Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Synthesis, structural characterization and thermal stability of a 2D layered Cd(II) coordination polymer constructed from squarate (C4O42) and 2,2’-bis(2-pyridyl)ethylene (2,2’-bpe) ligands

1 Department of Chemistry, Soochow University, Taipei 11102, Taiwan
2 Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan
3 National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan

Special Issues: Synthesis and Applications of Metal-Organic Frameworks (MOFs)

A mixed-ligands Cd(II) coordination polymer, [Cd(2,2’-bpe)(C4O4)(H2O)2] (1) (2,2’-bpe = 1,2-bis(2-pyridyl)ethylene; C4O42− = dianion of squaric acid), has been synthesized and structurally characterized by single-crystal X-ray diffraction method. The coordination environment of Cd(II) ions in compound 1 is six-coordinate bonded to four oxygen atoms from two μ1,3-squarate (C4O42−) and two water molecules, and two nitrogen atoms from two 2,2’-bpe ligands. The squarate and 2,2’-bpe both act as bridging ligands with bis-monodentate coordination modes, connecting the Cd(II) ions to form a two-dimensional (2D) layered metal-organic framework (MOF). Adjacent 2D layers are then arranged in an ABAB parallel non-interpenetrating manner to construct its three dimensional (3D) supramolecular network. Intra- and inter-layers hydrogen bonding interactions between the C4O42− and water molecules in 1 provide an extra-stabilization energy on the construction of its 3D supramolecular network. The thermal stability of 1 is studied and discussed in details by TG analysis and in-situ PXRD measurement.
  Figure/Table
  Supplementary
  Article Metrics
Download full text in PDF

Export Citation

Article outline

Copyright © AIMS Press All Rights Reserved