Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Numerical buckling analysis of carbon fibre-epoxy composite plates with different cutouts number by finite element method

Department of Mechanical Engineering, College of Engineering, University of Tikrit, Tikrit, Iraq

Composite materials are one of most important engineering structures due to their desirable structural properties like corrosion resistance, high specific strength, specific stiffness, and lightness compared to conventional materials. This article provides numerical study with linear and nonlinear analysis of the influence of thin carbon/epoxy composite plates with rectangular cutouts on the buckling behavior. The aim of current study is to examine the effect of central rectangular cut outs number of single, double, and triple cut outs of rectangular carbon–epoxy composite plates on the maximum buckling load and maximum deflection under natural and post buckling mode. This determination is to evaluate the possibility of employing elastic elements such as thin carbon–epoxy composite plate elements, whose stiffness affected by modifying the laminate cut-outs number at constant total area, where the area of the single cut out, total area of double cut outs, and total area of triple cut outs are equal. The finite element method was adopted to analyse the structure numerically. Furthermore, in order to maintain stable structure operation under post-buckling range, the laminated composite plates were arranged symmetrical lay-up with extension bending couplings. The finding demonstrates that the distribute of cut out area on the composite plate area with rectangular shape at constant total cut outs area lead to increase the maximum load and slightly reduces the maximum deflection, this can be attributed to the improvement of the compression load distribution on the composite plate model.
  Article Metrics
Download full text in PDF

Export Citation

Article outline

Copyright © AIMS Press All Rights Reserved