Research article Topical Sections

A facile microwave approach to synthesize RGO-BaWO4 composites for high performance visible light induced photocatalytic degradation of dyes

  • Received: 31 January 2017 Accepted: 17 March 2017 Published: 22 March 2017
  • Photocatalysts with enhanced efficiency for environmental remediation requires an effective separation of photogenerated electron hole pairs and optimum charge carrier transport. Based on the above criteria, a cost effective, facile one-pot microwave approach was made to synthesize RGO-BaWO4 composites with excellent stability and reusability in photodegradation of methylene blue (MB) and methyl orange (MO). A series of composites with varying composition with respect to RGO was synthesized and thoroughly characterized using various techniques. The composite with 2.5% RGO-BaWO4 showed maximum efficiency under visible light irradiation. The mechanism of charge transfer and kinetics of the reaction was also studied. The interfacial/interparticle charge transfer between the narrow elliptical BaWO4 particles and RGO is found to be responsible for the increased efficiency. The photo generated holes and the superoxide radical were found to play a key role in the degradation process. The synergistic action makes RGO-BaWO4 composites a promising material as high performance photocatalyst for degradation of organic dyes.

    Citation: Mohamed Jaffer Sadiq Mohamed, Denthaje Krishna Bhat. A facile microwave approach to synthesize RGO-BaWO4 composites for high performance visible light induced photocatalytic degradation of dyes[J]. AIMS Materials Science, 2017, 4(2): 487-502. doi: 10.3934/matersci.2017.2.487

    Related Papers:

    [1] Jin Zhong, Yue Xia, Lijuan Chen, Fengde Chen . Dynamical analysis of a predator-prey system with fear-induced dispersal between patches. Mathematical Biosciences and Engineering, 2025, 22(5): 1159-1184. doi: 10.3934/mbe.2025042
    [2] Nancy Azer, P. van den Driessche . Competition and Dispersal Delays in Patchy Environments. Mathematical Biosciences and Engineering, 2006, 3(2): 283-296. doi: 10.3934/mbe.2006.3.283
    [3] Suvranil Chowdhury, Sujit Halder, Kaushik Kayal, Joydev Chattopadhyay . Cooperation-conflict dynamics and ecological resilience under environmental disturbances. Mathematical Biosciences and Engineering, 2025, 22(8): 2120-2151. doi: 10.3934/mbe.2025078
    [4] Yun Kang, Sourav Kumar Sasmal, Amiya Ranjan Bhowmick, Joydev Chattopadhyay . Dynamics of a predator-prey system with prey subject to Allee effects and disease. Mathematical Biosciences and Engineering, 2014, 11(4): 877-918. doi: 10.3934/mbe.2014.11.877
    [5] Robert Stephen Cantrell, Chris Cosner, William F. Fagan . Edge-linked dynamics and the scale-dependence of competitive. Mathematical Biosciences and Engineering, 2005, 2(4): 833-868. doi: 10.3934/mbe.2005.2.833
    [6] Junjing Xiong, Xiong Li, Hao Wang . The survival analysis of a stochastic Lotka-Volterra competition model with a coexistence equilibrium. Mathematical Biosciences and Engineering, 2019, 16(4): 2717-2737. doi: 10.3934/mbe.2019135
    [7] Fu-Yuan Tsai, Feng-BinWang . Mathematical analysis of a chemostat system modeling the competition for light and inorganic carbon with internal storage. Mathematical Biosciences and Engineering, 2019, 16(1): 205-221. doi: 10.3934/mbe.2019011
    [8] Yang Kuang, Kaifa Wang . Coexistence and extinction in a data-based ratio-dependent model of an insect community. Mathematical Biosciences and Engineering, 2020, 17(4): 3274-3293. doi: 10.3934/mbe.2020187
    [9] Yuanfu Shao . Bifurcations of a delayed predator-prey system with fear, refuge for prey and additional food for predator. Mathematical Biosciences and Engineering, 2023, 20(4): 7429-7452. doi: 10.3934/mbe.2023322
    [10] Chang-Yuan Cheng, Kuang-Hui Lin, Chih-Wen Shih . Coexistence and extinction for two competing species in patchy environments. Mathematical Biosciences and Engineering, 2019, 16(2): 909-946. doi: 10.3934/mbe.2019043
  • Photocatalysts with enhanced efficiency for environmental remediation requires an effective separation of photogenerated electron hole pairs and optimum charge carrier transport. Based on the above criteria, a cost effective, facile one-pot microwave approach was made to synthesize RGO-BaWO4 composites with excellent stability and reusability in photodegradation of methylene blue (MB) and methyl orange (MO). A series of composites with varying composition with respect to RGO was synthesized and thoroughly characterized using various techniques. The composite with 2.5% RGO-BaWO4 showed maximum efficiency under visible light irradiation. The mechanism of charge transfer and kinetics of the reaction was also studied. The interfacial/interparticle charge transfer between the narrow elliptical BaWO4 particles and RGO is found to be responsible for the increased efficiency. The photo generated holes and the superoxide radical were found to play a key role in the degradation process. The synergistic action makes RGO-BaWO4 composites a promising material as high performance photocatalyst for degradation of organic dyes.


    [1] Sadiq MMJ, Bhat DK (2017) Novel ZnWO4/RGO nanocomposite as high performance photocatalyst. AIMS Mater Sci 4: 158–171. doi: 10.3934/matersci.2017.1.158
    [2] Molinari R, Lavorato C, Argurio P (2017) Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review. Catal Today 281: 144–164. doi: 10.1016/j.cattod.2016.06.047
    [3] Khan M, Lo IMC (2017) Removal of ionizable aromatic pollutants from contaminated water using nano γ-Fe2O3 based magnetic cationic hydrogel: Sorptive performance, magnetic separation and reusability. J Hazard Mater 322: 195–204. doi: 10.1016/j.jhazmat.2016.01.051
    [4] Liu M, Chen Q, Lu K, et al. (2017) High efficient removal of dyes from aqueous solution through nanofiltration using diethanolamine-modified polyamide thin-film composite membrane. Sep Purif Technol 173: 135–143. doi: 10.1016/j.seppur.2016.09.023
    [5] Bilal M, Asgher M, Saldivar RP, et al. (2017) Immobilized ligninolytic enzymes: An innovative and environmental responsive technology to tackle dye-based industrial pollutants-A review. Sci Total Environ 576: 646–659. doi: 10.1016/j.scitotenv.2016.10.137
    [6] Taufik A, Saleh R (2017) Synthesis of iron (II, III) oxide/zinc oxide/copper (II) oxide (Fe3O4/ZnO/CuO) nanocomposites and their photosonocatalytic property for organic dye removal. J Colloid Interf Sci 491: 27–36. doi: 10.1016/j.jcis.2016.12.018
    [7] Chen D, Zhu H, Yang S, et al. (2016) Micro-nanocomposites in environmental management. Adv Mater 28: 10443–10458. doi: 10.1002/adma.201601486
    [8] Banerjee S, Pillai SC, Falaras P, et al. (2014) New insights into the mechanism of visible light photocatalysis. J Phys Chem Lett 5: 2543–2554. doi: 10.1021/jz501030x
    [9] Teoh WY, Scott JA, Amal R (2012) Progress in heterogeneous photocatalysis: From classical radical chemistry to engineering nanomaterials and solar reactors. J Phys Chem Lett 3: 629–639. doi: 10.1021/jz3000646
    [10] Li C, Xu Y, Tu W, et al. (2017) Metal-free photocatalysts for various applications in energy conversion and environmental purification. Green Chem 19: 882–899. doi: 10.1039/C6GC02856J
    [11] Selvakumar M, Bhat DK (2012) Microwave synthesized nanostructured TiO2-activated carbon composite electrodes for supercapacitor. Appl Surf Sci 263: 236–241. doi: 10.1016/j.apsusc.2012.09.036
    [12] Bhat DK (2008) Facile synthesis of ZnO nanorods by microwave irradiation of zinc-hydrazine hydrate complex. Nanoscale Res Lett 3: 31–35. doi: 10.1007/s11671-007-9110-4
    [13] Bhatt AS, Bhat DK (2012) Crystallinity, magnetic and electrochemical studies of PVDF/Co3O4 polymer electrolyte. Mater Sci Eng B 177: 127–131. doi: 10.1016/j.mseb.2011.09.036
    [14] Bhatt AS, Bhat DK (2012) Influence of nanoscale NiO on magnetic and electrochemical behavior of PVDF based polymer nanocomposites. Polym Bull 68: 253–261. doi: 10.1007/s00289-011-0628-3
    [15] Paola AD, Lopez EG, Marci G, et al. (2012) A survey of photocatalytic materials for environmental remediation. J Hazard Mater 211–212: 3–29.
    [16] Bhatt AS, Bhat DK (2011) Crystallinity, conductivity and magnetic properties of PVDF-Fe3O4 composite films. J Appl Polym Sci 119: 968–972. doi: 10.1002/app.32796
    [17] Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43: 7520–7535. doi: 10.1039/C3CS60378D
    [18] Sadiq MMJ, Shenoy US, Bhat DK (2016) Novel RGO-ZnWO4-Fe3O4 nanocomposite as high performance visible light photocatalyst. RSC Adv 6: 61821–61829. doi: 10.1039/C6RA13002J
    [19] Sadiq MMJ, Bhat DK (2016) Novel RGO-ZnWO4-Fe3O4 nanocomposite as an efficient catalyst for rapid reduction of 4-nitrophenol to 4-aminophenol. Ind Eng Chem Res 55: 7267–7272. doi: 10.1021/acs.iecr.6b01882
    [20] Sadiq MMJ, Nesaraj AS (2014) Soft chemical synthesis and characterization of BaWO4 nanoparticles for photocatalytic removal of Rhodamine B present in water sample. J Nanostruct Chem 5: 45–54.
    [21] Sudhakar YN, Selvakumar M, Bhat DK, et al. (2014) Reduced graphene oxide derived from used cell graphite, and its green fabrication as eco-friendly supercapacitor. RSC Adv 4: 60039–60051. doi: 10.1039/C4RA08347D
    [22] Zhang N, Yang MQ, Liu S, et al. (2015) Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem Rev 115: 10307–10377. doi: 10.1021/acs.chemrev.5b00267
    [23] Subramanya B, Bhat DK (2015) Novel eco-friendly synthesis of graphene directly from graphite using TEMPO and study of its electrochemical properties. J Power Sources 275: 90–98. doi: 10.1016/j.jpowsour.2014.11.014
    [24] Li X, Yu J, Wageh S (2016) Graphene in photocatalysis: A review. Small 12: 6640–6696. doi: 10.1002/smll.201600382
    [25] Subramanya B, Bhat DK, Shenoy SU, et al. (2015) Novel Fe-Ni-Graphene composite electrode for hydrogen production. Int J Hydrogen Energ 40: 10453–10462. doi: 10.1016/j.ijhydene.2015.06.040
    [26] Subramanya B, Ullal Y, Shenoy SU, et al. (2015) Novel Co-Ni-Graphene composite electrodes for hydrogen production. RSC Adv 5: 47398–47407. doi: 10.1039/C5RA07627G
    [27] Hummers Jr WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80: 1339–1339. doi: 10.1021/ja01539a017
    [28] Subramanya B, Bhat DK (2015) Novel one-pot green synthesis of graphene in aqueous medium under microwave irradiation using regenerative catalyst and study of its electrochemical properties. New J Chem 39: 420–430. doi: 10.1039/C4NJ01359J
    [29] Szabo T, Berkesi O, Forgo P, et al. (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18: 2740–2749. doi: 10.1021/cm060258+
    [30] Cavalcante L, Sczancoski J, Lima Jr L, et al. (2008) Synthesis, characterization, anisotropic growth and photoluminescence of BaWO4. Cryst Growth Des 9: 1002–1012.
  • This article has been cited by:

    1. D. Breda, O. Diekmann, M. Gyllenberg, F. Scarabel, R. Vermiglio, Pseudospectral Discretization of Nonlinear Delay Equations: New Prospects for Numerical Bifurcation Analysis, 2016, 15, 1536-0040, 1, 10.1137/15M1040931
    2. Deborah Lacitignola, Handling Hysteresis in a Referral Marketing Campaign with Self-Information. Hints from Epidemics, 2021, 9, 2227-7390, 680, 10.3390/math9060680
    3. A. M. Elaiw, A. D. Al Agha, A reaction–diffusion model for oncolytic M1 virotherapy with distributed delays, 2020, 135, 2190-5444, 10.1140/epjp/s13360-020-00188-z
    4. Janejira Tranthi, Thongchai Botmart, Wajaree Weera, Piyapong Niamsup, A New Approach for Exponential Stability Criteria of New Certain Nonlinear Neutral Differential Equations with Mixed Time-Varying Delays, 2019, 7, 2227-7390, 737, 10.3390/math7080737
    5. Daniel Câmara De Souza, Morgan Craig, Tyler Cassidy, Jun Li, Fahima Nekka, Jacques Bélair, Antony R. Humphries, Transit and lifespan in neutrophil production: implications for drug intervention, 2018, 45, 1567-567X, 59, 10.1007/s10928-017-9560-y
    6. Dimitri Breda, Giulia Menegon, Monica Nonino, Delay equations and characteristic roots: stability and more from a single curve, 2018, 14173875, 1, 10.14232/ejqtde.2018.1.89
    7. Luca Gori, Luca Guerrini, Mauro Sodini, Time delays, population, and economic development, 2018, 28, 1054-1500, 055909, 10.1063/1.5024397
    8. DEPENDENCE OF STABILITY OF NICHOLSON'S BLOWFLIES EQUATION WITH MATURATION STAGE ON PARAMETERS, 2017, 7, 2156-907X, 670, 10.11948/2017042
    9. Deborah Lacitignola, Giuseppe Saccomandi, Managing awareness can avoid hysteresis in disease spread: an application to coronavirus Covid-19, 2021, 144, 09600779, 110739, 10.1016/j.chaos.2021.110739
    10. Mats Gyllenberg, Francesca Scarabel, Rossana Vermiglio, Equations with infinite delay: Numerical bifurcation analysis via pseudospectral discretization, 2018, 333, 00963003, 490, 10.1016/j.amc.2018.03.104
    11. Fuad ALHAJ OMAR, PERFORMANCE COMPARISON OF PID CONTROLLER AND FUZZY LOGIC CONTROLLER FOR WATER LEVEL CONTROL WITH APPLYING TIME DELAY, 2021, 2147-9364, 858, 10.36306/konjes.976918
    12. 维 沈, Dynamic Analysis of Population Models with Time-Delay Coefficients, 2022, 11, 2324-7991, 3164, 10.12677/AAM.2022.115335
    13. Hao Shen, Yongli Song, Hao Wang, Bifurcations in a diffusive resource-consumer model with distributed memory, 2023, 347, 00220396, 170, 10.1016/j.jde.2022.11.044
    14. Libor Pekar, Qingbin Gao, Spectrum Analysis of LTI Continuous-Time Systems With Constant Delays: A Literature Overview of Some Recent Results, 2018, 6, 2169-3536, 35457, 10.1109/ACCESS.2018.2851453
    15. Lőrinc Márton, Control of Multi-Agent Systems with Distributed Delay, 2023, 56, 24058963, 8542, 10.1016/j.ifacol.2023.10.014
    16. Noemi Zeraick Monteiro, Rodrigo Weber dos Santos, Sandro Rodrigues Mazorche, Bridging the gap between models based on ordinary, delayed, and fractional differentials equations through integral kernels, 2024, 121, 0027-8424, 10.1073/pnas.2322424121
    17. Michael Malisoff, Frederic Mazenc, Local Halanay's inequality with application to feedback stabilization, 2024, 0, 2156-8472, 0, 10.3934/mcrf.2024026
    18. Mingzhu Qu, Hideaki Matsunaga, Exact stability criteria for linear differential equations with discrete and distributed delays, 2024, 0022247X, 128663, 10.1016/j.jmaa.2024.128663
    19. Francesca Scarabel, Rossana Vermiglio, Equations with Infinite Delay: Pseudospectral Discretization for Numerical Stability and Bifurcation in an Abstract Framework, 2024, 62, 0036-1429, 1736, 10.1137/23M1581133
    20. Sabrina H. Streipert, Gail S.K. Wolkowicz, Derivation and dynamics of discrete population models with distributed delay in reproduction, 2024, 00255564, 109279, 10.1016/j.mbs.2024.109279
    21. Yonghui Xia, Jianglong Xiao, Jianshe Yu, A diffusive plant-sulphide model: spatio-temporal dynamics contrast between discrete and distributed delay, 2024, 0956-7925, 1, 10.1017/S095679252400069X
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6697) PDF downloads(1125) Cited by(10)

Article outline

Figures and Tables

Figures(10)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog