Research article

Sedimentation in the Bay of Samaná, Dominican Republic (1900–2016)

  • Received: 30 June 2020 Accepted: 12 August 2020 Published: 20 August 2020
  • The purpose of this article is to provide an analysis of the geochemistry of sediments deposited in the Bay of Samaná (Dominican Republic) after 1900, emphasizing in the recent changes (last 20 years). This bay was formed by tectonism and sedimentation that joined the Samaná peninsula with the northern mountain range.
    From 2003 to 2016, Dominican Republic was impacted by several cyclonic systems (storms and hurricanes), which caused an increase in the runoff of all rivers and streams that flow into the coastal area by depositing large amount of sediments in the basins of the rivers and tributaries. The Sedimentary Accumulation Rate (SAR) found in the cores indicates an increase in runoff which resulted in a decrease in the area and depth of the bay where sediment was deposited by rivers and streams.
    When analyzing data from the period 2003 to 2019, it was observed that the Yuna River has made an intrusion of sediment displacing 2.38 km2 to the bay, its average SAR was 1.78 cm per year (cm y-1). The main cause of this increase in sediment deposition was mining, followed by deforestation, agriculture, and urban planning over the years, all activities that have the common denominator of being anthropic.

    Citation: Ramón Delanoy, Misael Díaz-Asencio, Rafael Méndez-Tejeda. Sedimentation in the Bay of Samaná, Dominican Republic (1900–2016)[J]. AIMS Geosciences, 2020, 6(3): 298-315. doi: 10.3934/geosci.2020018

    Related Papers:

  • The purpose of this article is to provide an analysis of the geochemistry of sediments deposited in the Bay of Samaná (Dominican Republic) after 1900, emphasizing in the recent changes (last 20 years). This bay was formed by tectonism and sedimentation that joined the Samaná peninsula with the northern mountain range.
    From 2003 to 2016, Dominican Republic was impacted by several cyclonic systems (storms and hurricanes), which caused an increase in the runoff of all rivers and streams that flow into the coastal area by depositing large amount of sediments in the basins of the rivers and tributaries. The Sedimentary Accumulation Rate (SAR) found in the cores indicates an increase in runoff which resulted in a decrease in the area and depth of the bay where sediment was deposited by rivers and streams.
    When analyzing data from the period 2003 to 2019, it was observed that the Yuna River has made an intrusion of sediment displacing 2.38 km2 to the bay, its average SAR was 1.78 cm per year (cm y-1). The main cause of this increase in sediment deposition was mining, followed by deforestation, agriculture, and urban planning over the years, all activities that have the common denominator of being anthropic.


    加载中


    [1] Delanoy R, Díaz-Asencio M, Méndez-Tejeda R (2019) Effect of Extreme Weather Events on the Sedimentation of the Bay of Samaná, Dominican Republic (1900-2016). J Geogr Geol 11: 56-73. doi: 10.5539/jgg.v11n3p56
    [2] Bionini W, Hargraves R, Shagan R (1984) The Caribean-South American Plate Boundary and Regional Tectonic. Geol Soc Am Mem 162.
    [3] Bird J (1980) Plate Tectonics. Select papers from Publications of American Geophysical Union, 2 Eds., Washington. D.C.
    [4] Eptisa (2004) Programa SYSMIN. Informe de la unidad hidrogeológica de la península de Samaná.
    [5] Dolan J, Mann P, De Zoeten R, et al. (1991) Sedimentologic, stratigraphicand tectonic synthesis of Eocene-Miocene sedimentary basins, Hispañiola and Puerto Rico, In: Mann P, Draper G, Lewis J, Geologic and tectonic development of the North America-Caribbean Plate boundary in Hispañiola. Geological Society of America Special Paper 262: 217-263. doi: 10.1130/SPE262-p217
    [6] Hippensteel SP, Eastin MD, Garcia WJ (2013) The geological legacy of Hurricane Irene: Implications for the fidelity of the paleo-storm record. GSA Today 23: 4-10. doi: 10.1130/GSATG184A.1
    [7] Díaz de Neira JA, Braga JC, Mediato J, et al. (2015) Plio-Pleistocene palaeogeography of the Llanura Costera del Caribe in eastern Hispaniola (Dominican Republic): Interplay of geomorphic evolution and sedimentation. Sediment Geol 325: 90-105. doi: 10.1016/j.sedgeo.2015.05.008
    [8] Trefethen JM (1981) Geología para Ingenieros. Décima edición, Cia. Editorial Continental, México.
    [9] Brenner M, Binford MW (1988) A sedimentary record of human disturbance from Lake Miragoane, Haiti. J Paleolimnol 1: 85-97. doi: 10.1007/BF00196066
    [10] Alonso-Hernández CM, Díaz-Asencio M, Gómez-Batista M, et al. (2016) Radiocronología de sedimentos marinos y su aplicación en la comprensión de los procesos de contaminación ambiental en ecosistemas marinos cubanos. Nucleus 60: 35-40.
    [11] Rozanski K, Stichler W, Gonfiantini R et al. (1992) The IAEA 14C Intercomparison exercise 1990. Radiocarbon 34: 506-519. doi: 10.1017/S0033822200063761
    [12] Sánchez-Cabeza M, Ruiz-Fernández JA, Díaz-Asencio A (2012) Radiocronología de sedimentos costeros utilizando 210Pb: modelos, validación y aplicaciones. Vienna: IAEA.
    [13] Salamanca M, Jara B (2003) Distribución y acumulación de plomo (Pb y 210Pb) en sedimentos de los fiordos de la XI región, Chile. Cienc Tecnol Mar 26: 61-71.
    [14] Rodríguez Vegas E, Gascó Leonarte C, Schmid T, et al. (2014) Estudio Preliminar sobre el uso de los radionúclidos 137Cs y 210Pb y las Técnicas de Espectrorradiometría como Herramientas para determinar el Estado de Erosión de suelos. Inf Téc Ciemat 1297.
    [15] Cisternas M, Torres L, Urrutia R, et al. (2000) Comparación ambiental, mediante registros sedimentarios, entre las condiciones prehispánicas y actuales de un sistema lacustre. Rev Chil Hist Nat 73: 151-162 doi: 10.4067/S0716-078X2000000100014
    [16] Armstrong-Altrin JS, Botello AV, Villanueva SF, et al. (2019) Geochemistry of surface sediments from the north-western Gulf of Mexico: implications for provenance and heavy metal contamination. Geol Q 63: 522-538.
    [17] Fourth National Climate Assessment (NCA4) (2018) Available from: https://www.globalchange.gov/nca4.
    [18] Null J (2017) El Niño and La Niña Years and Intensities. Based on Oceanic Niño Index (ONI), CCM. Available from: https://ggweather.com/enso/oni.htm.
    [19] Ramón DA, Méndez-Tejeda R (2017) Hydrodynamic Study of Lake Enriquillo in Dominican Republic. J Geosci Environ Prot 5: 115-124.
    [20] Ortega-Ariza D, Franseen EK, Santos-Mercado H, et al. (2015) Strontium Isotope Stratigraphy for Oligocene-Miocene Carbonate Systems in Puerto Rico and the Dominican Republic: Implications for Caribbean Processes Affecting Depositional History. J Geol 123: 539-560. doi: 10.1086/683335
    [21] Mercier G, Duchesne J, Blackburn D (2001) Prediction of metal removal efficiency from contaminated soils by physical methods. J Environ Eng 127: 348-358. doi: 10.1061/(ASCE)0733-9372(2001)127:4(348)
    [22] Loring DH, Rantala RTT (1992) Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Sci Rev 32: 235-283. doi: 10.1016/0012-8252(92)90001-A
    [23] Díaz de Neira JA, Braga JC, Mediato J, et al. (2017) Evolución paleogeográfica reciente del sector oriental de La Española. Bol Geol Min 128: 675-693.
    [24] Anaya-Gregorio A, Armstrong-Altrin JS, Machain-Castillo ML, et al. (2018) Textural and geochemical characteristics of late Pleistocene to Holocene fine-grained deep-sea sediment cores (GM6 and GM7), recovered from southwestern Gulf of Mexico. J Palaeogeogr 7: 253-271. doi: 10.1186/s42501-018-0005-3
    [25] Pérez-Estaún A, Hernaiz Huerta PP, Lopera E, et al. (2007) Geología de la República Dominicana: de la construcción de arco-isla a la colisión arco-continente. Bol Geol Min 118: 157-174.
    [26] Senz JG, Monthel J, Díaz de Neira JA, et al. (2007) La estructura de la Cordillera Oriental de la República. Bol Geol Min 118: 293-311.
    [27] Hernaiz Huerta PP (2004) Mapa Geológico de la Hoja a E. 1:50.000. 5871-I (La Descubierta) y Memoria correspondiente. Proyecto de Cartografía Geotemática de la República Dominicana. Programa SYSMIN. Dirección General de Minería, Santo Domingo.
    [28] Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds.). Tracking environmental change using lake sediments. Kluwer Academic Publishers, Holanda, 239-269.
    [29] Rudolph A, Ahumada R, Hernández S (1984) Distribución de la materia orgánica, carbono orgánico, nitrógeno orgánico y fósforo total en los sedimentos recientes de la Bahía Concepción, Chile. Biol Pesq 13: 71-82.
    [30] Rodríguez L, Jiménez A, Grau A (1996) Separación del 210Pb, 210Bi y 210Po mediante columna de cambio iónico y su calibración por centelleo líquido. Ciemat 27: 1-30.
    [31] Lozano RL, San Miguel EG, Bolívar JP (2011) Assessment of the influence of in situ 210Bi in the calculation of in situ 210Po in air aerosols: Implications on residence time calculations using 210Po/210Pb activity ratios. J Geophys Res 116: D08206.
    [32] Mosqueda Peña F (2010) Desarrollo de procedimientos para la determinación de radioisótopos en muestras ambientales mediante técnicas de bajo recuento por centelleo líquido y radiación Cerenkov. Universidad de Huelva. Tesis Doctoral.
    [33] IAEA (1989) Isotopes of Noble gases as tracers in environmental studies. Proceeding Consultants Meeeting, Agency International, Vienna.
    [34] Buchman MF (1999) NOAA Screening Quick Reference Tables. In: National Oceanic and Atmospheric Administration, NOAA HAZMAT Report, Seattle WA, Coastal protection and restoration division, 12.
    [35] Rudnick RL, Gao S (2003) Composition of the Continental Crust. In: Rudnick RL, Treatise on Geochemistry 3: 1-64.
    [36] Choueri RB, Cesar A, Torres RJ, et al. (2009) Integrated sediment quality assessment in Paranaguá Estuarine System, Southern Brazil. Ecotoxicol Environ Saf 72: 1824-1831. doi: 10.1016/j.ecoenv.2008.12.005
    [37] Zhang X, Man X, Jiang H (2015) Spatial distribution and source analysis of heavy metals in the marine sediments of Hong Kong. Environ Monit Assess 187: 1-12. doi: 10.1007/s10661-014-4167-x
    [38] Pourabadehei M, Mulligan CN (2016) Effect of the resuspension technique on distribution of the heavy metals in sediment and suspended particulate matter. Chemosphere 153: 58-67. doi: 10.1016/j.chemosphere.2016.03.026
    [39] Dou Y, Li J, Zhao J, et al. (2013) Distribution, enrichment and source of heavy metals in surface sediments of the eastern Beibu Bay, South China Sea. Mar Pollut Bull 67: 137-145. doi: 10.1016/j.marpolbul.2012.11.022
    [40] Pejman A, Bidhendi GN, Ardestani M, et al. (2015) A new index for assessing heavy metals contamination in sediments: A case study. Ecol Indic 58: 365-373. doi: 10.1016/j.ecolind.2015.06.012
    [41] Dolan JF, Mann P (1998) Active Strike-slip and Collisional Tectonics of the Norther Caribbean Plate Boundary Zone. Department of Earth Sciences University Southern of California. The Geological Society of America. Special Paper 326.
    [42] Mann P, Burke K, Matumoto T (1984) Neotectonics of Hispañiola: plate motion, sedimentation, and seismicity at a restraining bend. Earth Planet Sci Lett 70: 311-324. doi: 10.1016/0012-821X(84)90016-5
    [43] Fernández-Domingo JI (2010) Los Tesoros del Mar y su Régimen Jurídico. Biblioteca Iberoamericana de Derecho, Madrid, Buenos Aires.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3220) PDF downloads(101) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog