| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
|
Citation: Ming-Liang Liao. Influences of vacancy defects on tensile failure of open-tip carbon nanocones[J]. AIMS Materials Science, 2017, 4(1): 178-193. doi: 10.3934/matersci.2017.1.178
[1] | Pengliang Xu, Xiaomin Tang . Graded post-Lie algebra structures and homogeneous Rota-Baxter operators on the Schrödinger-Virasoro algebra. Electronic Research Archive, 2021, 29(4): 2771-2789. doi: 10.3934/era.2021013 |
[2] | Yizheng Li, Dingguo Wang . Lie algebras with differential operators of any weights. Electronic Research Archive, 2023, 31(3): 1195-1211. doi: 10.3934/era.2023061 |
[3] | Wen Teng, Xiansheng Dai . Nonabelian embedding tensors on 3-Lie algebras and 3-Leibniz-Lie algebras. Electronic Research Archive, 2025, 33(3): 1367-1383. doi: 10.3934/era.2025063 |
[4] | Kailash C. Misra, Sutida Patlertsin, Suchada Pongprasert, Thitarie Rungratgasame . On derivations of Leibniz algebras. Electronic Research Archive, 2024, 32(7): 4715-4722. doi: 10.3934/era.2024214 |
[5] | Shanshan Liu, Abdenacer Makhlouf, Lina Song . The full cohomology, abelian extensions and formal deformations of Hom-pre-Lie algebras. Electronic Research Archive, 2022, 30(8): 2748-2773. doi: 10.3934/era.2022141 |
[6] | Hongliang Chang, Yin Chen, Runxuan Zhang . A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29(3): 2457-2473. doi: 10.3934/era.2020124 |
[7] | Margarida Camarinha . A natural 4th-order generalization of the geodesic problem. Electronic Research Archive, 2024, 32(5): 3396-3412. doi: 10.3934/era.2024157 |
[8] | Jinguo Jiang . Algebraic Schouten solitons associated to the Bott connection on three-dimensional Lorentzian Lie groups. Electronic Research Archive, 2025, 33(1): 327-352. doi: 10.3934/era.2025017 |
[9] | Hongyan Guo . Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, 2021, 29(4): 2673-2685. doi: 10.3934/era.2021008 |
[10] | Ying Hou, Liangyun Chen, Keli Zheng . Super-bimodules and O-operators of Bihom-Jordan superalgebras. Electronic Research Archive, 2024, 32(10): 5717-5737. doi: 10.3934/era.2024264 |
The Schrödinger-Virasoro algebra is an infinite-dimensional Lie algebra that was introduced (see, e.g., [10]) in the context of non-equilibrium statistical physics. In [21], the author give a representation of the Schrödinger-Virasoro algebra by using vertex algebras, and introduced an extension of the Schrödinger-Virasoro algebra. To be precise, for
{Li,Hj,Ii|i∈Z,j∈ε+Z} |
and Lie brackets
[Lm,Ln]=(m−n)Lm+n,[Lm,Hn]=(12m−n)Hm+n,[Lm,In]=−nIm+n,[Hm,Hn]=(m−n)Im+n,[Hm,In]=[Im,In]=0. |
The Lie algebra
Post-Lie algebras were introduced around 2007 by B. Vallette [22], who found the structure in a purely operadic manner as the Koszul dual of a commutative trialgebra. Post-Lie algebras have arose the interest of a great many authors, see [4,5,12,13]. One of the most important problems in the study of post-Lie algebras is to find the post-Lie algebra structures on the (given) Lie algebras. In [13,18,20], the authors determined all post-Lie algebra structures on
In this paper, we shall study the graded post-Lie algebra structures on the Schrödinger-Virasoro algebra. We only study the twisted Schrödinger-Virasoro algebra
Throughout this paper, we denote by
The paper is organized as follows. In Section 2, we give general results on post-Lie algebras and some lemmas which will be used to our proof. In Section 3, we completely characterize the graded post-Lie algebra structures on Schrödinger-Virasoro algebra
We will give the essential definitions and results as follows.
Definition 2.1. A post-Lie algebra
[x,y]▹z=x▹(y▹z)−y▹(x▹z)−⟨x,y⟩▹z, | (1) |
x▹[y,z]=[x▹y,z]+[y,x▹z] | (2) |
for all
Suppose that
τ(x▹1y)=τ(x)▹2τ(y),∀x,y∈L. |
Remark 1. The left multiplications of the post-Lie algebra
Lemma 2.2. [15] Denote by
Der(S)=Inn(S)⊕CD1⊕CD2⊕CD3 |
where
D1(Ln)=0,D1(Hn)=Hn,D1(In)=2In,D2(Ln)=nIn,D2(Hn)=0,D2(In)=0,D3(Ln)=In,D3(Hn)=0,D3(In)=0. |
Since the Schrödinger-Virasoro algebra
Lm▹Ln=ϕ(m,n)Lm+n, | (3) |
Lm▹Hn=φ(m,n)Hm+n, | (4) |
Lm▹In=χ(m,n)Im+n, | (5) |
Hm▹Ln=ψ(m,n)Hm+n, | (6) |
Hm▹Hn=ξ(m,n)Im+n, | (7) |
Im▹Ln=θ(m,n)Im+n, | (8) |
Hm▹In=Im▹Hn=Im▹In=0, | (9) |
for all
We start with the crucial lemma.
Lemma 3.1. There exists a graded post-Lie algebra structure on
ϕ(m,n)=(m−n)f(m), | (10) |
φ(m,n)=(m2−n)f(m)+δm,0μ, | (11) |
χ(m,n)=−nf(m)+2δm,0μ, | (12) |
ψ(m,n)=−(n2−m)h(m), | (13) |
ξ(m,n)=(m−n)h(m), | (14) |
θ(m,n)=mg(m)+δm,0na, | (15) |
(m−n)(f(m+n)(1+f(m)+f(n))−f(n)f(m))=0, | (16) |
(m−n)δm+n,0μ(1+f(m)+f(n))=0, | (17) |
(m2−n)(h(m+n)(1+f(m)+h(n))−f(m)h(n))=0, | (18) |
nδm+n,0a(1+f(m)+g(n))=0, | (19) |
n(m+n)(g(m+n)(1+f(m)+g(n))−f(m)g(n)) =δn,0m2a(f(m)−g(m)), | (20) |
(m−n)δm+n,0a(1+h(m)+h(n))=0, | (21) |
(m−n)(g(m+n)(1+h(m)+h(n))−h(m)h(n))=0. | (22) |
Proof. Suppose that there exists a graded post-Lie algebra structure satisfying (3)-(9) on
x▹y=(adψ(x)+α(x)D1+β(x)D2+γ(x)D3)(y)=[ψ(x),y]+α(x)D1(y)+β(x)D2(y)+γ(x)D3(y) |
where
Lm▹Ln=[ψ(Lm),Ln]+β(Lm)nIn+γ(Lm)In=ϕ(m,n)Lm+n, | (23) |
Lm▹Hn=[ψ(Lm),Hn]+α(Lm)Hn=φ(m,n)Hm+n, | (24) |
Lm▹In=[ψ(Lm),In]+α(Lm)2In=χ(m,n)Im+n, | (25) |
Hm▹Ln=[ψ(Hm),Ln]+β(Hm)nIn+γ(Hm)In=ψ(m,n)Hm+n, | (26) |
Hm▹Hn=[ψ(Hm),Hn]+α(Hm)Hn=ξ(m,n)Im+n, | (27) |
Hm▹In=[ψ(Hm),In]+α(Hm)2In=0, | (28) |
Im▹Ln=[ψ(Im),Ln]+β(Im)nIn+γ(Im)In=θ(m,n)Im+n, | (29) |
Im▹Hn=[ψ(Im),Hn]+α(Im)Hn=0, | (30) |
Im▹In=[ψ(Im),In]+α(Im)2In=0. | (31) |
Let
ψ(Lm)=∑i∈Za(m)iLi+∑i∈Zb(m)iHi+∑i∈Zc(m)iIi,ψ(Hm)=∑i∈Zd(m)iLi+∑i∈Ze(m)iHi+∑i∈Zf(m)iIi,ψ(Im)=∑i∈Zg(m)iLi+∑i∈Zh(m)iHi+∑i∈Zx(m)iIi |
where
The "if'' part is a direct checking. The proof is completed.
Lemma 3.2. Let
g(n),h(n)∈{0,−1}for everyn≠0. | (32) |
Proof. By letting
Lemma 3.3. Let
g(Z)=h(Z)=0org(Z)=h(Z)=−1. |
Proof. Since
a(1+g(−1))=0. | (33) |
By letting
(m2−n)(h(m+n)(1+h(n))=0, | (34) |
n(m+n)(g(m+n)(1+g(n))=0, | (35) |
(m−n)(g(m+n)−h(m)h(n)+h(m)g(m+n)+h(n)g(m+n))=0. | (36) |
We now prove the following four claims:
Claim 1. If
By (34) with
Claim 2. If
By (34) with
Claim 3. If
By (35) with
Claim 4. If
By (35) with
Now we consider the values of
Case i. If
Case ii. If
Case iii. If
Case iv. If
Lemma 3.4. Let
(i)
(ii)
(iii)
Proof. By
h(m+n)(h(n)+1)=0 if m⩽1,m2−n≠0, | (37) |
g(m+n)(g(n)+1)=0 if m⩽1,n≠0,m+n≠0, | (38) |
g(m+n)(1+h(m)+h(n))=h(m)h(n) if m≠n. | (39) |
We first prove the following six claims:
Claim 1. If
By (37) with
Claim 2. If
By (37) with
Claim 3. If
By (37) with
Claim 4. If
By (37) with
Next, similar to Claims 1 and 3, we from (38) obtain the following claims.
Claim 5. If
Claim 6. If
Now we discuss the values of
Case i. When
By Claim 1 we have
Case ii. When
By Claim 2 we have
Case iii. When
By Claims 3 and 4 we have
It is easy to check that the values of
Lemma 3.5. Let
(i)
(ii)
(iii)
for some
(iv)
Proof. Take
h(0)(1+f(−n)+h(n))=f(−n)h(n), for all n≠0, | (40) |
a(1+f(−n)+g(n))=0, for all n≠0, | (41) |
a(1+h(−n)+h(n))=0, for all n≠0, | (42) |
g(0)(1+h(−n)+h(n))=h(−n)h(n), for all n≠0. | (43) |
Note that
h(n)(h(m+n)+1)=0 for all m>0,m2−n≠0; | (44) |
h(m+n)(h(n)+1)=0 for all m<0,m2−n≠0; | (45) |
g(n)(g(m+n)+1)=0 for all m>0,n≠0,m+n≠0; | (46) |
g(m+n)(g(n)+1)=0 for all m<0,n≠0,m+n≠0; | (47) |
g(m+n)(1+h(m)+h(n))=h(m)h(n) for all m≠n. | (48) |
For any
Claim 1. If
In fact, by (44) with
Claim 2. If
This proof is similar to Claim 1 by using (44) and (45). Also, similar to Claims 1 and 2, by (46) and (47) we can obtain the following two claims:
Claim 3. If
Claim 4. If
According to (32), by Claims 1 and 2,
(1)
(2)
(3)
(4)
In view of the above result, the next proof will be divided into the following cases.
Case i. When
By taking
Case ii. When
By taking
Case iii. When
By (48) we see that
Case iv. When
Note that
Lemma 3.6. Let
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
|
Proof. The proof of the "if" direction can be directly verified. We now prove the "only if" direction. In view of
| |
| |
| |
| |
| |
| |
| |
| |
|
When
When
When
Lemma 3.7. Let (P(ϕi,φi,χi,ψi,ξi,θi),▹i), i=1,2 be two algebras with the same linear space as S and equipped with C-bilinear products x▹iy such that
Lm▹iLn=ϕi(m,n)Lm+n,Lm▹iHn=φi(m,n)Hm+n,Lm▹iIn=χi(m,n)Im+n,Hm▹iLn=ψi(m,n)Hm+n,Hm▹iHn=ξi(m,n)Im+n,Im▹iLn=θi(m,n)Im+n,Hm▹iIn=Im▹iHn=Im▹iIn=0 |
for all m,n∈Z, where ϕi,φi,χi,ψi,ξi,θi, i=1,2 are complex-valued functions on Z×Z. Furthermore, let τ:P(ϕ1,φ1,χ1,ψ1,ξ1,θ1)→P(ϕ2,φ2,χ2,ψ2,ξ2,θ2) be a linear map determined by
τ(Lm)=−L−m,τ(Hm)=−H−m,τ(Im)=−I−m |
for all
{ϕ2(m,n)=−ϕ1(−m,−n);φ2(m,n)=−φ1(−m,−n);χ2(m,n)=−χ1(−m,−n);ψ2(m,n)=−ψ1(−m,−n);ξ2(m,n)=−ξ1(−m,−n);θ2(m,n)=−θ1(−m,−n). | (49) |
Proof. Clearly,
τ(Lm▹iLn)=−ϕi(m,n)L−(m+n),τ(Lm▹iHn)=−φi(m,n)H−(m+n),τ(Lm▹iIn)=−χi(m,n)I−(m+n),τ(Hm▹iLn)=−ψi(m,n)H−(m+n),τ(Hm▹iHn)=−ξi(m,n)I−(m+n),τ(Im▹iLn)=−θi(m,n)I−(m+n) |
for
The remainder is to prove that
τ(Lm▹1Ln)=−ϕ1(m,n)L−(m+n)=ϕ2(−m,−n)L−(m+n)=τ(Lm)▹2τ(Ln),τ(Lm▹1Hn)=−φ1(m,n)H−(m+n)=φ2(−m,−n)H−(m+n)=τ(Lm)▹2τ(Hn),τ(Lm▹1In)=−χ1(m,n)I−(m+n)=χ2(−m,−n)I−(m+n)=τ(Lm)▹2τ(In),τ(Hm▹1Ln)=−ψ1(m,n)H−(m+n)=ψ2(−m,−n)H−(m+n)=τ(Hm)▹2τ(Ln),τ(Hm▹1Hn)=−φ1(m,n)I−(m+n)=φ2(−m,−n)I−(m+n)=τ(Hm)▹2τ(Hn), |
τ(Im▹1Ln)=−θ1(m,n)I−(m+n)=ϕ2(−m,−n)I−(m+n)=τ(Im)▹2τ(Ln) |
and
Theorem 3.8. A graded post-Lie algebra structure on
where
Proof. Suppose that
Conversely, every type of the
Finally, by Lemma 3.7 with maps
The Rota-Baxter algebra was introduced by the mathematician Glen E. Baxter [2] in 1960 in his probability study, and was popularized mainly by the work of Rota [G. Rota1, G. Rota2] and his school. Recently, the Rota-Baxter algebra relation were introduced to solve certain analytic and combinatorial problem and then applied to many fields in mathematics and mathematical physics (see [6,7,19,23] and the references therein). Now let us recall the definition of Rota-Baxter operator.
Definition 4.1. Let
[R(x),R(y)]=R([R(x),y]+[x,R(y)])+λR([x,y]),∀x,y∈L. | (50) |
Note that if
In this section, we mainly consider the homogeneous Rota-Baxter operator
R(Lm)=f(m)Lm, R(Hm)=h(m)Hm, R(Im)=g(m)Im | (51) |
for all
Lemma 4.2. (see [1]) Let
Theorem 4.3. A homogeneous Rote-Baxrer operator
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
for all
Proof. In view of Lemma 4.2, if we define a new operation
Lm▹Ln=[R(Lm),Ln]=(m−n)f(m)Lm+n, | (52) |
Lm▹Hn=[R(Lm),Hn]=(m2−n)f(m)Hm+n, | (53) |
Lm▹In=[R(Lm),In]=−nf(m)Im+n, | (54) |
Hm▹Ln=[R(Hm),Ln]=−(n2−m)h(m)Hm+n, | (55) |
Hm▹Hn=[R(Hm),Hn]=(m−n)h(m)Im+n, | (56) |
Im▹Ln=[R(Im),Ln]=mg(m)Im+n | (57) |
and
A similar discussion to Lemma 3.1 gives
(m−n)(f(m+n)−f(n)f(m)+f(m)f(m+n)+f(n)f(m+n))=0,(m2−n)(h(m+n)−f(m)h(n)+f(m)h(m+n)+h(n)h(m+n))=0,n(m+n)(g(m+n)(1+f(m)+g(n))−f(m)g(n))=0,(m−n)(g(m+n)−h(m)h(n)+h(m)g(m+n)+h(n)g(m+n))=0. |
From this we conclude that Equations (10)-(22) hold with
The natural question is: how we can characterize the Rota-Baxter operators of weight zero on the Schrödinger-Virasoro
Definition 4.4. A pre-Lie algebra
(x▹y)▹z−x▹(y▹z)=(y▹x)▹z−y▹(x▹z),∀x,y,z∈A. | (58) |
As a parallel result of Lemma 4.2, one has the following conclusion.
Proposition 1. (see [8]) Let
Using a similar method on classification of Rota-Baxter operators of weight
We would like to express our sincere thanks to the anonymous referees for their careful reading and valuable comments towards the improvement of this article.
[1] | Tagmatarchis N (2012) Advances in Carbon Nanomaterials: Science and Applications, Singapore: Pan Stanford Publishing. |
[2] |
Ge M, Sattler K (1994) Observation of fullerene cones. Chem Phys Lett 220: 192–196. doi: 10.1016/0009-2614(94)00167-7
![]() |
[3] | Krishnan A, Dujardin E, Treacy MMJ, et al. (1997) Graphitic cones and the nucleation of curved carbon surfaces. Nature 388: 451–454. |
[4] |
Iijima S, Yudasaka M, Yamada R, et al. (1999) Nanoaggregates of single-walled graphitic carbon nanohorns. Chem Phys Lett 309: 165–170. doi: 10.1016/S0009-2614(99)00642-9
![]() |
[5] | Yudasaka M, Iijima S, Crespi VH (2008) Single-wall carbon nanohorns and nanocones. Top Appl Phys 111: 605–629. |
[6] |
Naess SN, Elgsaeter A, Helgesen G, et al. (2009) Carbon nanocones: wall structure and morphology. Sci Technol Adv Mater 10: 065002. doi: 10.1088/1468-6996/10/6/065002
![]() |
[7] |
Gogotsi Y, Dimovski S, Libera JA (2002) Conical crystals of graphite. Carbon 40: 2263–2267. doi: 10.1016/S0008-6223(02)00067-2
![]() |
[8] | Zhang G, Jiang X, Wang E (2003) Tubular graphite cones. Science 300: 472–474. |
[9] | Tsakadze ZL, Levchenko I, Ostrikov K, et al. (2007) Plasma-assisted self-organized growth of uniform carbon nanocone arrays. Carbon 45: 2022–2030. |
[10] |
Levchenko I, Ostrikov K, Long JD, et al. (2007) Plasma-assisted self-sharpening of platelet-structured single-crystalline carbon nanocones. Appl Phys Lett 91: 113115. doi: 10.1063/1.2784932
![]() |
[11] |
Terrones H, Hayashi T, Muñoz-Navia M, et al. (2001) Graphitic cones in palladium catalysed carbon nanofibers. Chem Phys Lett 343: 241–250. doi: 10.1016/S0009-2614(01)00718-7
![]() |
[12] |
Endo M, Kim YA, Hayashi T, et al. (2002) Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl Phys Lett 80: 1267. doi: 10.1063/1.1450264
![]() |
[13] | Ekşioğlu B, Nadarajah A (2006) Structural analysis of conical carbon nanofibers. Carbon 44: 360–373. |
[14] |
Karousis N, Suarez-Martinez I, Ewels CP, et al. (2016) Structure, properties, functionalization, and applications of carbon nanohorns. Chem Rev 116: 4850–4883. doi: 10.1021/acs.chemrev.5b00611
![]() |
[15] | Chen IC, Chen LH, Gapin A, et al. (2008) Iron-platinum-coated carbon nanocone probes on tipless cantilevers for high resolution magnetic force imaging. Nanotechnology 19: 075501. |
[16] | Sripirom J, Noor S, Koehler U, et al. (2011) Easily made and handled carbon nanocones for scanning tunneling microscopy and electroanalysis. Carbon 49: 2402–2412. |
[17] | Yu SS, Zheng WT (2010) Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons. Nanoscale 2: 1069–1082. |
[18] | Hsieh JY, Chen C, Chen JL, et al. (2009) The nanoindentation of a copper substrate by single-walled carbon nanocone tips: a molecular dynamics study. Nanotechnology 20: 095709. |
[19] | Adisa OO, Cox BJ, Hill JM (2011) Open Carbon Nanocones as Candidates for Gas Storage. J Chem Phys C 115: 24528–24533. |
[20] |
Liao ML (2012) A study on hydrogen adsorption behaviors of open-tip carbon nanocones. J Nanopart Res 14: 837. doi: 10.1007/s11051-012-0837-1
![]() |
[21] |
Jordan SP, Crespi VH (2004) Theory of carbon nanocones: mechanical chiral inversion of a micron-scale three-dimensional object. Phys Rev Lett 93: 255504. doi: 10.1103/PhysRevLett.93.255504
![]() |
[22] | Tsai PC, Fang TH (2007) A molecular dynamics study of the nucleation, thermal stability and nanomechanics of carbon nanocones. Nanotechnology 18: 105702. |
[23] | Liew KM, Wei JX, He XQ (2007) Carbon nanocones under compression: buckling and post-buckling behaviors. Phys Rev B 75: 195435. |
[24] |
Wei JX, Liew KM, He XQ (2007) Mechanical properties of carbon nanocones. Appl Phys Lett 91: 261906. doi: 10.1063/1.2813017
![]() |
[25] |
Liao ML, Cheng CH, Lin YP (2011) Tensile and compressive behaviors of open-tip carbon nanocones under axial strains. J Mater Res 26: 1577–1584. doi: 10.1557/jmr.2011.160
![]() |
[26] |
Fakhrabadi MMS, Khani N, Omidvar R, et al. (2012) Investigation of elastic and buckling properties of carbon nanocones using molecular mechanics approach. Comput Mater Sci 61: 248–256. doi: 10.1016/j.commatsci.2012.04.029
![]() |
[27] |
Fakhrabadi MMS, Dadashzadeh B, Norouzifard V, et al. (2013) Application of molecular dynamics in mechanical characterization of carbon nanocones. J Comput Theor Nanos 10: 1921–1927. doi: 10.1166/jctn.2013.3149
![]() |
[28] | Yan JW, Liew KM, He LH (2012) A mesh-free computational framework for predicting buckling behaviors of single-walled carbon nanocones under axial compression based on the moving Kriging interpolation. Comput Method Appl M 247: 103–112. |
[29] |
Yan JW, Liew KM, He LH (2013) Buckling and post-buckling of single-wall carbon nanocones upon bending. Compos Struct 106: 793–798. doi: 10.1016/j.compstruct.2013.07.007
![]() |
[30] | Liao ML (2014) Buckling behaviors of open-tip carbon nanocones at elevated temperatures. Appl Phys A 117: 1109–1118. |
[31] |
Gandomani MG, Noorian MA, Haddadpour H, et al. (2016) Dynamic stability analysis of single walled carbon nanocone conveying fluid. Comput Mater Sci 113: 123–132. doi: 10.1016/j.commatsci.2015.10.043
![]() |
[32] |
Wang X, Wang J, Guo X (2016) Finite deformation of single-walled carbon nanocones under axial compression using a temperature-related multiscale quasi-continuum model. Comput Mater Sci 114: 244–253. doi: 10.1016/j.commatsci.2015.12.033
![]() |
[33] | Andrews R, Jacques D, Qian D, et al. (2001) Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures. Carbon 39: 1681–1687. |
[34] | Ni B, Sinnott SB (2000) Chemical functionalization of carbon nanotubes through energetic radical collisions. Phys Rev B 61: R16343. |
[35] | Sammalkorpi M, Krasheninnikov A, Kuronen A, et al. (2004) Mechanical properties of carbon nanotubes with vacancies and related defects. Phys Rev B 70: 245416. |
[36] |
Haskins RW, Maier RS, Ebeling RM, et al. (2007) Tight-binding molecular dynamics study of the role of defects on carbon nanotube moduli and failure. J Chem Phys 127: 074708. doi: 10.1063/1.2756832
![]() |
[37] |
Sun Y, Liew KM (2008) Application of the higher-order Cauchy-Born rule in mesh-free continuum and multiscale simulation of carbon nanotubes. Int J Numer Meth Eng 75: 1238–1258. doi: 10.1002/nme.2299
![]() |
[38] |
Hao X, Qiang H, Xiaohu Y (2008) Buckling of defective single-walled and double-walled carbon nanotubes under axial compression by molecular dynamics simulation. Compos Sci Technol 68: 1809–1814. doi: 10.1016/j.compscitech.2008.01.013
![]() |
[39] | Poelma RH, Sadeghian H, Koh S, et al. (2004) Effects of single vacancy defect position on the stability of carbon nanotubes. Microelectron Reliab 52: 1279–1284. |
[40] |
Eftekhari M, Mohammadi S, Khoei AR (2013) Effect of defects on the local shell buckling and post-buckling behavior of single and multi-walled carbon nanotubes. Comput Mater Sci 79: 736–744. doi: 10.1016/j.commatsci.2013.07.034
![]() |
[41] |
Sharma S, Chandra R, Kumar P, et al. (2014) Effect of Stone-Wales and vacancy defects on elastic moduli of carbon nanotubes and their composites using molecular dynamics simulation. Comput Mater Sci 86: 1–8. doi: 10.1016/j.commatsci.2014.01.035
![]() |
[42] |
Sakharova NA, Pereira AFG, Antunes JM, et al. (2016) Numerical simulation study of the elastic properties of single-walled carbon nanotubes containing vacancy defects. Compos Part B-Eng 89: 155–168. doi: 10.1016/j.compositesb.2015.11.029
![]() |
[43] |
Liao ML (2015) Influences of vacancy defects on buckling behaviors of open-tip carbon nanocones. J Mater Res 30: 896–903. doi: 10.1557/jmr.2015.60
![]() |
[44] |
Tersoff J (1986) New empirical model for the structural properties of silicon. Phys Rev Lett 56: 632–635. doi: 10.1103/PhysRevLett.56.632
![]() |
[45] | Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multi-component systems. Phys Rev B 39: 5566–5568. |
[46] |
Brenner DW, Shenderova OA, Harrison JA, et al. (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys-Condens Mat 14: 783–802. doi: 10.1088/0953-8984/14/4/312
![]() |
[47] |
Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112: 6472–6486. doi: 10.1063/1.481208
![]() |
[48] |
Mortazavi B, Remond Y, Ahzi S, et al. (2012) Thickness and chirality effects on tensile behavior of few-layer graphene by molecular dynamics simulations. Comput Mater Sci 53: 298–302. doi: 10.1016/j.commatsci.2011.08.018
![]() |
[49] |
Hwang CC, Wang YC, Kuo QY, et al. (2010) Molecular dynamics study of multi-walled carbon nanotubes under uniaxial loading. Physica E 42: 775–778. doi: 10.1016/j.physe.2009.10.064
![]() |
[50] | Rapaport DC (2004) The Art of Molecular Dynamics Simulations, Cambridge: Cambridge University Press. |
[51] | Haile JM (1997) Molecular Dynamics Simulation: Elementary Method, New York: John Wiley & Sons. |
[52] | Nanotube Modeler, JCrystalSoft, 2016. Available from: http://jcrystal.com/products/wincnt/index.htm. |
[53] |
Nardelli MB, Yakobson BI, Bernholc J (1998) Brittle and Ductile Behavior in Carbon Nanotubes. Phys Rev Lett 81: 4656–4659. doi: 10.1103/PhysRevLett.81.4656
![]() |
1. | Zhongxian Huang, Biderivations of the extended Schrödinger-Virasoro Lie algebra, 2023, 8, 2473-6988, 28808, 10.3934/math.20231476 | |
2. | Ivan Kaygorodov, Abror Khudoyberdiyev, Zarina Shermatova, Transposed Poisson structures on not-finitely graded Witt-type algebras, 2025, 31, 1405-213X, 10.1007/s40590-024-00702-8 |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
|
| |
| |
| |
| |
| |
| |
| |
| |
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
|
| |
| |
| |
| |
| |
| |
| |
| |
|