Review Topical Sections

Titania based nanocomposites as a photocatalyst: A review

  • Received: 12 June 2016 Accepted: 15 August 2016 Published: 23 August 2016
  • Titanium dioxide or Titania is a semiconductor compound having remarkable dielectric, electronic and physico-chemical surface properties. It has excellent photocatalytic efficiency in presence of UV light. The curious grey matter of scientists has forced them to focus their attention to make Titania capable of utilizing the whole visible spectrum of light also. The hurdle that they faced was larger band gap of 3 eV and more, for this, efforts were directed towards adding other materials to Titania. The present article reviews the recent advances in the synthesis of different Titanium-based nanocomposite materials and their photocatalytic efficiency so as to apply them for several applications such as removal of dyes, other water pollutants, microbes and metals. A brief explanation of the photocatalytic process and the structural properties of TiO2 are also touched upon. Various past and recent approaches made in these directions of utilizing Titania based nanocomposites for photocatalytic activities are reviewed. It is suggested that there is a need to establish the kinetics of photo-corrosion and thermodynamic part of the photo-corrosion of various composites developed by different group across the globe, so that Titania based nanocomposites could be commercially utilized.

    Citation: Madhuri Sharon, Farha Modi, Maheshwar Sharon. Titania based nanocomposites as a photocatalyst: A review[J]. AIMS Materials Science, 2016, 3(3): 1236-1254. doi: 10.3934/matersci.2016.3.1236

    Related Papers:

    [1] Luana Muniz de Oliveira, Ágda Malany Forte de Oliveira, Railene Hérica Carlos Rocha Araújo, George Alves Dias, Albert Einstein Mathias de Medeiros Teodósio, José Franciraldo de Lima, Luana da Silva Barbosa, Wellinghton Alves Guedes . Spirulina platensis coating for the conservation of pomegranate. AIMS Agriculture and Food, 2020, 5(1): 76-85. doi: 10.3934/agrfood.2020.1.76
    [2] Hesti Kurniasari, Wahyudi David, Laras Cempaka, Ardiansyah . Effects of drying techniques on bioactivity of ginger (Zingiber officinale): A meta-analysis investigation. AIMS Agriculture and Food, 2022, 7(2): 197-211. doi: 10.3934/agrfood.2022013
    [3] Ilaria Marotti, Francesca Truzzi, Camilla Tibaldi, Lorenzo Negri, Giovanni Dinelli . Evaluation of licorice (Glycyrrhiza glabra L.) as a novel microgreen from the anti-inflammatory potential of polyphenols. AIMS Agriculture and Food, 2021, 6(1): 1-13. doi: 10.3934/agrfood.2021001
    [4] Teti Estiasih, Jatmiko Eko Witoyo, Khofifah Putri Wulandari, Fadhillah Dwi Juniati, Widiastuti Setyaningsih, Hanifah Nuryani Lioe, Miguel Palma, Kgs Ahmadi, Hamidie Ronald Daniel Ray, Elya Mufidah . Stability comparison of conventional and foam-mat red and purple dried roselle calyces powder as a function of pH. AIMS Agriculture and Food, 2025, 10(1): 177-198. doi: 10.3934/agrfood.2025010
    [5] Stefano Puccio, Anna Perrone, Giuseppe Sortino, Giuseppe Gianguzzi, Carla Gentile, Vittorio Farina . Yield, pomological characteristics, bioactive compounds and antioxidant activity of Annona cherimola Mill. grown in mediterranean climate. AIMS Agriculture and Food, 2019, 4(3): 592-603. doi: 10.3934/agrfood.2019.3.592
    [6] Rosalía García-Vásquez, Araceli Minerva Vera-Guzmán, José Cruz Carrillo-Rodríguez, Mónica Lilian Pérez-Ochoa, Elia Nora Aquino-Bolaños, Jimena Esther Alba-Jiménez, José Luis Chávez-Servia . Bioactive and nutritional compounds in fruits of pepper (Capsicum annuum L.) landraces conserved among indigenous communities from Mexico. AIMS Agriculture and Food, 2023, 8(3): 832-850. doi: 10.3934/agrfood.2023044
    [7] Katarzyna Gościnna, Elżbieta Wszelaczyńska, Jarosław Pobereżny . Potential of a new beetroot cultivar ‘Śnieżna kula’ (Beta vulgaris L. ssp.). AIMS Agriculture and Food, 2020, 5(4): 563-577. doi: 10.3934/agrfood.2020.4.563
    [8] Cíntia Sorane Good Kitzberger, Maria Brígida dos Santos Scholz, Luiz Filipe Protasio Pereira, João Batista Gonçalves Dias da Silva, Marta de Toledo Benassi . Profile of the diterpenes, lipid and protein content of different coffee cultivars of three consecutive harvests. AIMS Agriculture and Food, 2016, 1(3): 254-264. doi: 10.3934/agrfood.2016.3.254
    [9] Gad G. Yousef, Allan F. Brown, Ivette Guzman, James R. Ballington, Mary A. Lila . Variations in chlorogenic acid levels in an expanded gene pool of blueberries. AIMS Agriculture and Food, 2016, 1(3): 357-368. doi: 10.3934/agrfood.2016.3.357
    [10] Francyelli Regina Costa-Becheleni, Enrique Troyo-Diéguez, Alan Amado Ruiz-Hernández, Fernando Ayala-Niño, Luis Alejandro Bustamante-Salazar, Alfonso Medel-Narváez, Raúl Octavio Martínez-Rincón, Rosario Maribel Robles-Sánchez . Determination of bioactive compounds and antioxidant capacity of the halophytes Suaeda edulis and Suaeda esteroa (Chenopodiaceae): An option as novel healthy agro-foods. AIMS Agriculture and Food, 2024, 9(3): 716-742. doi: 10.3934/agrfood.2024039
  • Titanium dioxide or Titania is a semiconductor compound having remarkable dielectric, electronic and physico-chemical surface properties. It has excellent photocatalytic efficiency in presence of UV light. The curious grey matter of scientists has forced them to focus their attention to make Titania capable of utilizing the whole visible spectrum of light also. The hurdle that they faced was larger band gap of 3 eV and more, for this, efforts were directed towards adding other materials to Titania. The present article reviews the recent advances in the synthesis of different Titanium-based nanocomposite materials and their photocatalytic efficiency so as to apply them for several applications such as removal of dyes, other water pollutants, microbes and metals. A brief explanation of the photocatalytic process and the structural properties of TiO2 are also touched upon. Various past and recent approaches made in these directions of utilizing Titania based nanocomposites for photocatalytic activities are reviewed. It is suggested that there is a need to establish the kinetics of photo-corrosion and thermodynamic part of the photo-corrosion of various composites developed by different group across the globe, so that Titania based nanocomposites could be commercially utilized.


    Abbreviations: GAE/g: Gallic acid equivalents per one gram; CE/g: Catechin equivalents (CE) per one gram; RE/g: Rutin equivalents per one gram; QuE: Quercetin equivalent

    Pomegranate is native to Persia and Mediterranean zone and has been widely used in many countries and cultures [1]. Pomegranate has attracted considerable attention for its health benefits in recent years. Results show that pomegranate juice has markedly high total phenolic contents and antioxidant capacity, being responsible for beneficial activities of pomegranates. Total phenolic content plays a probable role in preventing different diseases related to oxidative stress such as cardiovascular [2,3,4], cancer [5,6] and neurodegenerative diseases [7,8]. Pomegranate juice has excellent antioxidant activity and is beneficial for atherosclerosis prevention [2,3,4], In this regard, polyphenols are capable of moderating the broad range of enzymes activities and cell receptors [9]. The main part of pomegranate seed oil is Punicic acid having anti-atherogenic effects [10].

    Pomegranate extract has potential to decrease the incidence of collagen-induced arthritis. In an in-vivo study into mice fed by pomegranate extract, it was indicated that joint inflammation, arthritis severity and IL-6 level were decreased remarkably [11]. Pomegranate has been widely accepted for its antimicrobial [12,13,14], and anti-candidial activities by in-vitro [15] and iv-vivo investigations [16]. Crude extract of pomegranate peel yielded a compound that demonstrated potent antifungal activity to Candida spp. [13]. The compound was recognized as punicalagin, based on spectral analyses [17]. Punicalagin showed high activity against Candida albicans and Candida parapsilosis, as tested by minimum inhibitory concentration (MIC) [14]. Pomegranate pericarp and peel extracts are reported to possess strong activity against Candida spp., with MICs of 125 μg/mL [18]. Salazar Aranda et al. [19] showed that polyphenolics compound had antioxidant activity, and they revealed its highest activity against C. glabrata by MIC test. The effect of their hydroxyl groups on their activity against C. glabrata is considerable. Furthermore, it has been shown that pomegranate peel has a high inhibition capacity against C. albicans [19,20]. Bassiri-Jahromi et al. in their in-vitro [15] and in-vivo [16] investigations indicated that pomegranate peel extract had potential antifungal activity against 5 various Candida species. This investigation demonstrated that among 8 different Persian pomegranate cultivars, Saveh sour malas peel extract indicated strongest antifungal activity against C.albicans, which was comparable to nystatin. Bassiri-Jahromi et al. reported that pomegranate peel extract had no adverse effects following application in the rats' model. Pomegranate peel extract application was effective and safe in treating oral candidiasis in the Wistar rats [21].

    Schubert et al. (1999) in their studies clearly demonstrated that pomegranate fermented juice and seed procurement and pomegranate seed oil contained powerful antioxidant properties [22]. Therefore, pomegranate can play a potential role as natural food preservative, health promotion and therapeutic agents.

    This paper provides a general review of the evaluation of polyphenolic and flavonoid contents of various pomegranate cultivars in different regions of the world.

    Pomegranate has considerable content of phytochemicals compounds such as punicalagin, ellagitannins, anthocyanins, tannins, hydrolysable tannins, and punicic acid [18,19,20,21,22,23]. Pomegranate peel is a valuable source of polyphenolic compounds, known as punicalagin, which is an ellagitannin with antioxidant capacity and is unrivaled and unique to pomegranate [24].

    Phenolic compounds have attracted increasing attention as agents for inhibiting and treating various oxidative stress correlated diseases, preventing conventional and novel biomarkers of tissue plasminogen activator (TPA) induced tumor promotion, as well as possessing chemo-preventive role in various tumor models [25]. These compounds are recognized for their attributes in scavenging free radicals and preventing in-vitro lipid oxidation [26,27].

    Polyphenol is a significant antioxidant found in pomegranate seed and juice containing ellagitannin (punicalagin), gallic acid, ellagic acid, anthocyanins, catechins, caffeic acid, and quercetin [28]. Flavonoids may prevent coronary artery diseases by inducing various processes such as HDL increase, LDL decrease level, mast cell release reduction, and cardiovascular inflammation decrease. Flavonoids have been recognized with antiviral activity since the 1940s [29]. Selway et al. (1986) have reported that flavonoids contain antiviral activity against 11 types of viruses [30]. Furthermore, flavonoids possess protective effect against liver injury [31]. There is incisive documentary evidence that flavonoids have anti-mutagenic acting [32,33].

    Pomegranate peel is a significant source of bioactive compounds such as flavonoids, polyphenols, ellagitannins, and proanthocyanidin [34]; however, this part of the fruit is inedible. The antibacterial activity of peel extracts of Indian Ganesh variety was tested by Malviya et al. using the agar well diffusion method against four bacterial strains, Staphylococcus aureus, Salmonella typhi, Enterobacter aerogenes, and Klebsiella pneumoniae. The pomegranate peel extracts showed significant antibacterial activities against all of the 4 bacterial strains tested [35].

    The abundance of these compounds and their activities are related to cultivar type, climate, and growing region [36,37]. Up to now, polyphenols of different pomegranate cultivars in Iran [38], Turkey [39], the United States [40], Italy [41] and South Africa have been investigated [42]. Fawole et al. showed that the highest peel extract activity against monophenolase activity and phenolase activity was Bhagwa cultivar and Arakta cultivar with IC50 values of 3.66 μg/mL and 15.88 μg/mL, respectively [43].

    Almost 50% of the pomegranate weight corresponds to the peel [44]. Total polyphenols, flavonoids and pro-athocyanidins contents are superior in pomegranate peel extract than in pomegranate pulp extract owing to their powerful antioxidant capacity [45].

    According to Shams Ardekani et al. (2011) [38] report from Iran, sour summer cultivar peel extract has the highest antioxidant activity with 118.074 mg or 274.132 μ mol trolox/g. Sour summer cultivar is a strong source of natural antioxidants, phenolic and flavonoid content and the peel of Sweet Saveh malas, Sour summer and Black peel cultivars are suitable sources of phenolic and flavonoid compounds.

    This review will investigate the evidence for the identity of the antioxidant content of various cultivars of pomegranate such as polyphenols and flavonoids, playing a probable role in preventing different diseases associated with oxidative stress such as cardiovascular, cancer and neurodegenerative diseases.

    The results provide significant information about the compound of polyphenols and antioxidant content of different cultivars of pomegranate, which can be useful for expanding fruit processing professions and choosing favorable pomegranate genotypes to provide commercial agriculture.

    The phenolic and flavonoids content are different; the antioxidant activity of various solvent extracts from pomegranate peel was also surveyed using in vitro assays.

    Gil et al. (2000) [27] evaluated antioxidant acting of pomegranate by four comparative assays: ABTS, DPPH, DMPD, FRAP, and they were detected and quantified using ellagic acid anthocyanins, and hydrolyzable tannins in pomegranate juice. They reported that the antioxidant capacity of commercial pomegranate juice was three times superior to red wine and green tea.

    Pomegranate peels have significant superior antioxidant potency compared to other parts of pomegranate against free radical activities. It also contains higher total polyphenols, flavonoids and pro-athocyanidins than pulp extract. Strong antioxidant potency of pomegranate peel extract may be due to its major polyphenolics contained [46]. In the present study, various cultivars from different regions were described evaluate the phenolic and flavonoid contents. Tables 1, 2 and 3 present the obtained data.

    Table 1.  Comparative evaluation of polyphenolic and flavonoid content of peels of various pomegranate (Punica granatum) cultivars from different regions in the world.
    No. Author/References Cultivar Region of growth (Country) Fruit part Total Polyphenolic Compound mg GAE/g extract Flavonoids (mg/g), Total flavonoids mg CE/g extract
    1 Fawole OA et al. (2012) [67] Ganesh South Africa Peel 295.5 ± 23.91 d mg GAE/ g DM 121.1 ± 3.12 c mg CAE/g DM
    2 Shiban MS et al. (2012) [68] Yemeni variety Yemen Peel 274.1 ± 17.2 mg GAE/g 56.4 ± 2.7 c mg (RE)/g.
    3 Ardekani MRS et al. (2011) [38] Black peel Iran Peel 250.13 ± 33.03 mg GAE/g 36.40 ± 1.34 mg CAE/g DM
    4 Kulkarni AP et al. (2004) [58] Kashmir India Peel 249.4 mg GAE/g 59.4 mg CE/g dry solids
    5 Li Y et al. (2006) [45] China China Peel 249.4 ± 17.2 mg/g 59.1 ± 4.8 (mg/g)
    6 Ardekani MRS et al. (2011) [38] Sour Summer Iran Peel 226.56 ± 18.98 mg GAE/g 35.92 ± 0.84 mg CAE/g DM
    7 Fawole OA et al. (2012) [67] Bhagwa South Africa Peel 224.1 ± 6.86 c mg GAE/g DM 112.6 ± 1.51 b mg CAEg DM
    8 Fawole OA et al. (2012) [67] Ruby South Africa Peel 218.2 ± 4.53 bc mg GAE/g DM 126.0 ± 0.57 c mg CAE/g DM
    9 Ardekani MRS et al. (2011) [38] Saveh sour malas Iran Peel 216.74 ± 19.01 mg GAE/g 34.71 ± 1.34 mg CAE/g DM
    10 Nasr CB et al. (1996) [69] Tunesia Tunesia Peel 216.9 ± 7.3 mg GAE/g
    11 Mphahlelea RR et al. (2016) [66] South Africa South Africa peel 215.21 ± 21.90 b 36.67 ± 3.43 ab
    12 Mphahlelea RR et al. (2016) [66] South Africa South Africa Peel & seed 138.36 ± 2.27 c 50.39 ± 6.93 a
    13 Mphahlelea RR et al. (2016) [66] South Africa South Africa Whole fruit 185.73 ± 3.89 b 23.35 ± 2.07 b
    14 Fawole OA et al. (2012) [67] Herskawitz South Africa Peel 198.1 ± 9.22 abc mg GAE/g DM 101.0 ± 1.02a mg CAE/g DM
    15 Ardekani MRS et al. (2011) [38] North white peel Iran Peel 192.72 ± 15.45 mg GAE/g 26.94 ± 0.48 mg CAE/g DM
    No. Author/References Cultivar Region of growth (Country) Fruit part Total Polyphenolic Compound mg GAE/g extract Flavonoids (mg/g), Total flavonoids mg CE/g extract
    16 Fawole OA et al. (2012) [67] Wonderful South Africa Peel 189.1 ± 3.79 ab mg GAE/g 97.8±2.10a mg GAE/g DM
    17 Fawole OA et al. (2012) [67] Arakta South Africa Peel 187.4 ± 6.44ab mg GAE/g DM 103.0 ± 1.86a mg CAE/g DM
    18 Rosas-Burgos EC (2017) [56] Cultivar (PTO8) Spain Peel 187 ± 4 mg GAE/g
    19 Ardekani MRS et al. (2011) [38] Sweet alac Iran Peel 184.10 ± 25.07 mg GAE/g 30.36 ± 2.44 mg CAE/g DM
    20 Fawole OA et al. (2012) [67] Molla de Elche South Africa Peel 179.3 ± 4.60a mg GAE/g DM 99.5 ± 2.94a mg CAE/g DM
    21 Ardekani MRS et al. (2011) [38] Agha mohammad ali Iran Peel 168.21 ± 13.9 mg GAE/g 33.52 ± 0.41 mg CAE/g DM
    22 Belkacem N et al. (2014) [70] Algerian pomegranate Algeria Peel 158.18 ± 0.66 mg GAE/g DM 12.8 ± 2.2 mg CE/g
    23 Negi P et al. (2003) [71] Pomegranate varieties from India India Peel 124.3 mg GAE/g 49.1 mg CE/g dry solids
    24 Ardekani MRS et al. (2011) [38] Sweet malas Iran Peel 121.11 ± 8.69 mg GAE/g 18.61 ± 0.53 mg CAE/g DM
    25 Ardekani MRS et al. (2011) [38] Sour white peel Iran Peel 98.24 ± 4.81 mg GAE/g 28.30 ± 0.54 mg CAE/g DM
    26 Al-Rawahi AS et.al. (2014) [72] Hellow Oman Peel 64.2 mg GAE/g 1.4 mg CE/g
    27 Dipnaik HS et al. (2014) [73] Indian pomegranate India Peel 59.73 ± 0.46 mg GAE/gm
    28 Gozlekci S et al. (2011) [74] Lefan Turkish Peel 3547.8a µg GAE/g fw
    31 Gozlekci S et al. (2011) [74] Katirbasi Turkish Peel 3127.0b µg GAE/g
    34 Gozlekci S et al. (2011) [74] Cekirdeksiz-Ⅳ Turkish Peel 2537.1c µg GAE/g fw. GAE/g fw
    35 Gozlekci S et al. (2011) [74] Asinar Turkish Peel 17.75.4d GAE/g fw
    36 Souleman AMA et al. (2016) [59] PG1 Egypt Peel 172.4 ± 1.11c (GAE mg/g FW) 34.28 ± 1.47 (REmg/g FW)
    37 Souleman AMA et al. (2016) [59] PG2 Egypt Peel 135.8 ± 0.92 (GAE mg/g FW) 29.65 ± 0.59a (REmg/g FW)
    38 Souleman AMA et al. (2016) [59] PG3 Egypt Peel 98.6 ± 1.13a (GAE mg/g FW) 21.72 ± 0.38 (REmg/g FW)
    39 Souleman AMA et al. (2016) [59] PG4 Egypt Peel 102.9 ± 1.28 30.29 ± 1.29a (REmg/g FW)
    40 Souleman AMA et al. (2016) [59] PG5 Egypt Peel 95.8 ± 1.19a (GAE mg/g FW) 26.35 ± 1.16 (REmg/g FW)

     | Show Table
    DownLoad: CSV
    Table 2.  Comparative evaluation of polyphenolic and flavonoid content of juicees of various pomegranate (Punica granatum) cultivars from different regions.
    No. Author/References Cultivar Region of growth (Country) Total Polyphenolic Compound mg GAE/g extract Flavonoids (mg/g), Total flavonoids mg CE/g extract
    1 Gozlekci S et al. (2011) [74] Lefan Turkish 1551.5 µg GAE/g fw
    2 Gozlekci S et al. (2011) [74] Katirbasi Turkish 1229.5 mg/L µg GAE/g fw
    3 Gozlekci S et al. (2011) [74] Asinar Turkish 1307.3 µg GAE/g fw
    4 Nunzio MD et al. (2013) [75] Hershkovitz Italian 2057.2 ± 174.0a μg GAmL−1)
    5 Li X et al. (2015) [76] XJ-TSL China 4.352 ± 0.09 de d (GaE mg/mL) 0.118 ± 0.00 d QuE mg/mL
    6 Li X et al. (2015) [76] XJ-SSL China 6.147 ± 0.11 b (GaE mg/mL) 0.045 ± 0.01 h QuE mg/mL
    7 Li X et al. (2015) [76] SD-TSL China 7.429 ± 0.12 a (GaE mg/mL) 0.335 ± 0.13 a QuE mg/mL
    8 Li X et al. (2015) [76] SD-SSL China 4.481 ± 0.11 d (GaE mg/mL) 0.093 ± 0.00 e QuE mg/mL
    9 Li X et al. (2015) [76] YN-SZ China 3.234 ± 0.06 g (GaE mg/mL) 0.099 ± 0.00 e QuE mg/mL
    10 Li X et al. (2015) [76] YN-LZ China 3.151 ± 0.05 g(GaE mg/mL) 0.084 ± 0.00 f QuE mg/mL
    11 Li X et al. (2015) [76] YN-SSL China 4.142 ± 0.08 f (GaE mg/mL) 0.171 ± 0.00 c QuE mg/mL
    12 Li X et al. (2015) [76] SX-JPT China 4.219 ± 0.10 ef (GaE mg/mL) 0.259 ± 0.00 b QuE mg/mL
    13 Li X et al. (2015) [76] SX-SBT China 4.750 ± 0.08 c (GaE mg/mL) 0.170 ± 0.00 c QuE mg/mL
    14 Li X et al. (2015) [76] SX-SSL China 4.735 ± 0.03 c (GaE mg/mL) 0.054 ± 0.00 g QuE mg/mL
    15 Li X et al. (2015) [76] SD-TSL China 7.429 ± 0.12 a (GaE mg/mL) 0.335 ± 0.13 a QuE mg/mL
    16 Souleman AMA et al. (2016) [59] PG1 Egypt 72.4 ± 0.22 (GAE mg/g FW) 12.31 ± 0.91a (REmg/g FW)
    17 Souleman AMA et al. (2016) [59] PG2 Egypt 63.7 ± 1.16a (GAE mg/g FW) 9.64 ± 0.25 (REmg/g FW)
    18 Souleman AMA et al. (2016) [59] PG3 Egypt 64.3 ± 0.29a (GAE mg/g FW) 10.38 ± 1.34b (REmg/g FW)
    19 Souleman AMA et al. (2016) [59] PG4 Egypt 52.1 ± 0.18b (GAE mg/g FW) 10.68 ± 1.63b (REmg/g FW)
    No. Author/References Cultivar Region of growth (Country) Total Polyphenolic Compound mg GAE/g extract Flavonoids (mg/g), Total flavonoids mg CE/g extract
    20 Souleman AMA et al. (2016) [59] PG5 Egypt 53.4 ± 0.32b (GAE mg/g FW) 12.91 ± 0.88a (REmg/g FW)
    21 Zarei M et al. (2010) [63] Aghaye Iran 7.9749 ± 0.110c (mg/gr)
    22 Zarei M et al. (2010) [63] Faroogh Iran 7.2053 ± 0.150 c (mg/gr)
    23 Zarei M et al. (2010) [63] Rabbab-e-Fars Iran 7.8620 ± 0.200 c (mg/gr)
    24 Zarei M et al. (2010) [63] Shahvar Iran 5.2640 ± 0120 c (mg/gr)
    25 Zarei M et al. (2010) [63] Shirin-e-Bihaste) Iran 5.6863 ± 0110 c (mg/gr)
    26 Zarei M et al. (2010) [63] Shirin-e-Mohali Iran 5.6581 ± 0110 c (mg/gr)

     | Show Table
    DownLoad: CSV
    Table 3.  Comparative evaluation of polyphenolic and flavonoid content of seeds of various pomegranate (Punica granatum) cultivars from different regions.
    No. Author/References Cultivar Region of growth (Country) Total Polyphenolic Compound mg GAE/g extract Flavonoids (mg/g), Total flavonoids mg CE/g extract
    1 Gozlekci S et al. (2011) [74] Cekirdeksiz-Ⅳ Turkish 117.0 µg GAE/g fw
    2 Gozlekci S et al. (2011) [74] Katirbasi Turkish 121.2 µg GAE/g fw
    3 Gozlekci S et al. (2011) [74] Lefan Turkish 125.3 µg GAE/g fw
    4 Souleman AMA et al. (2016) [59] PG2 Egypt 95.6 ± 1.17a (GAE mg/g FW) 23.92 ± 1.34a (REmg/g FW)
    5 Gozlekci S et al. (2011) [74] Asinar Turkish 177.4 µg GAE/g fw
    6 Souleman AMA et al. (2016) [59] PG1 Egypt 123.7 ± 1.35 (GAE mg/g FW) 26.45 ± 0.29 (REmg/g FW)
    7 Souleman AMA et al. (2016) [59] PG3 Egypt 109.1 ± 0.68 22.59 ± 1.22 (REmg/g FW)
    8 Souleman AMA et al. (2016) [59] PG4 Egypt 92.8 ± 0.59a (GAE mg/g FW) 24.23 ± 0.95a (REmg/g FW)
    9 Souleman AMA et al. (2016) [59] PG5 Egypt 86.7 ± 1.26 (GAE mg/g FW) 19.84 ± 1.37 (REmg/g FW)

     | Show Table
    DownLoad: CSV

    Owing to the pomegranate health benefits, consumption of fresh pomegranates juice is increasing. Rich bioactive compound cultivars are a significant source of desirable antioxidant properties for health promotion. Pomegranate peel and pulp contain various kinds of antioxidants; however, pomegranate peel had the most antioxidant efficacy compared to the pulp and seed fractions [47].

    The results of a number of investigations on phenolic compounds and antioxidant capacity of eighteen various pomegranate cultivars grown in Morocco revealed that thepolyphenols concentration in pomegranate was high, and antioxidant activity and physico-chemical characteristics in pomegranates were influenced by the type of cultivar. Phenolic compounds of pomegranates are graded on phenolic acids (ellagic acid, gallic acid, chlorogenic acid, caffeic acid, vanillic acid, ferulic acids trans-2- Hydrocinnamic acid, quercetin). Additionally, some flavonoids such as catechin, rutin, quercetin and phloridzin were identified in pomegranate juice at various concentrations among the pomegranate cultivars [48].

    Although pomegranate peels and the other remaining tissues are inedible, it would be possible to use them to prepare new products such as flavonoids capsules and other nutraceuticals after extraction. There are many pomegranate cultivars, which are classified and correlated based on some important parameters such as morphological characteristics of flower and tree.

    Differences in the phenolic compound index among various parts of pomegranate were observed. Pomegranate peels indicated a high concentration of phenolic compounds, and ellagitannins have largest quantities in relation to pomegranate pulp and juice for each cultivar [49]. Owing to meeting the current market demand for fruits quality, the characteristics of pomegranate cultivars are important.

    This paper provides an overview of biology evaluation of the phenolic and flavonoid contents of different pomegranate cultivars.

    This review described a polyphenolic and flavonoid analysis and geographic origins of different pomegranate cultivars.

    Different parts of the pomegranate such as peel can act as potentially antimicrobial agents. Table 1 shows that the Ganesh cultivar possesses the highest polyphenilic compound, indicating an association between polyphenols level and antibacterial activities. Bassiri-Jahromi et al. in their in-vivo investigation indicated that Saveh sour malas Persian cultivar possessed the best activity against 8 Candida strains [16]. Owing to the significant amount of phenolic compounds, Saveh sour malas is one of the best cultivars (Table 1). These findings demonstrated the relationship between the amount of polyphenolic compounds and its anti-candidiasis effect.

    Therefore, it may be suggested as a natural alternative to synthetic antimicrobial agents. Punicalagin content in pomegranate extract is tannin, which is reported to be responsible for antimicrobial activity. Furthermore, the tannin rich bioactive fractions and ellagitannins have antibacterial [50], antifungal [51] and antimalaria properties [52].

    Moreover, polyphenolic compounds not only play a role in controlling various related diseases to oxidative stress [9], but also regulate the activity of various cell receptors and enzymes [53].

    Because the chemical composition of pomegranate peel is differ with the cultivar type such as sweet, sure, and sour-sweet [54,55], pomegranate antimicrobial activity may vary regarding its cultivar [56]. Tehranifar et al. (2010) [57] reported that total polyphenols and tannins content in pomegranate juice were dependent on major chemical factors.

    Kulkarni et al. [58] reported that antioxidant activity growth at the late-developmental phase was due to anthocyanins composition.

    By investigating nine different cultivars, Shams Ardakani indicated that pulp of Sour Summer cultivar as a strong source of original antioxidants had the highest antioxidant activity than other cultivars (p < 0.05). The peel of Sour Summer, Sweet saveh malas, and Black peel is a considerable source of phenolic and flavonoid compound appropriate for phenolic and flavonoid purification and extraction. In addition, they reported that peel extracts had higher potential antioxidant activity and polyphenolic and flavonoid content than the pulps [38]. The pomegranate peel extract antioxidant capacity is 10 times greater than that of the pomegranate pulp extract. The North white peel and Black peel cultivar contain the highest flavonoid. Souleman et al. (2016) reported that seed of Egyptian pomegranate cultivar (PG1) contained the most total phenolic and flavonoids compounds (Table 3) [59].

    Bassiri-Jahromi et al. (2015) [15] indicated that the peel extract of Saveh malas cultivar had the most effective element compared to other cultivars against Candida spp by MIC test [15]. Table 1 indicate that peel of Saveh malas pomegranate cultivar possesses a significant source of polyphenolic and flavonoid content compared to other cultivars. Difference in the pomegranate chemical compound is related to the cultivar, growing region, maturity, cultivation, climate, and storage situation [48]. This difference is also correlated with the latitude, altitude and longitude of growing regions [60]. The anthocyanin level of pomegranate juice variation was attributed to diversities of cultivars and growing region and various maturity levels of the pomegranate [40]. The pomegranate juice color is a significant index for juice quality; it is originally related to anthocyanin concentration.

    Middha et al. [61] reported that higher total flavonoid concentration of pomegranate juice was almost correlated with sweet and sour cultivar and growing area. Although pomegranate anthocyanin pigments concentration decreased during 100 days, a considerable decrease in acidity was found as the significant chemical factor for increased incidence in over-ripe fruits.

    This review clearly indicated that pomegranate peel extract possessed more natural antioxidants and activity as a health supplement than the pomegranate pulp extract. Derakhshani et al. in their study showed that the pomegranate peel extract contained high levels of antioxidant activity compared to seeds and juice in three different cultivars of various regions of Iran [62].

    Table 1 shows the comparative evaluation of phenolic and flavonoids compounds attributes to various peels of pomegranate cultivars grown in the world.

    These diversities may be owing to variety of cultivar, climate, edaphic condition, different maturity level, and particularly tannin specification method. Total tannin concentration pomegranate spectroscopic analyses by Khanavi et al. (2013) [1] in Iran revealed that Black peel cultivar had the most hyperoside content in its pulp and peel. Hyperoside is identified as the significant flavonoid with respect to antioxidant activity. The results indicated that commercial pomegranate juice had significant phenolic quantity and antioxidant capacity. Furthermore, Zarei et al. (2010) revealed a significant difference in total phenolics, tannins, and antioxidant activity in the juice of six different Persian cultivars (Table 2) [63]. The polyphenolic content and antioxidant potent of the whole pomegranate juice were remarkably superior to aril juice of pomegranate from the same cultivar, due to the entrance of phenolic compounds from the rind sections of pomegranate to the juice [64].

    Hajimahmoodi et al. [65] reported that pulp of Sour summer cultivar had the most antioxidant potent among the nine various pomegranate cultivars. The antioxidant capacity of pomegranate peel extract was 10 times higher than the pulp extract.

    The antioxidant activity of pomegranate peels showed a rapid decrease in 20 to 60 days of fruit development (13%) [58]. Furthermore, Kulkarni et al. [58] reported a slight but important decrease in anthocyanin pigment after 100 days (9.3%). Moreover, they concluded that the anthocyanin increasing and phenolics decreasing were correlated with each other. In this regard, phenolics were exhausted when the anthocyanin pigment formation and the phenols were destroyed and their contents reduced [56].

    Mphahlele et al. in their investigation showed that freeze-drying could be a viable method to proceed pomegranate peel to maintain the maximum natural value of their bioactive compounds [66].

    Different pomegranate cultivars had different polyphenol compositions and antioxidant potential. It is considerably associated with many factors such as cultivar type, growing region, maturity, cultivation, climate, edaphic condition, and storage situation [65]. They were also correlated with the latitude, altitude and longitude of growing regions. Additionally, difference in the average temperature and daily temperature during maturity and harvest period had significant effects on the total polyphenols, flavonoids and anthocyanin concentration of pomegranate.

    Further future investigations are necessary to establish a database for pomegranate showing polyphenol and flavonoids compositions, antioxidant activities, physiochemical characteristics and their relation to environmental factors in various growing areas of the world. The data would be useful to produce better crops with higher nutritional quality. This database provides geographic product labeling and pomegranate brand identification.

    This review is based on a method of systematic narrative review on comparative evaluation of bioactive compounds of various pomegranate cultivars. We conducted an extensive search using the PubMed, Web of Science, Science Direct, and Scopus databases in April 2018 to obtain related studies. This review aimed to present an overview of the comparison of the chemical analysis of total phenolic and flavonoids content of various pomegranate cultivars grown in different geographic regions of the world and to shows perspective advantages of pomegranate compound. It also aimed to summarize the present data from in vitro and in vivo tests animal trial systems and human clinical trials concerning the benefit of pomegranate compound. In addition, this review considered the pomegranate peel and pulp extracts activities and their future potential.

    The findings of this review support that the pomegranate might be used in preventing and curing some diseases.

    This study demonstrated considerable differences among the cultivars in most measured factors such as total poly phenolics, flavonoids, antioxidant activity and anthocyanins content. It also highlights the current aspects and the new research into the potential therapeutic pomegranate for some diseases and the future of clinical research of pomegranate.

    We gratefully acknowledge the financial support of the Pasteur Institute of Iran Research Council (project No.TP-9003).

    No author of this paper has a conflict of interest, including specific financial interests, relationships, and/or affiliations relevant to the subject matter or materials included in this manuscript.

    [1] Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: An historical overview and future prospects. Jpn J Appl Phys 44: 8269–8285. doi: 10.1143/JJAP.44.8269
    [2] Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107: 2891–959. doi: 10.1021/cr0500535
    [3] Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93: 341–357. doi: 10.1021/cr00017a016
    [4] Hoffmann MR, Martin ST, Choi W, et al. (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95: 69–96. doi: 10.1021/cr00033a004
    [5] Lee Y, Misook K (2010) The optical properties of nanoporous structured Titanium dioxide and the photovoltaic efficiency on DSSC. Mater Chem Phys 122: 284–289. doi: 10.1016/j.matchemphys.2010.02.050
    [6] Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238: 37–38. doi: 10.1038/238037a0
    [7] Gabor A, Somorjai A, Contreras M, et al. (2006) Clusters, surfaces, and catalysis. P Natl Acad Sci USA 103: 10577–10583. doi: 10.1073/pnas.0507691103
    [8] Mills A, Hunte SL (1997) An overview of semiconductor photocatalysis. J Photoch Photobiol A 108: 1–35. doi: 10.1016/S1010-6030(97)00118-4
    [9] Burda C, Chen X, Narayanan R, et al. (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105: 1025–1102. doi: 10.1021/cr030063a
    [10] Pelizzetti E, Minero C (1994) Metal oxides as photocatalysts for environmental detoxification. Comment Inorg Chem 15: 297–337. doi: 10.1080/02603599408035846
    [11] Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43: 7520–7535. doi: 10.1039/C3CS60378D
    [12] Ramírez H, Ramírez M (2015) Photocatalytic Semiconductors: Synthesis, Characterization, and Environmental Applications. Springer International Publishing, ISBN 978-3-319-10999-2.
    [13] Chen H, Nanayakkara CE, Grassian VH (2012) Titanium dioxide photocatalysis in atmospheric chemistry. Chem Rev 112: 5919–5948. doi: 10.1021/cr3002092
    [14] Pelaez M, Nolan NT, Pillai SC, et al. (2012) A review on the visible light active Titanium dioxide photocatalysts for environmental applications. Appl Catal B 125: 331–349. doi: 10.1016/j.apcatb.2012.05.036
    [15] Kalathil S, Khan MM, Ansari SA, et al. (2013) Band gap narrowing of Titanium dioxide (TiO2) nanocrystals by electrochemically active biofilm and their visible light activity. Nanoscale 5: 6323–6326. doi: 10.1039/c3nr01280h
    [16] Khan MM, Ansari SA, Pradhan D, et al. (2014) Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J Mater Chem A 2: 637–644. doi: 10.1039/C3TA14052K
    [17] Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of Titanium dioxide. Prog Solid State Ch 32: 33–177. doi: 10.1016/j.progsolidstchem.2004.08.001
    [18] Chen Q, Peng LM (2007) Structure and applications of titanate and related nanostructures. Int J Nanotechnol 4: 261–270.
    [19] Amaratunga P (2010) Synthesis and characterization of monolayer protected gold nanoparticles and a Gold-Titanium dioxide nanocomposite intended for photovoltaic degradation of environmental pollutants. Arch Microbiol 151: 77–83.
    [20] Jang JS, Sun S, Choi H, et al. (2006) A composite deposit photocatalyst of CdS nanoparticles deposited on TiO2 Nanosheets. J Nanosci Nanotechno 6: 3642–3646. doi: 10.1166/jnn.2006.073
    [21] Inumaru K, Kasahara T, Yasui M, et al. (2005) Direct nanocomposite of crystallite TiO2 particles and mesoporous silica as a molecular selective and highly reactive photocatalyst. Chem Commun 2005: 2132–1233.
    [22] Pradhan S, Ghosh D, Chen S (2009) Janus nanostructures based on Au-TiO2 heterodimers and their photocatalytic activity in the oxidation of methanol. ACS Appl Mater Inter 1: 2060–2065.
    [23] Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photoch Photobio C 1: 1–21.
    [24] Wang S, Zhou S (2011) Photodegradation of Methyl orange by photocatalyst of CNTs/P-TiO2 under UV and visible-light irradiation. J Hazard Mater 185: 77–85. doi: 10.1016/j.jhazmat.2010.08.125
    [25] Ibrahim SA, Sreekantan S (2010) Effect of pH on TiO2 nanoparticles via sol-gel method. Adv Mater Res 173: 184–189.
    [26] Niederberger M, Bartl MH, Stucky GD (2002) Benzyl alcohol and transition metal chlorides as a versatile reaction system for the nonaqueous and low-temperature synthesis of crystalline nano-objects with controlled dimensionality. J Am Chem Soc 124: 13642–13643. doi: 10.1021/ja027115i
    [27] Parala H, Devi A, Bhakta R, et al. (2002) Synthesis of nano-scale TiO2 particles by a non-hydrolytic approach. J Mater Chem 12: 1625–1627. doi: 10.1039/b202767d
    [28] Lei H, Hou Y, Zhu M, et al. (2005) Formation and transformation of ZnTiO3 prepared by sol-gel process. Mater Lett 59: 197–200. doi: 10.1016/j.matlet.2004.07.046
    [29] Arnal P, Corriu RJP, Leclercq D, et al. (1996) Preparation of anatase, brookite and rutile at low temperature by non-hydrolytic sol-gel methods. J Mater Chem 6: 1925–1932. doi: 10.1039/JM9960601925
    [30] Arnal P, Corriu RJP, Leclercq D, et al. (1997) A solution chemistry study of nonhydrolytic Sol-Gel routes to Titania.Chem Mater9: 694–698.
    [31] Hay JN, Raval HM (1998) Preparation of inorganic oxides via a non-hydrolytic sol-gel route. J Sol-Gel Sci Techn 13: 109–112. doi: 10.1023/A:1008615708489
    [32] Hay JN, Raval HM (2001) Synthesis of organic-inorganic hybrids via the non-hydrolytic sol-gel process. Chem Mater 13: 3396–3403. doi: 10.1021/cm011024n
    [33] Lafond V, Mutin PH, Vioux A (2002) Non-hydrolytic sol-gel routes based on alkyl halide elimination: Toward better mixed oxide catalysts and new supports—Application to the preparation of a SiO2-TiO2 epoxidation catalyst. J Mol Cata A-Chem 182: 81–88.
    [34] Trentler TJ, Denler TE, Bertone JF, et al. (1999) Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. J Am Chem Soc 121: 1613–1614. doi: 10.1021/ja983361b
    [35] Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Ch 53: 117–166. doi: 10.1016/j.pcrysgrow.2007.04.001
    [36] Andersson M, Österlund L, Ljungström S, et al. (2002) Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol. J Phys Chem B 106: 10674–10679. doi: 10.1021/jp025715y
    [37] Yong CS, Park MK, Lee SK, et al. (2003) Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films. Chem Mater 15: 3326–3331. doi: 10.1021/cm030171d
    [38] Cot F, Larbot A, Nabias G (1998) Preparation and characterization of colloidal solution derived crytalline titania powder. J Euro Ceram Soc 18: 2175–2181. doi: 10.1016/S0955-2219(98)00143-5
    [39] Yang J, Mei S, Ferreira JMF (2000) Hydrothermal synthesis of nanosized titania powders: influence of peptization and peptizing agents on the crystalline phases and phase transitions. J Am Ceram Soc 83: 1361–1268. doi: 10.1111/j.1151-2916.2000.tb01394.x
    [40] Yang J, Mei S, Ferreira JMF (2001) Hydrothermal synthesis of nanosized titania powders: Influence of tetraalkyl ammonium hydroxide on particle characteristics. J Am Ceram Soc 84: 1696–1702.
    [41] Yang J, Di L (2002) Rapid synthesis of nanocrystalline TiO2/SnO2 binary oxide and their photoinduced decompositopn of methyl orange. J Solid State Chem 165: 193–198. doi: 10.1006/jssc.2001.9526
    [42] Yang TY, Lin HM, Wei BY, et al. (2003) UV enhancement of the gas sensing properties of nano-TiO2. Rev Adv Mater Sci 4: 48–54.
    [43] Liveri VT (2002) Reversed micelles as nanometer-size solvent media. In Nano-Surface Chemistry. Rosoff M, Ed. Marcel Dekker: New York, 473–385.
    [44] Zhang D, Limin Q, Jiming M, et al. (2002) Formation of crystalline nanosized titania in reverse micelles at room temperature. J Mater Chem 12: 3677–3680. doi: 10.1039/b206996b
    [45] Hong SS, LeeSL, Lee GD (2003) Photocatalytic degradation of p-Nitrophenol over Titanium dioxide prepared by reverse microemulsion method using non-ionic suefactant with different hydrophpsilic groups. React Kinet Cat Lett 80: 145–151.
    [46] Kim KD, Kim TH (2005) Comparison of the growth mechanism of TiO2-coated SiO2 particles prepared by Sol-gel process and water-in-oil type microemulsion method. Colloid Surface A 255: 131–137. doi: 10.1016/j.colsurfa.2004.12.036
    [47] Li GL, Wang GH (1999) Synthesis of nanometer-sized TiO2 particles by a microemulsion method. Nanostruct Mater 11: 663–668.
    [48] Li Y, Cureton LT, Sun YP (2004) Improving photoreduction of CO2 with homogeneously dispersed nanoscale TiO2 catalysts. Chem Commun 2004: 1234–1235.
    [49] Chen X, Mao SS (2007) Titanium dioxide nanomaterials:? Synthesis, properties modifications, and applications. Chem Rev 107: 2891–2959.
    [50] Lim KT, Ha SH (2004) Synthesis of TiO2 nanoparticles utilizing hydrated reverse micelles in CO2. Langmuir 20: 2466–2471. doi: 10.1021/la035646u
    [51] Yu JC, Zhang L, Yu J (2002) Direct sonochemical preparation and characterization of highly active mesoporous TiO2 with a bicrystalline framework. Chem Mater 14: 4647–4653. doi: 10.1021/cm0203924
    [52] Li XL, Peng Q, Yi JX, et al. (2006) Near monodisperse TiO2 nanoparticles and nanorods. Chem A Euro J 12: 2111–2395. doi: 10.1002/chem.200690023
    [53] Xu J, Ao Y, Fu D, et al. (2008) Synthesis of fluorinedoped titania-coated activated carbon under low temperature with high photocatalytic activity under visible light. J Phys Chem Sol 69: 2366–2370. doi: 10.1016/j.jpcs.2008.03.017
    [54] Wang X, Zhuang J, Peng Q, et al. (2005) A general strategy for nanocrystal synthesis. Nature 437: 121–124. doi: 10.1038/nature03968
    [55] Krishna KM, Paii VA, Marathe VR, et al. (1990) Atheoretical approach to design of reduced band gap non corrosive electrode for photoelectrochemical solar cell. Int J Quantum Chem 24: 419–427.
    [56] Sharon M, Krishna KM, Mishra MK, et al. (1992) Theoretical investigation of optimal mixing ratio for PbO2 and TiO2 to produce a low band gap noncorrosive photoelectrode. J Chem Phys 163: 401–412.
    [57] Krishna KM, Sharon M, Mishra MK (1995) Preparation and characterization of a PbTiO3 + PbO mixed oxide photoelectrode. J Electroanalytic Chem 391: 93–99. doi: 10.1016/0022-0728(95)03905-V
    [58] Sharon M, Krishna KM, Mishra MK (1996) Preparation and characterization of mixed oxides obtained from various molar mixtures of beta-PbO2 and TiO2. J Phys Chem Solids 57: 615–626. doi: 10.1016/0022-3697(95)00272-3
    [59] Sharon M, Krishna KM, Mishra MK (1996) Pb1?xTixO: a new photoactive phase. J Mater Sci Lett 15: 1084–1087.
    [60] Wei XX, Cui H, Guo S, et al. (2013) Hybrid BiOBr-TiO2 nanocomposites with high visible lightphotocatalytic activity for water treatment. J Hazard Mater 263: 650–658. doi: 10.1016/j.jhazmat.2013.10.027
    [61] Chakraborty AK, Hossain ME, Rhaman MM, et al. (2014) Fabrication of Bi2O3/TiO2 nanocomposites and their applications to the degradation of pollutants in air and water under visible-light. J Environ Sci 26: 458–465. doi: 10.1016/S1001-0742(13)60428-3
    [62] Khan B, Ashraf U (2015) Sol-gel synthesis and characterization of nanocomposites of Cu/TiO2 and Bi/TiO2 metal oxides as photocatalysts. Int J Sci Technol 4: 40–48.
    [63] Dresselhaus MS, Dresselhaus G (2001) Carbon nanotubes: Synthesis, Structure, Properties and Applications: Topics in Applied Physics, Springer-Verlag. ISBN 3-54041-086-4, Berlin.
    [64] Saleh TA, Gupta VK (2011) Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B. J Colloid Interface Sci 362: 337–344. doi: 10.1016/j.jcis.2011.06.081
    [65] Yu JC, Zhang L, Zheng Z, et al. (2003) Synthesis and characterization of phosphate mesoporous Titanium dioxide with high photocatalytic activity. Chem Mater 15: 2280–2286. doi: 10.1021/cm0340781
    [66] Lin L, Lin W, Zhu YX, et al. (2005)Phosphor-doped titania—a novel photocatalyst active in visible light. Chem Lett 34: 284–285.
    [67] Korosi L, Oszko A, Galbacs G, et al. (2007) Structural properties and photocatalytic behavior of phosphate-modified nanocrystalline titania films. Appl Catal B 77: 175–183. doi: 10.1016/j.apcatb.2007.07.019
    [68] Lin L, Lin W, Xie JL, et al. (2007) Photocatalytic properties of phosphor-doped titania nanoparticles. Appl Catal B 75: 52–58. doi: 10.1016/j.apcatb.2007.03.016
    [69] Jin C, Zheng RY, Guo Y, et al. (2009) Hydrothermal synthesis and characterization of phosphorous-doped TiO2 with high photocatalytic activity for methylene blue degradation. J Mol Catal A 313: 44–48. doi: 10.1016/j.molcata.2009.07.021
    [70] Wang S, Zhou S (2011) Photodegradation of methyl orange by photocatalyst of CNTs/P-TiO2 under UV and visible-light irradiation. J Hazard Mater 185: 77–85. doi: 10.1016/j.jhazmat.2010.08.125
    [71] Sharon M, Datta S, Shah S, et al. (2007) Photocatalytic degradation of E. coli and S. aureus by multi walled carbon nanotubes. Carbon Letts 8: 184–190.
    [72] Oza G, Pandey S, Gupta A, et al. (2013) Photocatalysis-assisted water filtration: Using TiO2-coated vertically aligned multi-walled carbon nanotube array for removal of Escherichia coli O157:H7. Mater Sci Eng C-Mater 33: 4392–4400.
    [73] Cong Y, Li X, Qin Y, et al. (2011) Carbon-doped TiO2 coating on multiwalled carbon nanotubes with higher visible light photocatalytic activity. Appl Catal B-Environ 107: 128–134.
    [74] Mamba G, Mbianda XY, Mishra AK (2014) Gadolinium nanoparticles decorated multiwalled carbon nanotube/titania nanocomposite for degradation of methylene blue in water under simulated solar light. Environ Sci Pollut Res 21: 5597–5609.
    [75] Mamba G, Mbianda XY, Mishra AK (2015) Photocatalytic degradation of diazo dye naphthol blue black in water using MWCNT/Gd, N, S-TiO2 nanocomposite under simulated solar light. J Environ Sci 33: 219–228. doi: 10.1016/j.jes.2014.06.052
    [76] Czech B, Buda W (2015) Photocatalytic treatment of pharmaceutical wastewater using new multiwall-carbon nanotubes/TiO2/SiO2 nanocomposite. Environ Res 137: 176–184. doi: 10.1016/j.envres.2014.12.006
    [77] Ptrovic M, Radjenovic J, Postigo C, et al. (2008) Emerging contaminants in waste waters: sources and occurrence. In: Barcello D, Ptrovic M, Eds. Emerging contaminants from Industrial and Municipal Waste. Springer, Berlin, Heidelberg, 1–35.
    [78] Gadipelly C, Perez-Gonzalez A, Yadav GD, et al. (2014) Pharmaceutical industry waste water—reviews of the technology for water treatment and re-use. Ind Eng Chem Res 53: 11571–11592. doi: 10.1021/ie501210j
    [79] Krishamoorthy K, Mohan R, Kim SJ (2001) Graphene oxide as photocatalytic material. Appl Phys Lett 98: 244101–114312.
    [80] Stengl V, Bakardjieva S, Gryger TM, et al. (2013) TiO2-graphene oxide nanocompositeas advanced photocatalytic materials. Chem Central J 7: 41–53.
    [81] Zhang Y, Zhou Z, Chen T, et al. (2014) Graphene TiO2 nanocomposite with high photocatalytic activity for degradation of sodium pentachlorophenol. J Environ Sci 26: 2114–2122. doi: 10.1016/j.jes.2014.08.011
    [82] Stein A (2003) Advances in microporous and mesoporous solids—Highlights of recent progress. Adv Mater 15: 763–775. doi: 10.1002/adma.200300007
    [83] Stein A, Melde BJ, Schroden RC (2003) Hybrid inorganic-organic mesoporous silicates—nanoscopic reactors coming of age. Adv Mater 12: 1403–1419.
    [84] Inumaru K, Kasahara T, Yasui M, et al. (2005) Direct nanocomposite of crystallite TiO2 particles and mesoporous silica as a molecular selective and highly active photocatalyst. Chem Commun 2005: 2131–2133.
    [85] Mohseni A, Malekina L, Fazaeli R, et al. (2013) Synthesis TiO2/SiO2/Ag nanocomposite by sonochemical method and investigation of photo-catalyst effect in waste water treatment. Nanocon 10: 16–18.
    [86] Li K, Huang C (2000) Selective oxidation of Hydrogen Sulfide to sulphur over LaVO4 catalyst: Promotional effect of Antimony oxide addition. Ind Eng Chem Res 45: 7096–7100.
    [87] Ye JH, Zhou ZG, Oshikiri M, et al. (2003) New visible light driven semiconductor photocatalyst and their application as functional eco-material. Mater Sci Forum 423: 825–830.
    [88] Huang H, Li D, Lin Q, et al. (2009) Efficient degradation of Benzene over LaVO4/TiO2 nano-crystalline heterojunction photocatalyst under visible light irradiation. Envron Sci Technol 43: 4164–4168. doi: 10.1021/es900393h
    [89] Visa M, Duta A (2013) Methyl orange and Cadmium simultaneous removal using fly ash and Photo-Fenton system. J Hazard Mater 244–245: 773–779.
    [90] Visa M (2012) Tailoring fly ash activated with bentonite as adsorbent for complex waste water treatment. Appl Surf Sci 263: 753–762. doi: 10.1016/j.apsusc.2012.09.156
    [91] Visa M, Andronic L, Duta A (2015) Fly ash-TiO2 nanocomposite material for multi-pollutants water treatment. J Environ Manage 150: 336–343.
    [92] Kaplan R, Erjavec B, Drazic G, et al. (2016) Simple synthesis of Anatase/rutile/brookite TiO2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants. Appl Catal B-Environ 181: 465–474. doi: 10.1016/j.apcatb.2015.08.027
    [93] Yu J, Qi L (2009) Template free fabrication of hierarchically flower like tungsten tri oxide assemblies with enhanced visible-light-driven photocatalytic activity. J Hazard Mater 169: 221–227.
    [94] Vicaksana Y, Liu S, Scott J, et al. (2014) Tungsten trioxide as a visible light photocatalyst for volatile organic carbon removal. Molecules 19: 17747–17762. doi: 10.3390/molecules191117747
    [95] Sajjad AKL, Sajjad S, Tian B, et al. (2010) Comparative studies of operational parameters of degradation of azo-dyes in visible light by highly efficient WOx/TiO2 photocatalyst. J Hazard Mater 177: 781–791.
    [96] Zhao G, Jr SES (1998) Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 11: 27–32. doi: 10.1023/A:1009253223055
    [97] Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a Silver ion solution on Escherichia coli, studied by Energy-Filtering Transmission Electron Microscopy and Proteomic Analysis. Appl Environ Microb 71: 7589–7593. doi: 10.1128/AEM.71.11.7589-7593.2005
    [98] Jung WK, Koo HC, Kim KW, et al. (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microb 74: 2171–2178. doi: 10.1128/AEM.02001-07
    [99] Liu SX, Qu ZP, Han WX, et al. (2004) A mechanism for enhanced photocatalytic activity of silver loaded titania dioxide. Catal Today 93–95: 877–884.
    [100] Akhavan O (2009) Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. J Colloid Interf Sci 336: 117–124. doi: 10.1016/j.jcis.2009.03.018
    [101] Xiang Q, Yu J, Cheng B, et al. (2010) Microwave hydrothermal preparation of Visible-light photocatalytic activity of Ag-TiO2 nanocomposite hollow sphere. Chem Asian J 5: 1466–1474.
  • This article has been cited by:

    1. G. Ausias, G. Dolo, D. Cartié, F. Challois, P. Joyot, J. Férec, Modeling and Numerical Simulation of Laminated Thermoplastic Composites Manufactured by Laser-Assisted Automatic Tape Placement, 2020, 35, 0930-777X, 471, 10.3139/217.3976
    2. Angel Leon, Marta Perez, Anaïs Barasinski, Emmanuelle Abisset-Chavanne, Brigitte Defoort, Francisco Chinesta, Multi-Scale Modeling and Simulation of Thermoplastic Automated Tape Placement: Effects of Metallic Particles Reinforcement on Part Consolidation, 2019, 9, 2079-4991, 695, 10.3390/nano9050695
    3. Chady Ghnatios, Pavel Simacek, Francisco Chinesta, Suresh Advani, A non-local void dynamics modeling and simulation using the Proper Generalized Decomposition, 2020, 13, 1960-6206, 533, 10.1007/s12289-019-01490-7
    4. Tarek Frahi, Clara Argerich, Minyoung Yun, Antonio Falco, Anais Barasinski, Francisco Chinesta, Tape surfaces characterization with persistence images, 2020, 7, 2372-0484, 364, 10.3934/matersci.2020.4.364
    5. Aleksandr N. Anoshkin, Yulia S. Pristupova, Pavel V. Pisarev, Gleb S. Shipunov, 2020, 2216, 0094-243X, 040014, 10.1063/5.0004086
    6. Tarek Frahi, Clara Argerich, Minyoung Yun, Antonio Falco, Anais Barasinski, Francisco Chinesta, Tape surfaces characterization with persistence images, 2020, 7, 2372-0484, 364, 10.3934/ms.2020.4.364
    7. Antoine Runacher, Mohammad-Javad Kazemzadeh-Parsi, Daniele Di Lorenzo, Victor Champaney, Nicolas Hascoet, Amine Ammar, Francisco Chinesta, Describing and Modeling Rough Composites’ Surfaces by Using Topological Data Analysis and Fractional Brownian Motion, 2023, 15, 2073-4360, 1449, 10.3390/polym15061449
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(10252) PDF downloads(1829) Cited by(30)

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog