t)-g(0^{+})}, \end{eqnarray*} |
where
\begin{eqnarray*} f(t) & = &\left( \frac{t}{\sin t}\right) ^{p}-1, \\ g(t) & = &\left( \frac{3+t^{2}}{3}\right) ^{p}-1. \end{eqnarray*} |
Then
\begin{eqnarray*} f^{\prime }(t) & = & \frac{p}{\sin ^{2}t}\left( \sin t-t\cos t\right) \left( \frac{t}{\sin t}\right) ^{p-1}, \\ g^{\prime }(t) & = & \frac{2}{3}\left( \frac{1}{3}\right) ^{p-1}pt\left( t^{2}+3\right) ^{p-1}, \end{eqnarray*} |
\begin{equation*} \frac{f^{\prime }(t)}{g^{\prime }(t)} = \frac{3^{p}}{2}\frac{1}{ t\sin ^{2}t}\left( \sin t-t\cos t\right) \left( \frac{t}{\left( t^{2}+3\right) \sin t}\right) ^{p-1} , \end{equation*} |
and
\begin{eqnarray*} \left( \frac{f^{\prime }(t)}{g^{\prime }(t)}\right) ^{\prime } & = &\frac{1}{4} \left( \frac{3t}{\left( \sin t\right) \left( t^{2}+3\right) }\right) ^{p} \frac{r_{1}(t)}{t^{3}\sin ^{2}t}\left[ \frac{s_{1}(t)}{r_{1}(t)}-p\right] \\ & = :&\frac{1}{4}\left( \frac{3t}{\left( \sin t\right) \left( t^{2}+3\right) } \right) ^{p}\frac{r_{1}(t)}{t^{3}\sin ^{2}t}\left[ l_{1}(t)-p\right] , \end{eqnarray*} |
where the three functions s_{1}(t) , r_{1}(t) , and l_{1}(t) are shown in Lemma 2.6 .
By Lemma 2.6 we can obtain the following results:
(a) When p\geq \max_{t\in (0, 1)}l_{1}(t) = :p^{\clubsuit } = \left(3\cos 2+\sin 2+1\right) /\left(3\sin 2-\cos 2-3\right) \thickapprox 4.\, 588 ,
\begin{equation*} \left( \frac{f^{\prime }(t)}{g^{\prime }(t)}\right) ^{\prime }\leq 0\Longrightarrow \frac{f^{\prime }(t)}{g^{\prime }(t)}~\text{ is decreasing on }~(0, 1)\text{, } \end{equation*} |
this leads to F(t) = f(t)/g(t) is decreasing on (0, 1) by Lemma 2.1 . In view of
\begin{equation} F(0^{+}) = \frac{1}{2}, \text{ }F(1^{-}) = \frac{3^{p}\left( 1-\sin ^{p}1\right) }{\left( \sin ^{p}1\right) \left( 4^{p}-3^{p}\right) }, \end{equation} | (3.4) |
we have that \left(3.1\right) holds.
(b) When 0\neq p\leq 12/5 = \min_{t\in (0, 1)}l_{1}(t),
\begin{equation*} \left( \frac{f^{\prime }(t)}{g^{\prime }(t)}\right) ^{\prime }\geq 0\Longrightarrow \frac{f^{\prime }(t)}{g^{\prime }(t)}\text{ is increasing on }(0, 1)\text{, } \end{equation*} |
this leads to F(t) = f(t)/g(t) is increasing on (0, 1) by Lemma 2.2 . In view of \left(3.4\right) we have that \left(3.2\right) holds.
The proof of Theorem 3.1 is complete.
Let
\begin{eqnarray*} G(t) & = &\frac{\left( \frac{1}{\tanh t}\right) ^{p}-\left( \frac{1}{t}\right) ^{p}}{\left( \frac{3+t^{2}}{3t}\right) ^{p}-\left( \frac{1}{t}\right) ^{p}} = \frac{\left( \frac{t}{\tanh t}\right) ^{p}-1}{\left( \frac{3+t^{2}}{3} \right) ^{p}-1} \\ & = :&\frac{u(t)}{v(t)} = \frac{u(t)-u(0^{+})}{v(t)-v(0^{+})}. \end{eqnarray*} |
Then
\begin{eqnarray*} u^{\prime }(t) & = & \frac{p}{\tanh ^{2}t}\left( \frac{t}{\tanh t} \right) ^{p-1}\left( t\tanh ^{2}t+\tanh t-t\right) , \\ v^{\prime }(t) & = & \frac{2}{3}pt\left( \frac{t^{2}+3}{3}\right) ^{p-1}, \end{eqnarray*} |
\begin{equation*} \frac{u^{\prime }(t)}{v^{\prime }(t)} = \frac{3}{2}\frac{t\tanh ^{2}t+\tanh t-t }{t\tanh ^{2}t}\left[ \frac{3t}{\left( t^{2}+3\right) \tanh t}\right] ^{p-1} , \end{equation*} |
and
\begin{eqnarray*} \left( \frac{u^{\prime }(t)}{v^{\prime }(t)}\right) ^{\prime } & = &-\frac{1}{ 16}\left[ \frac{3t\cosh t}{\left( 3+t^{2}\right) \sinh t}\right] ^{p}\frac{ A(t)}{t^{3}\cosh ^{2}t\sinh ^{2}t}\left[ p+\frac{2B(t)}{A(t)}\right] \\ & = :&-\frac{1}{16}\left[ \frac{3t\cosh t}{\left( 3+t^{2}\right) \sinh t} \right] ^{p}\frac{A(t)}{t^{3}\cosh ^{2}t\sinh ^{2}t}\left[ p+l_{2}\left( t\right) \right] , \end{eqnarray*} |
where the three functions A(t) , B(t) , and l_{2}(t) are shown in Lemma 2.7 . By Lemma 2.7 we see that l_{2}(x) is strictly decreasing on \left(0, 1\right) . Since
\begin{eqnarray*} \lim\limits_{t\rightarrow 0^{+}}l_{2}(t) & = &\infty , \\ \lim\limits_{t\rightarrow 1^{-}}l_{2}(t) & = &\frac{16\cosh 2-3\cosh 4+4\sinh 2+3}{ \cosh 4-12\sinh 2+15} = :p_{\#}\thickapprox 3.\, 477\, 6, \end{eqnarray*} |
we obtain the following result:
When p\geq \max_{t\in \left(0, 1\right) }\left\{ -l_{2}(t)\right\} = -p_{\#} = :p^{\ast }\thickapprox -3.\, 477\, 6,
\begin{equation*} \left( \frac{u^{\prime }(t)}{v^{\prime }(t)}\right) ^{\prime }\leq 0\Longrightarrow \frac{u^{\prime }(t)}{v^{\prime }(t)}~\text{ is decreasing on }~(0, 1)\text{, } \end{equation*} |
this leads to G(t) = u(t)/v(t) is decreasing on (0, 1) by Lemma 2.2 . Since
\begin{equation*} G(0^{+}) = 1, G(1^{-}) = \frac{\left( \frac{\cosh 1}{\sinh 1}\right) ^{p}-1}{ \left( \frac{4}{3}\right) ^{p}-1}, \end{equation*} |
we have
\begin{equation*} G(1^{-}) < G(t) < G(0^{+}), \end{equation*} |
which completes the proof of Theorem 3.2.
Remark 4.1. Letting p = 1, -1, 2, -2 in Theorems 1.1 and 1.2 respectively, one can obtain Propositions 1.1–1.8.
From Theorems 1.1 and 1.2, we can also get the following important conclusions:
Corollary 4.1. Let x, y > 0 , x\neq y , and
\begin{eqnarray*} p^{\clubsuit } & = &\frac{3\cos 2+\sin 2+1}{3\sin 2-\cos 2-3}\thickapprox 4.\, 588, \\ \alpha & = &\frac{3^{p^{\clubsuit }}\left( 1-\sin ^{p^{\clubsuit }}1\right) }{ \left( \sin ^{p^{\clubsuit }}1\right) \left( 4^{p^{\clubsuit }}-3^{p^{\clubsuit }}\right) }\thickapprox 0.440\, 25, \\ \beta & = &\frac{1}{2}. \end{eqnarray*} |
Then the double inequality
\begin{equation} (1-\alpha )\mathbf{A}^{p^{\clubsuit }}+\alpha \mathbf{Ce}^{p^{\clubsuit }} < \mathbf{M}_{\sin }^{p^{\clubsuit }} < (1-\beta )\mathbf{A}^{p^{\clubsuit }}+\beta \mathbf{Ce}^{p^{\clubsuit }} \end{equation} | (4.1) |
holds, where the constants \alpha and \beta are the best possible in (4.1).
Corollary 4.2. Let x, y > 0 , x\neq y , and
\begin{eqnarray*} \theta & = &\frac{1}{2}, \\ \vartheta & = &\frac{3^{12/5}\left( 1-\sin ^{12/5}1\right) }{\left( \sin ^{12/5}1\right) \left( 4^{12/5}-3^{12/5}\right) }\thickapprox 0.516\, 03. \end{eqnarray*} |
Then the double inequality
\begin{equation} (1-\theta )\mathbf{A}^{12/5}+\theta \mathbf{Ce}^{12/5} < \mathbf{M}_{\sin }^{12/5} < (1-\vartheta )\mathbf{A}^{12/5}+\vartheta \mathbf{Ce}^{12/5} \end{equation} | (4.2) |
holds, where the constants \theta and \vartheta are the best possible in (4.2).
Corollary 4.3. Let x, y > 0 , x\neq y , and
\begin{eqnarray*} p^{\ast } & = &-\frac{16\cosh 2-3\cosh 4+4\sinh 2+3}{\cosh 4-12\sinh 2+15} \thickapprox - 3.\, 477\, 6, \\ \lambda & = &\frac{\left( \coth 1\right) ^{p^{\ast }}-1}{\left( 4/3\right) ^{p^{\ast }}-1}\thickapprox 0.968\, 13, \\ \mu & = &1. \end{eqnarray*} |
Then the double inequality
\begin{equation} (1-\mu)\mathbf{A}^{p^{\ast }}+\mu\mathbf{Ce}^{p^{\ast }} < \mathbf{M}_{\tanh }^{p^{\ast }} < (1-\lambda)\mathbf{A}^{p^{\ast }}+\lambda\mathbf{Ce}^{p^{\ast }} \end{equation} | (4.3) |
holds, where the constants \lambda and \mu are the best possible in (4.3).
In this paper, we have studied exponential type inequalities for \mathbf{M} _{\sin } and \mathbf{M}_{\tanh } in term of \mathbf{A} and \mathbf{Ce} for nonzero number p\in \mathbb{R} :
\begin{eqnarray*} (1-\alpha _{p})\mathbf{A}^{p}+\alpha _{p}\mathbf{Ce}^{p} & < &\mathbf{M}_{\sin }^{p} < (1-\beta _{p})\mathbf{A}^{p}+\beta _{p}\mathbf{Ce}^{p}, \\ (1-\lambda _{p})\mathbf{A}^{p}+\lambda _{p}\mathbf{Ce}^{p} & < &\mathbf{M} _{\tanh }^{p} < (1-\mu _{p})\mathbf{A}^{p}+\mu _{p}\mathbf{Ce}^{p}, \end{eqnarray*} |
obtained a lot of interesting conclusions which include the ones of the previous similar literature. In fact, we can consider similar inequalities for dual means of the two means \mathbf{M}_{\sin } and \mathbf{M}_{\tanh } , and we can replace \mathbf{A} and \mathbf{Ce} by other famous means. Therefore, the content of this research is very extensive.
The authors are grateful to editor and anonymous referees for their careful corrections to and valuable comments on the original version of this paper.
The first author was supported by the National Natural Science Foundation of China (no. 61772025). The second author was supported in part by the Serbian Ministry of Education, Science and Technological Development, under projects ON 174032 and III 44006.
The authors declare that they have no conflict of interest.
[1] | H. Guggenheimer, Differential geometry, New York: McGraw-Hill, 1963. |
[2] | J. Hoschek, Liniengeometrie, Zürich: Bibliographisches Institute, 1971. |
[3] |
J. Hano, K. Nomizu, Surfaces of revolution with constant mean curvature in Lorentz-Minkowski space, Tohoku Math. J., 36 (1984), 427–437. http://dx.doi.org/10.2748/tmj/1178228808 doi: 10.2748/tmj/1178228808
![]() |
[4] |
R. Lopez, Surfaces of constant Gauss curvature in Lorentz-Minkowski space, Rocky Mountain J. Math., 33 (2003), 971–993. http://dx.doi.org/10.1216/rmjm/1181069938 doi: 10.1216/rmjm/1181069938
![]() |
[5] |
R. Lopez, Timelike surfaces with constant mean curvature in Lorentz three-space, Tohoku Math. J., 52 (2000), 515–532. http://dx.doi.org/10.2748/tmj/1178207753 doi: 10.2748/tmj/1178207753
![]() |
[6] | W. Sodsiri, Ruled surfaces of Weingarten type in Minkowski 3-space, Ph. D Thesis, Katholieke Universiteit Leuven, 2005. |
[7] |
K. Akutagawa, S. Nishikawa, The Gauss map and spacelike surfaces with prescribed mean curvature in Minkowski 3-space, Tohoku Math. J., 42 (1990), 67–82. http://dx.doi.org/10.2748/tmj/1178227694 doi: 10.2748/tmj/1178227694
![]() |
[8] | A. Turgut, H. Hacısaliho{\rm{\tilde g}}lu, Timelike ruled surfaces in the Minkowski 3-space-Ⅱ, Turk. J. Math., 22 (1998), 33–46. |
[9] |
A. Turgut, H. Hacısaliho{\rm{\tilde g}}lu, Spacelike ruled surfaces in the Minkowski 3-space, Commun. Fac. Sci. Univ., 46 (1997), 83–91. http://dx.doi.org/10.1501/Commua1_0000000427 doi: 10.1501/Commua1_0000000427
![]() |
[10] |
E. Özyılmaz, Y. Yaylı, On the closed motions and closed space-like ruled surfaces, Commun. Fac. Sci. Univ., 49 (2000), 49–58. http://dx.doi.org/10.1501/Commua1_0000000378 doi: 10.1501/Commua1_0000000378
![]() |
[11] |
Y. Yaylı, On the motion of the Frenet vectors and spacelike ruled surfaces in the Minkowski 3-Space, Math. Comput. Appl., 5 (2000), 49–55. http://dx.doi.org/10.3390/mca5010049 doi: 10.3390/mca5010049
![]() |
[12] | I. Van de Woestijne, Minimal surfaces of the 3-dimensional Minkowski space, In: Geometry and topology of submanifolds, II, Singapore: Word Scientific Publishing, 1999,344–369. |
[13] |
Y. Li, D. Pei, Evolutes of dual spherical curves for ruled surfaces, Math. Method. Appl. Sci., 39 (2016), 3005–3015. http://dx.doi.org/10.1002/mma.3748 doi: 10.1002/mma.3748
![]() |
[14] |
S. Şenyurt, S. Gür, Spacelike surface geometry, Int. J. Geom. Methods M., 14 (2017), 1750118. http://dx.doi.org/10.1142/S0219887817501183 doi: 10.1142/S0219887817501183
![]() |
[15] |
S. Gür Mazlum, Geometric properties of timelike surfaces in Lorentz-Minkowski 3-space, Filomat, 37 (2023), 5735–5749. http://dx.doi.org/10.2298/FIL2317735G doi: 10.2298/FIL2317735G
![]() |
[16] |
Y. Li, K. Eren, K. Ayvacı, S. Ersoy, Simultaneous characterizations of partner-ruled surfaces using Flc frame, AIMS Mathematics, 7 (2022), 20213–20229. http://dx.doi.org/10.3934/math.20221106 doi: 10.3934/math.20221106
![]() |
[17] |
O. Soukaina, Simultaneous developability of partner-ruled surfaces according to Darboux frame in {E^3}, Abstr. Appl. Anal., 2021 (2021), 3151501. http://dx.doi.org/10.1155/2021/3151501 doi: 10.1155/2021/3151501
![]() |
[18] |
J. Choi, Y. Kim, A. Ali, Some associated curves of Frenet non-lightlike curves in E_1^3, J. Math. Anal. Appl., 394 (2012), 712–723. http://dx.doi.org/10.1016/j.jmaa.2012.04.063 doi: 10.1016/j.jmaa.2012.04.063
![]() |
[19] |
R. Lopez, Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom., 7 (2014), 44–107. http://dx.doi.org/10.36890/iejg.594497 doi: 10.36890/iejg.594497
![]() |
[20] |
Y. Li, M. Erdogdu, A. Yavuz, Differential geometric approach of Betchov-Da Rios soliton equation, Hacet. J. Math. Stat., 52 (2023), 114–125. http://dx.doi.org/10.15672/hujms.1052831 doi: 10.15672/hujms.1052831
![]() |
[21] |
Y. Li, K. Eren, K. Ayvacı, S. Ersoy, The developable surfaces with pointwise 1-type Gauss map of Frenet type framed base curves in Euclidean 3-space, AIMS Mathematics, 8 (2023), 2226–2239. http://dx.doi.org/10.3934/math.2023115 doi: 10.3934/math.2023115
![]() |
[22] |
Y. Li, Z. Chen, S. Nazra, R. Abdel-Baky, Singularities for timelike developable surfaces in Minkowski 3-space, Symmetry, 15 (2023), 277. http://dx.doi.org/10.3390/sym15020277 doi: 10.3390/sym15020277
![]() |
[23] |
Y. Li, M. Aldossary, R. Abdel-Baky, Spacelike circular surfaces in Minkowski 3-space, Symmetry, 15 (2023), 173. http://dx.doi.org/10.3390/sym15010173 doi: 10.3390/sym15010173
![]() |
[24] |
Y. Li, A. Abdel-Salam, M. Khalifa Saad, Primitivoids of curves in Minkowski plane, AIMS Mathematics, 8 (2023), 2386–2406. http://dx.doi.org/10.3934/math.2023123 doi: 10.3934/math.2023123
![]() |
[25] |
Y. Li, O. Tuncer, On (contra)pedals and (anti)orthotomics of frontals in de Sitter 2-space, Math. Method. Appl. Sci., 46 (2023), 11157–11171. http://dx.doi.org/10.1002/mma.9173 doi: 10.1002/mma.9173
![]() |
[26] |
Y. Li, A. Abolarinwa, A. Alkhaldi, A. Ali, Some inequalities of Hardy type related to Witten-Laplace operator on smooth metric measure spaces, Mathematics, 10 (2022), 4580. http://dx.doi.org/10.3390/math10234580 doi: 10.3390/math10234580
![]() |
[27] |
Y. Li, A. Alkhaldi, A. Ali, R. Abdel-Baky, M. Khalifa Saad, Investigation of ruled surfaces and their singularities according to Blaschke frame in Euclidean 3-space, AIMS Mathematics, 8 (2023), 13875–13888. http://dx.doi.org/10.3934/math.2023709 doi: 10.3934/math.2023709
![]() |
[28] |
Y. Li, D. Ganguly, Kenmotsu metric as conformal \eta-Ricci soliton, Mediterr. J. Math., 20 (2023), 193. http://dx.doi.org/10.1007/s00009-023-02396-0 doi: 10.1007/s00009-023-02396-0
![]() |
[29] |
Y. Li, S. Srivastava, F. Mofarreh, A. Kumar, A. Ali, Ricci soliton of CR-warped product manifolds and their classifications, Symmetry, 15 (2023), 976. http://dx.doi.org/10.3390/sym15050976 doi: 10.3390/sym15050976
![]() |
[30] |
Y. Li, P. Laurian-Ioan, L. Alqahtani, A. Alkhaldi, A. Ali, Zermelo's navigation problem for some special surfaces of rotation, AIMS Mathematics, 8 (2023), 16278–16290. http://dx.doi.org/10.3934/math.2023833 doi: 10.3934/math.2023833
![]() |
[31] |
Y. Li, A. Çalişkan, Quaternionic shape operator and rotation matrix on ruled surfaces, Axioms, 12 (2023), 486. http://dx.doi.org/10.3390/axioms12050486 doi: 10.3390/axioms12050486
![]() |
[32] |
Y. Li, A. Gezer, E. Karakaş, Some notes on the tangent bundle with a Ricci quarter-symmetric metric connection, AIMS Mathematics, 8 (2023), 17335–17353. http://dx.doi.org/10.3934/math.2023886 doi: 10.3934/math.2023886
![]() |
[33] |
Y. Li, S. Bhattacharyya, S. Azami, A. Saha, S. Hui, Harnack estimation for nonlinear, weighted, heat-type equation along geometric flow and applications, Mathematics, 11 (2023), 2516. http://dx.doi.org/10.3390/math11112516 doi: 10.3390/math11112516
![]() |
[34] |
Y. Li, H. Kumara, M. Siddesha, D. Naik, Characterization of Ricci almost soliton on Lorentzian manifolds, Symmetry, 15 (2023), 1175. http://dx.doi.org/10.3390/sym15061175 doi: 10.3390/sym15061175
![]() |
[35] |
Y. Li, S. Gür Mazlum, S. Şenyurt, The Darboux trihedrons of timelike surfaces in the Lorentzian 3-space, Int. J. Geom. Methods M., 20 (2023), 2350030. http://dx.doi.org/10.1142/S0219887823500305 doi: 10.1142/S0219887823500305
![]() |
[36] |
S. Gür Mazlum, S. Şenyurt, L. Grilli, The invariants of dual parallel equidistant ruled surfaces, Symmetry, 15 (2023), 206. http://dx.doi.org/10.3390/sym15010206 doi: 10.3390/sym15010206
![]() |
[37] |
S. Gür Mazlum, S. Şenyurt, L. Grilli, The dual expression of parallel equidistant ruled surfaces in Euclidean 3-space, Symmetry, 14 (2022), 1062. http://dx.doi.org/10.3390/sym14051062 doi: 10.3390/sym14051062
![]() |
1. | Miao-Kun Wang, Zai-Yin He, Tie-Hong Zhao, Qi Bao, Sharp weighted Hölder mean bounds for the complete elliptic integral of the second kind, 2022, 1065-2469, 1, 10.1080/10652469.2022.2155819 | |
2. | Ling Zhu, New Bounds for Arithmetic Mean by the Seiffert-like Means, 2022, 10, 2227-7390, 1789, 10.3390/math10111789 |