
Citation: Carlos Estella, Antonio Baonza. Cell proliferation control by Notch signalling during imaginal discs development in Drosophila[J]. AIMS Genetics, 2015, 2(1): 70-96. doi: 10.3934/genet.2015.1.70
[1] | Zhenqi He, Lu Yao . Improved successive approximation control for formation flying at libration points of solar-earth system. Mathematical Biosciences and Engineering, 2021, 18(4): 4084-4100. doi: 10.3934/mbe.2021205 |
[2] | Leonid Shaikhet . Stability of a positive equilibrium state for a stochastically perturbed mathematical model ofglassy-winged sharpshooter population. Mathematical Biosciences and Engineering, 2014, 11(5): 1167-1174. doi: 10.3934/mbe.2014.11.1167 |
[3] | Alessia Andò, Simone De Reggi, Davide Liessi, Francesca Scarabel . A pseudospectral method for investigating the stability of linear population models with two physiological structures. Mathematical Biosciences and Engineering, 2023, 20(3): 4493-4515. doi: 10.3934/mbe.2023208 |
[4] | OPhir Nave, Shlomo Hareli, Miriam Elbaz, Itzhak Hayim Iluz, Svetlana Bunimovich-Mendrazitsky . BCG and IL − 2 model for bladder cancer treatment with fast and slow dynamics based on SPVF method—stability analysis. Mathematical Biosciences and Engineering, 2019, 16(5): 5346-5379. doi: 10.3934/mbe.2019267 |
[5] | Guangrui Li, Ming Mei, Yau Shu Wong . Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Mathematical Biosciences and Engineering, 2008, 5(1): 85-100. doi: 10.3934/mbe.2008.5.85 |
[6] | Xunyang Wang, Canyun Huang, Yixin Hao, Qihong Shi . A stochastic mathematical model of two different infectious epidemic under vertical transmission. Mathematical Biosciences and Engineering, 2022, 19(3): 2179-2192. doi: 10.3934/mbe.2022101 |
[7] | Biwen Li, Qiaoping Huang . Synchronization of time-delay systems with impulsive delay via an average impulsive estimation approach. Mathematical Biosciences and Engineering, 2024, 21(3): 4501-4520. doi: 10.3934/mbe.2024199 |
[8] | Yuanfei Li, Xuejiao Chen . Spatial decay bound and structural stability for the double-diffusion perturbation equations. Mathematical Biosciences and Engineering, 2023, 20(2): 2998-3022. doi: 10.3934/mbe.2023142 |
[9] | Zigen Song, Jian Xu, Bin Zhen . Mixed-coexistence of periodic orbits and chaotic attractors in an inertial neural system with a nonmonotonic activation function. Mathematical Biosciences and Engineering, 2019, 16(6): 6406-6425. doi: 10.3934/mbe.2019320 |
[10] | Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer . On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences and Engineering, 2007, 4(2): 319-338. doi: 10.3934/mbe.2007.4.319 |
The meaning of the infinitesimal orbits are defined as follows: Those orbits that are very close to the equilibrium points. The radii of these orbits are very small. The scientific significance of these orbits come from the fact that the mission designers require to place missions at equilibrium points to have the advantage of these points. The infinitesimal orbits are already used for the mission near any point of the equilibrium points.
The restricted three bodies problem (in brief RTBP) can be investigated directly from the equations of motion given in any textbook of celestial mechanics. Authors can treat this problem even though with some considered perturbations: e.g., relativistic, photogravitational, dynamical shapes of the primaries, drag, ....etc. The history of the restricted problem is so long as the beginning of the reviviscence era began with Euler and Lagrange continues with Jacobi, Poincaré and Birkhoff. It continues intensively to the date, one cannot conclusive survey of these works but some relevant works are; Ahmed, et al. [1], Douskos and Perdios [2], Abd El-Salam and Abd El-Bar [3,4], Abd El-Salam and Katour [5], and Abd El-Salam [6]. The Infinitesimal orbits around the equilibrium points in the restricted three body problem (in brief RTBP) are very important for space community. NASA in 1978 launched ISEE3 into a halo orbit at the L1 of the Earth-Sun system. It was designed to study the Earth-Sun connection through the interaction between the magnetic field of the Earth and the solar wind. In 1996 the SOHO mission was launched to investigate deepily the Sun's internal structure, the solar extensive outer atmosphere and the solar wind origin.
The dynamical behavior of the test particle near the libration points, namely the infinitesimal orbits has been collected in a work by Duncombe and Szebehely [7]. Richardson [8] used successive approximations technique in conjunction with a proceedure similar to Poincare-Lindstedt technique to obtain a 3rd order analytical solution of halo type periodic orbits applied for the Earth-Moon system. Barden and Howell [9] used the centeral manifold theory to analyze the motions in the vicinity of the collinear equilibrium points. Howell [10] studied the families of orbits in the neighbourhood of the collinear libration points.
Gomez, et al. [11] gave some families of quasi-halo orbits in Sun- (Earth-Moon) and in Earth-Moon systems around L1 and L2. While Gomez, et al. [12] treated the transfer problem between infinitesimal orbits. Selaru and Dimitrescu [13] used asymptotic approximations based on Von Zeipel-type method to study the motions in the vicinity of a equilibrium point in the planar elliptic problem. The eccentricity and inclination effects on small amplitude librations around the triangular points L4 and L5 have been studied by Namouni and Murray [14]. The analytical continuation method have been used by Corbera and Llibre [15] to investigate the symmetric periodic orbits around a collinear point is the RTBP. Hamdy, et al. [16] used a perturbation proceedure based on Lie series to develope explicit analytical solutions for infinitesimal orbits about the equilibrium points in the elliptic RTBP.
Abd El-Salam [17] studied the periodic orbits around the libration points in the relativistic RTBP. He analysed the elliptic, hyperbolic and degenerate hyperbolic orbits in the vicinity of the L1, L2 and L3. He found as well as elliptic orbits in the neighborhood of the L4 and L5.
Ibrahim, et al. [18] presented the special solutions of the RTBP specifying the locations of the equilibrium points. They obtained periodic orbits around these libration points analytically and numerically. Tiwary, et al. [19] described a third-order analytic approximation for computing the three-dimensional periodic halo orbits near the collinear L1 and L2 Lagrangian points for the photo gravitational circular RTBP in the Sun-Earth system. Tiwary and Kushvah [20] computed halo orbits using Lindstedt-Poincaré method up to fourth order approximation, then analyzed the effects of radiation pressure and oblateness on the orbits around Libration points L1 and L2.
In this work, we will use the Hamiltonian approach to compute the infinitesimal trajectories around the equilibrium points. We will construct first the Hamiltonian of the problem, then it will be followed by outlining of the perturbation proceedure used, namely the Delva-Hanselmeir technique, Delva [21] and Hanslmeier [22].
Mittal, et al. [23] have studied periodic orbits generated by Lagrangian solutions of the RTBP when both of the primaries is an oblate body. They have illustrated the periodic orbits for different values of the problem parameters.
Peng, et al. [24] proposed an optimal periodic controller based on continuous low-thrust for the stabilization missions of spacecraft station-keeping and formation-keeping along periodic Libration point orbits of the Sun-Earth system.
Peng, et al. [25] presented the nonlinear closed-loop feedback control strategy for the spacecraft rendezvous problem with finite low thrust between libration orbits in the Sun-Earth system.
Jiang [26] investigated the equilibrium points and orbits around asteroid 1333 Cevenola by considering the full gravitational potential caused by the 3D irregular shape. They calculated gravitational potential and effective potential of asteroid 1333 Cevenola. They also discussed the zero-velocity curves for a massless particle orbiting in the gravitational environment.
Wang [27] applied the developed symplectic moving horizon estimation method to the Earth-Moon L2 libration point navigation. their numerical simulations demonstrated that though more time-consuming, the proposed method results in better estimation performance than the EKF and the UKF.
We aim to give the explicit formulas for coordinate and momenta of the infinitesimal orbits around one of the libration points in the photogravitational oblate RTBP. The article is organized as follows: In section 1, we gave a brief introduction. While in section 2, we formulated the Hamiltonian in rotating frame of reference. In section 3 we transformed the Hamiltonian near any one of the equilibrium point in the considered model. In section 4 we outline the perturbation approach used. In section 5, and its subsequent subsections we computed the coordinate and momentum vectors of an infinitesimal body revolving one of the equilibrium point in a halo orbit. At the end of the paper we summarize our obtained results.
The Lagrangian of the problem can be obtained from
$ \mathcal{L} = T - U, $ | (1) |
where $ \mathcal{L} $ is the Lagrangian of the problem, $ T $ and $ U $ are the kinetic and potential energies of the system respectively, written in terms of the generalised coordinates and velocities and the time $ \left(\boldsymbol{q} \equiv q_{i}, \boldsymbol{\dot { q }} \equiv \dot{\boldsymbol{q}}_{i} ; t\right), $ $ i = 1, 2, ...n. $
The Legendre transform allows us to switch from the Lagrangian to the Hamiltonian formulism,
$ \, \mathcal{H} = \sum\limits_{i = 1}^n {{p_i}\, {{\dot q}_i}} \, \, - \mathcal{L}(\boldsymbol{q}, \dot{\boldsymbol{q}}, t), $ | (2) |
where the Hamiltonian function $ \mathcal{H} \equiv \mathcal{H}\left({\boldsymbol{q}, \boldsymbol{p}} \right) $ is a function in the generalized coordinates $ q $ , and the conjugate generalized momenta $ \boldsymbol{p} $ . The Lagrangian describing the motion of the infinitesimal mass in the inertial frame of reference is given by
$ \, \, \, \, \, \, \, \, {\mathcal{L}_{{\rm{inertia}}l}} = \frac{1}{2}\left( {{{\dot X}^2} + {{\dot Y}^2}} \right) - U, $ | (3) |
where $ \dot X $ and $ \dot Y $ are the velocity components in the inertial frame of reference of the infinitesimal particle. We will assume the potential energy $ U $ of the system is given, in the inertial frame of reference, by
$ U = \frac{{{q_1}\left( {1 - \mu } \right)}}{{{{\left( {{{(\, X + \mu )}^2} + Y_{}^2} \right)}^{1/2}}}} + \frac{{{q_1}{A_1}\left( {1 - \mu } \right)}}{{2{{\left( {{{(\, X + \mu )}^2} + Y_{}^2} \right)}^{3/2}}}} + \frac{{{q_2}\mu }}{{{{\left( {{{(\, X + \mu - 1)}^2} + Y_{}^2} \right)}^{1/2}}}} + \frac{{{q_2}{A_2}\mu }}{{2{{\left( {{{(\, X + \mu - 1)}^2} + Y_{}^2} \right)}^{3/2}}}}, $ |
where $ {A_1} $ and $ {A_2} $ denote to the oblateness coefficients of the more and less massive primaries respectively such that $ 0 < {A_i} \ll 1, \, $ ( $ \, i = 1, 2 $ ), the respective radiation factors for the massive and less massive primaries are $ {q_i}, $ ( $ \, i = 1, 2 $ ) such that $ 0 < 1 - {q_i} < 1 $ , $ \mu = {m_2}/({m_1} + {m_2}), \, \, \, \mu \in \left({0, 1/2} \right) $ is the mass ration of the less massive body to the total mass of the system, and $ X, Y $ are the coordinate components in the inertial frame of reference of the infinitesimal particle.
Since the trajectories of the primaries are given by
$ \left( {{X_1}, {Y_1}} \right) = \left( { - \mu \cos nt, - \mu \sin nt} \right), \, \, \, \, \, \, \, \left( {{X_2}, {Y_2}} \right) = \left( {\left( {1 - \mu } \right)\cos nt, \left( {1 - \mu } \right)\sin nt} \right), $ | (4) |
where $ nt, $ the angle of rotation, is the product mean motion $ n $ and time $ t $ of the problem, and the location of the infinitesimal body with respect to the primaries in the inertial frame, see Figure 1, is
$ r_1^2 = {\left( {X + \mu \cos nt} \right)^2} + {\left( {Y + \mu \sin nt} \right)^2}, \, \, \, \, r_2^2 = {\left( {X - \left( {1 - \mu } \right)\cos nt} \right)^2} + {\left( {Y - \left( {1 - \mu } \right)\sin nt} \right)^2}. $ | (5) |
The ameneded potential $ U $ and hence the inertial Lagrangian $ {\text{L}_{{\rm{inertial}}}} $ is a time independent. To have a clearer insight into many behaviours of the RTBP epecifically the motion near the Lagrangian points, transform to a rotating system with coordinates $ \xi $ and $ \eta $ using
$ \, \, \, \, \, \, \, \, \left. X=ξcosnt−ηsinnt,Y=ξsinnt+ηcosnt, \right\} $
|
(6) |
and the the corresponding velocities transform as
$ \, \, \, \, \, \, \, \, \left. ˙X=˙ξcosnt−˙ηsinnt−ξnsinnt−ηncosnt,˙Y=˙ξsinnt+˙ηcosnt+ξncosnt−ηnsinnt, \right\} $
|
(7) |
where $ \dot \xi $ and $ \dot \eta $ are the velocity components in the rotating system. The distances become
$ r_1^2 = {\left( {\xi + \mu } \right)^2} + {\eta ^2}, \, \, \, \, \, \, \, \, \, \, \, r_2^2 = {\left( {\xi - \left( {1 - \mu } \right)} \right)^2} + {\eta ^2}, $ | (8) |
and the new Lagrangian is
$ \, \, \, \, \, \, \, \, \, \, {\text{L}_{rotating}}\left( {\xi , \eta , \dot \xi , \dot \eta } \right) = \frac{1}{2}{\left( {\dot \xi - n\eta } \right)^2} + \frac{1}{2}{\left( {\dot \eta + n\xi } \right)^2} - U, $ | (9) |
Where the amended potential $ U $ is given by
$ U = \frac{n}{2}\left( {{\xi ^2}\, + {\eta ^2}} \right) + \frac{{{q_1}\left( {1 - \mu } \right)}}{{{{\left( {{{(\, \xi + \mu )}^2} + {\eta ^2}} \right)}^{1/2}}}} + \frac{{{q_1}{A_1}\left( {1 - \mu } \right)}}{{2{{\left( {{{(\, \xi + \mu )}^2} + {\eta ^2}} \right)}^{3/2}}}} $ |
$ \, \, \, \, \, + \frac{{{q_2}\mu }}{{{{\left( {{{(\, \xi + \mu - 1)}^2} + {\eta ^2}} \right)}^{1/2}}}} + \frac{{{q_2}{A_2}\mu }}{{2{{\left( {{{(\, \xi + \mu - 1)}^2} + {\eta ^2}} \right)}^{3/2}}}}. $ | (10) |
The distances of the infinitesimal mass from the barycenter is given by $ \, r = \sqrt {{\xi ^2}\, + {\eta ^2}} $ , and $ n $ is given by
$ {n^2} = 1 + \frac{3}{2}{A_1} + \frac{3}{2}{A_2}\, . $ |
Now, to formulate the Hamiltonian in terms of the generalized coordinates $ \boldsymbol{q} \equiv \left({\xi, \eta } \right) $ and their canonical conjugate momenta $ \boldsymbol{p} \equiv \left({{p_\xi }, {p_\eta }} \right) $ , the follwing relations are required
$ {p_\xi } = \frac{{\partial {{\rm{L}}_{roating}}(\xi , \eta , \dot \xi , \dot \eta )}}{{\partial \dot \xi }}{\rm{p}}, \quad {p_\eta } = \frac{{\partial {{\rm{L}}_{roating}}(\xi , \eta , \dot \xi , \dot \eta )}}{{\partial \dot \eta }}. $ | (11) |
From Eqs. (9) and (10), we can obtain
$ {p_\xi } = \dot \xi - n\eta , $ | (12) |
$ {p_\eta } = \dot \eta + n\xi , $ | (13) |
solution for $ \dot \xi $ and $ \dot \eta $ yields
$ \, \dot \xi = {p_\xi } + n\eta , $ | (14) |
$ \dot \eta = {p_\eta } - n\xi . $ | (15) |
The Hamiltonian in the rotating frame is given as
$ \, \, \, \, \, \, {\text{H}_{rotating}}\left( {\xi , \eta , \dot \xi , \dot \eta } \right) = \dot \xi {p_\xi } + \dot \eta {p_\eta } - {\text{L}_{rotating}}\left( {\xi , \eta , \dot \xi , \dot \eta } \right), $ | (16) |
or, using Eq. (15),
$ \, \, \, \, \, \, {\text{H}_{rotating}}\left( {\xi , \eta , \dot \xi , \dot \eta } \right) = {p_\xi }\left( {{p_\xi } + n\eta } \right) + {p_\eta }\left( {{p_\eta } - n\xi } \right) - {\text{L}_{rotating}}\left( {\xi , \eta , \dot \xi , \dot \eta } \right). $ | (17) |
Using Eqs. (9), (10) and (15), the Hamiltonian of the problem in terms of the generalized coordinates $ \boldsymbol{q} \equiv \left({\xi, \eta } \right) $ and the generalized momenta $ \boldsymbol{p} \equiv \left({{p_\xi }, {p_\eta }} \right) $ can be written in the form
$ {\text{H}_{rotating}}\left( {\xi , \eta , \dot \xi , \dot \eta } \right) = \frac{1}{2}p_{_\xi }^2 + \frac{1}{2}p_{_\eta }^2 + n\eta {p_\xi } - n\xi {p_\eta } + \frac{n}{2}\left( {{\xi ^2}\, + {\eta ^2}} \right) + \frac{{{q_1}\left( {1 - \mu } \right)}}{{{{\left( {{{(\, \xi + \mu )}^2} + {\eta ^2}} \right)}^{1/2}}}} $ |
$ + \frac{{{q_1}{A_1}\left( {1 - \mu } \right)}}{{2{{\left( {{{(\, \xi + \mu )}^2} + {\eta ^2}} \right)}^{3/2}}}} + \frac{{{q_2}\mu }}{{{{\left( {{{(\, \xi + \mu - 1)}^2} + {\eta ^2}} \right)}^{1/2}}}} + \frac{{{q_2}{A_2}\mu }}{{2{{\left( {{{(\, \xi + \mu - 1)}^2} + {\eta ^2}} \right)}^{3/2}}}}. $ | (18) |
At this point we are interested in the infintesimal orbits near any equilibrium point. Moving the origin to any point of equilibrium and denoting to the new coordinates and momenta be $ \left({{x_1}, \, \, \, {x_2}, \, \, \, {P_{{x_1}}}, \, \, \, {P_{{x_2}}}} \right) $ , then from the gemetry illustrated in Figure 2, we have
$ \, \, \, \, \, \, \, \, \, \vec r = \vec r' + \vec r{\, _{{L_i}}}, $ | (19) |
from Eq. (19)
$ \xi = {x_1} + {\xi _{{L_i}}}, \, \, \, \, \, \, \, \, \eta \; = {x_2} + {\eta _{{L_i}}}, \, \, \, \, \, \, \, \, \, \, \, \, i = 1, 2, 3, 4, 5 $ | (20) |
where $ \left({{\xi _{{L_i}}}, {\eta _{{L_i}}}} \right), \, \, i = 1, 2, 3, 4, 5 $ are the locations of the equilibruim points, given by Abd El-Salam, et al. [28], Abd El-Salam and Abd El-Bar [29,30], disregarding the relativistic effects in these works. The new momenta read
$ {p_\xi } = {P_{{x_1}}} - n{\eta _{{L_i}}}, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, {p_\eta } = {P_{{x_2}}} + n{\xi _{{L_i}}}. $ | (21) |
Now to obtain the Hamiltonian in the new coordinates, we substitute Eqs. (20) and (21) into Eq. (18) :
$ \, \, \, \, \, \, \, \, \text{H}\left( {{x_1}, {x_2}, {P_{{x_1}}}, {P_{X{x_2}}}} \right) = \frac{1}{2}{\left( {{P_{{x_1}}} + n{x_2}} \right)^2} + \frac{1}{2}{\left( {{P_{{x_2}}} - n{x_1}} \right)^2} + {q_1}\left( {1 - \mu } \right){S_1} $ |
$ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, + \frac{1}{2}{q_1}{A_1}\left( {1 - \mu } \right){S_1}^3 + {q_2}\mu {S_2} + \frac{1}{2}{q_2}{A_2}\mu {S_2}^3, $ | (22) |
where
$ \, \, \, \, \, \, \, \, \left. S1=1√(x1+ξLi+μ)2+(x2+ηLi)2,S2=1√(x1+ξLi+μ−1)2+(x2+ηLi)2. \right\} $
|
(23) |
We utilize an approach developed by Delva [21], and Hanslmeier [22]. They carried out the procedure with a differential operator $ D $ , the Lie operator, which is a special linear operator that produces a Lie series. The convergence of this latter series is the same as Taylor series, It merely represents another form of the Taylor series whose terms are generated by the Lie operator. We will use the Lie series form for two reasons. The first reason is: The requirement to build up a perturbative scheme at different orders of the orbital elements. The second reason is: Its usefulness also in treating the non-autonomous system of differential equations and non-canonical systems. This enables a rapid successive calculation of the orbit. In addition we can arbitrarily choose the stepsize easily (if necessary). This is an important advantage for the treatment of the problems which has a variable stepsize, e.g., for the mass change of the primaries. The formulas has an easy analytical structure and may be programmed without difficulty and without imposing extra conditions on the convergence. The iteration can be used to generate any desired order of solution, the series can be continued up to any satisfactory convergence reached. The Lie operator is defined as
$ \, \, \, \, \, \, \, \, D\Xi = \sum\limits_{i = 1}^2 \left( {\frac{{\partial \Xi }}{{\partial {x_i}}}\frac{{d{x_i}}}{{dt}} + \frac{{\partial \Xi }}{{\partial {P_{{x_i}}}}}\frac{{d{P_{{x_i}}}}}{{dt}}} \right) + \frac{\partial }{{\partial t}}, \;\, \, \, \Xi {\bf{ = }}\Xi \;\left( {x\left( {{x_i}, {P_{{x_i}}}} \right){\bf{, P}}\left( {{x_i}, {P_{{x_i}}}} \right)} \right), $ | (24) |
Leibnitz formula can be used for computing the $ {n^{\underline t h}} $ derivative of a product, as
$ dndZn[g(z)h(z)]=n∑m=0CnmdmgdZmdn−mhdZn−m,Cnm=n!m!(n−m)! . $
|
(25) |
The $ {n^{\underline t h}} $ application of the Lie operator denoted by $ {D^{\; \left(n \right)}} $ takes the form
$ {D^{\left( n \right)}}\Xi = \sum\limits_{i = 1}^2 \sum\limits_{m = 0}^n C_m^n\left[ {\left( {\frac{{{\partial ^m}\Xi }}{{\partial x_i^m}}\frac{{{d^{n - m}}{x_i}}}{{d{t^{n - m}}}} + \frac{{{\partial ^m}\Xi }}{{\partial P_{{x_i}}^m}}\frac{{{d^{n - m}}{P_{{x_i}}}}}{{d{t^{n - m}}}}} \right) + \frac{{{\partial ^n}\Xi }}{{\partial {t^n}}}} \right]. $ | (26) |
Now using the canonical equations of motion
$ \frac{{d{x_i}}}{{dt}} = \frac{{\partial \text{H}}}{{\partial {P_{{x_i}}}}} $ , $ \frac{{d{P_{{x_i}}}}}{{dt}} = - \frac{{\partial \text{H}}}{{\partial {x_i}}}, $ |
we can evaluate the derivatives $ \frac{{{d^{n - m}}{x_i}}}{{d{t^{n - m}}}} $ , $ \frac{{{d^{n - m}}{P_{{x_i}}}}}{{d{t^{n - m}}}} $ then we can reach to the solutions (coordinate and momentum vectors, $ \boldsymbol{x} $ and $ {\bf{P}} $ respectively) as;
$ \left. x=(e(t−t∘)D)x|x=x0=∞∑j=0(t−t∘)jj!D(j)x|x=x0,P=P0=∞∑j=0(t−t∘)jj!{D(j)x1+D(j)x2}x=x0,P=P0,P=(e(t−t∘)D)P|x=x0,P=P0=∞∑j=0(t−t∘)jj!DjP|x=x0,P=P0=∞∑j=0(t−t∘)jj!{D(j)Px1+D(j)Px2}x=x0,P=P0. \right\} $
|
(27) |
As is clear from Eq. (27), the applications of the Lie operator $ {D^j}\Xi $ at different orders are evaluated for the initial conditions of the canonical elements.
In this section we are going to evaluate the solutions at different orders. From the definition of the operator $ {D^{\left(n \right)}} $ , Eq. (26), we get the following explicit expressions at different orders as follows.
Setting $ n = 1 $ in Eq. (26) we obtain the required coefficients in Eq. (27) to yield the first order. The required partial derivatives can be obtained using Eq. (22) as follows
$ \frac{{\partial \text{H}}}{{\partial {x_1}}} = - n({P_{{x_2}}} - n{x_1}) - {q_1}(1 - \mu )({x_1} + {\xi _{{L_i}}} + \mu ){S_1}^3 - \frac{3}{2}{q_1}{A_1}(1 - \mu )({x_1} + {\xi _{{L_i}}} + \mu ){S_1}^5 $ |
$ \, \, \, \, \, \, \, \, \, \, - {q_2}\mu ({x_1} + {\xi _{{L_i}}} + \mu - 1){S_2}^3 - \frac{3}{2}{q_2}{A_2}\mu ({x_1} + {\xi _{{L_i}}} + \mu - 1){S_2}^5, $ | (28.1) |
$ \frac{{\partial \text{H}}}{{\partial {x_2}}} = n({P_{{x_1}}} + n{x_2}) - {q_1}(1 - \mu )({x_2} + {\eta _{{L_i}}}){S_1}^3 - \frac{3}{2}{q_1}{A_1}(1 - \mu )({x_2} + {\eta _{{L_i}}}){S_1}^5 $ |
$ \, \, \, \, \, \, \, \, \, \, - {q_2}\mu ({x_2} + {\eta _{{L_i}}}){S_2}^3 - \frac{3}{2}{q_2}{A_2}\mu ({x_2} + {\eta _{{L_i}}}){S_2}^5, $ | (28.2) |
$ \frac{{\partial \text{H}}}{{\partial {P_{{x_1}}}}} = ({P_{{x_1}}} + n{x_2}), $ | (28.3) |
$ \frac{{\partial \text{H}}}{{\partial {P_{{x_2}}}}} = ({P_{{x_2}}} - n{x_1}). $ | (28.4) |
Substituting Eqs. (28.1)–(28.4) into Eq. (26) and neglecting the very small magnitude terms yields
$ \left. D(1)x1=2∑i=0J1iμi,D(1)x2=2∑i=0N1iμi,D(1)Px1=2∑i=0K1iμi,D(1)Px2=2∑i=0G1iμi. \right\} $
|
(29) |
Where the nonvanishing included coefficients are given by
$ \text{J}_0^1 = {x_1} + {P_{{x_1}}}{x_1} - n{P_{{x_1}}}{x_1} + {P_{{x_2}}}{x_1} + n{P_{{x_2}}}{x_1} - nx_1^2 $ |
$ \, \, \, \, \, \, + {q_1}S_1^3x_1^2 + 3{A_1}{q_1}S_1^5x_1^2\, \, - {n^2}x_1^2 + n{x_1}{x_2} + {q_1}S_1^3{x_1}{x_2} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{q_1}S_1^5{x_1}{x_2} $ |
$ \, \, \, \, \, \, - {n^2}{x_1}{x_2} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{q_1}S_1^5{x_1}{\eta _{{L_i}}} + {q_1}S_1^3{x_1}{\xi _{{L_i}}} + {q_1}S_1^3{x_1}{\eta _{{L_i}}} + 3{A_1}{q_1}S_1^5{x_1}{\xi _{{L_i}}} $ |
$ \text{J}_1^1 = {q_1}S_1^3{x_1} + 3{A_1}{q_1}S_1^5{x_1} - {q_2}S_2^3{x_1} - 3{A_2}{q_2}S_2^5{x_1} - {q_1}S_1^3x_1^2 - 3{A_1}{q_1}S_1^5x_1^2 $ |
$ \, \, \, \, + {q_2}S_2^3x_1^2 + 3{A_2}{q_2}S_2^5x_1^2 - {q_1}S_1^3{x_1}{x_2} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{q_1}S_1^5{x_1}{x_2} + {q_2}S_2^3{x_1}{x_2} $ |
$ \, \, \, \, \, \, \, + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_2}{q_2}S_2^5{x_1}{x_2} - {q_1}S_1^3{x_1}{\eta _{{L_i}}} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{q_1}S_1^5{x_1}{\eta _{{L_i}}} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_2}{q_2}S_2^5{x_1}{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, + 3{A_2}{q_2}S_2^5{x_1}{\xi _{{L_i}}} - {q_1}S_1^3{x_1}{\xi _{{L_i}}} - 3{A_1}{q_1}S_1^5{x_1}{\xi _{{L_i}}} + {q_2}S_2^3{x_1}{\xi _{{L_i}}} + {q_2}S_2^3{x_1}{\eta _{{L_i}}} $ |
$ \text{J}_2^1 = - {q_1}S_1^3{x_1} - 3{A_1}{q_1}S_1^5{x_1} + {q_2}S_2^3{x_1} + 3{A_2}{q_2}S_2^5{x_1} $ |
$ \text{N}_0^1 = {x_2} + {P_{{x_1}}}{x_2} - n{P_{{x_1}}}{x_2} + {P_{{x_2}}}{x_2} + n{P_{{x_2}}}{x_2} - n{x_1}{x_2} - {n^2}{x_1}{x_2} $ |
$ \, \, \, \, \, \, + {q_1}S_1^3{x_1}{x_2} + 3{A_1}{q_1}S_1^5{x_1}{x_2} + nx_2^2 - {n^2}x_2^2 + {q_1}S_1^3x_2^2 + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{q_1}S_1^5x_2^2 $ |
$ \, \, \, \, \, \, + {q_1}S_1^3{x_2}{\eta _{{L_i}}} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{q_1}S_1^5{x_2}{\eta _{{L_i}}} + {q_1}S_1^3{x_2}{\xi _{{L_i}}} + {3_1}{A_1}qS_1^5{x_2}{\xi _{{L_i}}} $ |
$ \text{N}_1^1 = {q_1}S_1^3{x_2} - {q_2}S_2^3{x_2} - {q_1}S_1^3{x_1}{x_2} + {q_2}S_2^3x_2^2 + {q_2}S_2^3{x_1}{x_2} + 3{A_2}{q_2}S_2^5{x_1}{x_2} - {q_1}S_1^3x_2^2 $ |
$ \, \, \, \, \, \, - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{q_1}S_1^5x_2^2 + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_2}{q_2}S_2^5x_2^2 - {q_1}S_1^3{x_2}{\eta _{{L_i}}} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{q_1}S_1^5{x_2}{\eta _{{L_i}}} + {q_2}S_2^3{x_2}{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, - 3{A_2}{q_2}S_2^5{x_2} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_2}{q_2}S_2^5{x_2}{\eta _{{L_i}}}\, - {q_1}S_1^3{x_2}{\xi _{{L_i}}} - 3{A_1}{q_1}S_1^5{x_2}{\xi _{{L_i}}} + {q_2}S_2^3{x_2}{\xi _{{L_i}}} + 3{A_2}{q_2}S_2^5{x_2}{\xi _{{L_i}}} $ |
$ \text{N}_2^1 = - 3{A_1}{q_1}S_1^5{x_2} - {q_1}S_1^3{x_2} + {q_2}S_2^3{x_2} + 3{A_2}{q_2}S_2^5{x_2} $ |
$ \text{K}_0^1 = {P_{{x_1}}} + P_{{x_1}}^2 - nP_{{x_1}}^2 + {P_{{x_1}}}{P_{{x_2}}} + n{P_{{x_1}}}{P_{{x_2}}} - n{P_{{x_1}}}{x_1} - {n^2}{P_{{x_1}}}{x_1} + {P_{{x_1}}}{q_1}S_1^3{x_1} $ |
$ \, \, \, \, \, \, + 3{A_1}{P_{{x_1}}}{q_1}S_1^5{x_1} + n{P_{{x_1}}}{x_2} - {n^2}{P_{{x_1}}}{x_2} + {P_{{x_1}}}{q_1}S_1^3{x_2}\, + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_1}}}{q_1}S_1^5{x_2} $ |
$ \, \, \, \, \, \, + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_1}}}{q_1}S_1^5{\eta _{{L_i}}} + {P_{{x_1}}}{q_1}S_1^3{\xi _{{L_i}}} + 3{A_1}{P_{{x_1}}}{q_1}S_1^5{\xi _{{L_i}}} + 3{P_{{x_1}}}{\xi _{{L_i}}} $ |
$ \text{K}_1^1 = {P_{{x_1}}}{q_1}S_1^3 + 3{A_1}{P_{{x_1}}}{q_1}S_1^5 - {P_{{x_1}}}{q_2}S_2^3 - 3{A_2}{P_{{x_1}}}{q_2}S_2^5 - {P_{{x_1}}}{q_1}S_1^3{x_1} - 3{A_1}{P_{{x_1}}}{q_1}S_1^5{x_1} $ |
$ \, \, \, \, \, \, + {P_{{x_1}}}{q_2}S_2^3{x_1} + 3{A_2}{P_{{x_1}}}{q_2}S_2^5{x_1} - {P_{{x_1}}}{q_1}S_1^3{x_2} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_1}}}{q_1}S_1^5{x_2} + {P_{{x_1}}}{q_2}S_2^3{x_2} $ |
$ \, \, \, \, \, \, + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_2}{P_{{x_1}}}{q_2}S_2^5{x_2} - {P_{{x_1}}}{q_1}S_1^3{\eta _{{L_i}}} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_1}}}{q_1}S_1^5{\eta _{{L_i}}} + {P_{{x_1}}}{q_2}S_2^3{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_2}{P_{{x_1}}}{q_2}S_2^5{\eta _{{L_i}}} - {P_{{x_1}}}{q_1}S_1^3{\xi _{{L_i}}} - 3{A_1}{P_{{x_1}}}{q_1}S_1^5{\xi _{{L_i}}} + 3{A_2}{P_{{x_1}}}{q_2}S_2^5{\xi _{{L_i}}} $ |
$ \text{K}_2^1 = - {P_{{x_1}}}{q_1}S_1^3 - 3{A_1}{P_{{x_1}}}{q_1}S_1^5 + {P_{{x_1}}}{q_2}S_2^3 + 3{A_2}{P_{{x_1}}}{q_2}S_2^5, $ |
$ \text{G}_0^1 = {P_{{x_2}}} + {P_{{x_1}}}{P_{{x_2}}} - n{P_{{x_1}}}{P_{{x_2}}} + P_{{x_2}}^2 + nP_{{x_2}}^2 - n{P_{{x_2}}}{x_1} - {n^2}{P_{{x_2}}}{x_1} + {P_{{x_2}}}{q_1}S_1^3{x_1} $ |
$ \, \, \, \, \, \, + 3{A_1}{P_{{x_2}}}{q_1}S_1^5{x_1} + n{P_{{x_2}}}{x_2} - {n^2}{P_{{x_2}}}{x_2} + {P_{{x_2}}}{q_1}S_1^3{x_2} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_2}}}{q_1}S_1^5{x_2} $ |
$ \, \, \, \, \, \, - {P_{{x_2}}}\eta _{{L_i}}^3\, + {P_{{x_2}}}{q_1}S_1^3{\eta _{{L_i}}} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_2}}}{q_1}S_1^5{\eta _{{L_i}}} + {P_{{x_2}}}{q_1}S_1^3{\xi _{{L_i}}} + 3{A_1}{P_{{x_2}}}{q_1}S_1^5{\xi _{{L_i}}} $ |
$ \text{G}_1^1 = {P_{{x_2}}}{q_1}S_1^3 + 3{A_1}{P_{{x_2}}}{q_1}S_1^5 - {P_{{x_2}}}{q_2}S_2^3 - 3{A_2}{P_{{x_2}}}{q_2}S_2^5 - 3{A_1}{P_{{x_2}}}{q_1}S_1^5{x_1} $ |
$ \, \, \, \, \, \, - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_2}}}{q_1}S_1^5{\eta _{{L_i}}} + {P_{{x_2}}}{q_2}S_2^3{x_1}\, \, + 3{A_2}{P_{{x_2}}}{q_2}S_2^5{x_1}\, - 3{A_1}{P_{{x_2}}}{q_1}S_1^5{\xi _{{L_i}}} + {P_{{x_2}}}{q_2}S_2^3{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, - {P_{{x_2}}}{q_1}S_1^3{\xi _{{L_i}}} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_2}{P_{{x_2}}}{q_2}S_2^5{x_2} + {P_{{x_2}}}{q_2}S_2^3{\xi _{{L_i}}} - {P_{{x_2}}}{q_1}S_1^3{\eta _{{L_i}}} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_2}}}{q_1}S_1^5{x_2} $ |
$ \, \, \, \, \, \, - {P_{{x_2}}}{q_1}S_1^3{x_1} + {P_{{x_2}}}{q_2}S_2^3{x_2} - {P_{{x_2}}}{q_1}S_1^3{x_2} $ |
$ \text{G}_2^1 = - {P_{{x_2}}}{q_1}S_1^3 - 3{A_1}{P_{{x_2}}}{q_1}S_1^5{P_{{x_2}}}{q_2}S_2^3 + 3{A_2}{P_{{x_2}}}{q_2}S_2^5. $ |
Setting $ n = 2 $ in Eq. (26) we obtain the required coefficients in Eq. (27) to yield the second order solution as;
$ \frac{{{\partial ^2}\text{H}}}{{\partial {x_1}^2}} = {n^2} - {q_1}(1 - \mu ){S_1}^3 + 3{q_1}(1 - \mu ){({x_1} + {\xi _{{L_i}}} + \mu )^2}{S_1}^5 - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){q_1}{A_1}(1 - \mu ){S_1}^5 $ |
$ \, \, \, \, \, \, \, \, \, \, \, + ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2}){q_1}{A_1}(1 - \mu ){({x_1} + {\xi _{{L_i}}} + \mu )^2}{S_1}^7 - {q_2}\mu {S_2}^3 + 3{q_2}\mu {({x_1} + {\xi _{{L_i}}} + \mu - 1)^2}{S_2}^5 $ |
$ \, \, \, \, \, \, \, \, - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){q_2}{A_2}\mu {S_2}^5 + ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2}){q_2}{A_2}\mu {({x_1} + {\xi _{{L_i}}} + \mu - 1)^2}{S_2}^7, $ | (30.1) |
$ \frac{{{\partial ^2}\text{H}}}{{\partial {x_2}^2}} = {n^2} - {q_1}(1 - \mu ){S_1}^3 + 3{q_1}(1 - \mu ){({x_2} + {\eta _{{L_i}}})^2}{S_1}^5 - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){q_1}{A_1}(1 - \mu ){S_1}^5 $ |
$ \, \, \, \, \, \, \, \, \, \, \, + ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2}){q_1}{A_1}(1 - \mu ){({x_2} + {\eta _{{L_i}}})^2}{S_1}^7 - {q_2}\mu {S_2}^3 + 3{q_2}\mu {({x_2} + {\eta _{{L_i}}})^2}{S_2}^5 $ |
$ \, \, \, \, \, \, \, \, \, - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){q_2}{A_2}\mu {S_2}^5 + ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2}){q_2}{A_2}\mu {({x_2} + {\eta _{{L_i}}})^2}{S_2}^7, $ | (30.2) |
$ \frac{{{\partial ^2}\text{H}}}{{\partial {x_1}\partial {x_2}}} = 3{q_1}(1 - \mu )({x_1} + {\xi _{{L_i}}} + \mu )({x_2} + {\eta _{{L_i}}}){S_1}^5 + ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2}){q_1}{A_1}(1 - \mu )({x_1} + {\xi _{{L_i}}} + \mu ) $ |
$ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \times ({x_2} + {\eta _{{L_i}}}){S_1}^7 + 3{q_2}\mu ({x_1} + {\xi _{{L_i}}} + \mu - 1)({x_2} + {\eta _{{L_i}}}){S_2}^5 $ |
$ \, \, \, + ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2}){q_2}{A_2}\mu ({x_1} + {\xi _{{L_i}}} + \mu - 1)({x_2} + {\eta _{{L_i}}}){S_2}^7, $ | (30.3) |
$ \frac{{{\partial ^2}\text{H}}}{{\partial {P_{{x_1}}}\partial {P_{{x_1}}}}} = 1, $ | (30.4) |
$ \frac{{{\partial ^2}\text{H}}}{{\partial {P_{{x_2}}}\partial {P_{{x_2}}}}} = 1, $ | (30.5) |
$ \frac{{{\partial ^2}\text{H}}}{{\partial {x_1}\partial {P_{{x_2}}}}} = - n. $ | (30.6) |
Substituting Eqs. (30.1)–(30.6) into Eq. (26) and neglecting the very small magnitude terms yields yields the second order solution as
$ \left. D(2)x1=2∑i=0Ji,2μi,D(2)x2=2∑i=0N2iμi,D(2)Px1=2∑i=0K2iμi,D(2)Px2=2∑i=0G2iμi. \right\} $
|
(31) |
Where the nonvanishing included coefficients are given by
$ \text{J}_0^2 = 2{P_{{x_1}}} - 2n{P_{{x_1}}}{x_1} - 2{n^2}{P_{{x_1}}}x - 2{n^2}{x_1}{x_2} - 2{n^3}{x_1}{x_2} + 2n{P_{{x_2}}}{x_1} - 2{n^2}{P_{{x_2}}}{x_1} $ |
$ \, \, \, \, \, \, \, \, + {P_{{x_1}}}{q_1}S_1^3{x_1} + {P_{{x_2}}}{q_1}S_1^3{x_1}\, \, + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_1}}}{q_1}S_1^5{x_1} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_2}}}{q_1}S_1^5{x_1} + {q_1}S_1^3{x_1}{x_2} $ |
$ \, \, \, \, \, \, \, \, + 2n{q_1}S_1^3{x_1}{x_2}\, + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{q_1}S_1^5{x_1}{x_2} + 3n{A_1}{q_1}S_1^5{x_1}{x_2} + {q_1}S_1^3{x_1}{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, \, \, + n{q_1}S_1^3{x_1}{\eta _{{L_i}}}\, \, + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{q_1}S_1^5{x_1}{\eta _{{L_i}}} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_1}{q_1}S_1^5{x_1}{\eta _{{L_i}}} - 3{P_{{x_1}}}{q_1}S_1^5x_1^2{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, \, \, - 3{P_{{x_2}}}{q_1}S_1^5x_1^2{\eta _{{L_i}}}\, + 3n{q_1}S_1^5x_1^3{\eta _{{L_i}}} - 6{P_{{x_2}}}{q_1}S_1^5{x_1}{x_2}{\eta _{{L_i}}} + 3n{q_1}S_1^5x_1^2{x_2}{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, \, \, - 3{P_{{x_2}}}{q_1}S_1^5{x_1}\eta _{{L_i}}^2\, - ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2}){A_1}{P_{{x_2}}}{q_1}S_1^7{x_1}\eta _{{L_i}}^2 + 3n{q_1}S_1^5x_1^2\eta _{{L_i}}^2\, + ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2})n{A_1}{q_1}S_1^7x_1^2\eta _{{L_i}}^2 $ |
$ \, \, \, \, \, \, \, + {q_1}S_1^3{x_1}{\xi _{{L_i}}} - n{q_1}S_1^3{x_1}{\xi _{{L_i}}} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{q_1}S_1^5{x_1}{\xi _{{L_i}}} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_1}{q_1}S_1^5{x_1}{\xi _{{L_i}}} $ |
$ \, \, \, \, \, \, \, \, - 6{P_{{x_1}}}{q_1}S_1^5x_1^2{\xi _{{L_i}}}\, - 3{P_{{x_1}}}{q_1}S_1^5{x_1}{x_2}{\xi _{{L_i}}} - 3{P_{{x_2}}}{q_1}S_1^5{x_1}{x_2}{\xi _{{L_i}}} - 3n{q_1}S_1^5x_1^2{x_2}{\xi _{{L_i}}} $ |
$ \, \, \, \, \, \, \, \, - 3n{q_1}S_1^5{x_1}x_2^2{\xi _{{L_i}}} - 3{P_{{x_1}}}{q_1}S_1^5{x_1}{\eta _{{L_i}}}{\xi _{{L_i}}} - 3{P_{{x_2}}}{q_1}S_1^5{x_1}{\eta _{{L_i}}}{\xi _{{L_i}}} - ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2}){A_1}{P_{{x_1}}}{q_1}S_1^7{x_1}{\eta _{{L_i}}}{\xi _{{L_i}}} $ |
$ \, \, \, \, \, \, \, \, - ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2}){A_1}{P_{{x_2}}}{q_1}S_1^7{x_1}{\eta _{{L_i}}}{\xi _{{L_i}}}\, + 3n{q_1}S_1^5x_1^2{\eta _{{L_i}}}{\xi _{{L_i}}} + ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2})n{A_1}{q_1}S_1^7x_1^2{\eta _{{L_i}}}{\xi _{{L_i}}} $ |
$ \, \, \, \, \, \, \, \, - 3{P_{{x_1}}}{q_1}S_1^5{x_1}\xi _{{L_i}}^2 - 3n{q_1}S_1^5{x_1}{x_2}{\eta _{{L_i}}}{\xi _{{L_i}}} - 3n{q_1}S_1^5{x_1}{x_2}\xi _{{L_i}}^2 $ |
$ \, \, \, \, \, \, \, \, - ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2})n{A_1}{q_1}S_1^7{x_1}{x_2}\xi _{{L_i}}^2 - ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2}){A_1}{P_{{x_1}}}{q_1}S_1^7{x_1}\xi _{{L_i}}^2 - ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2})n{A_1}{q_1}S_1^7{x_1}{x_2}{\eta _{{L_i}}}{\xi _{{L_i}}} $ |
$ \text{J}_1^2 = {q_1}S_1^3{x_1} - n{q_1}S_1^3{x_1} - {P_{{x_1}}}{q_1}S_1^3{x_1} - {P_{{x_2}}}{q_1}S_1^3{x_1} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{q_1}S_1^5{x_1} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_1}{q_1}S_1^5{x_1} $ |
$ \, \, \, \, \, \, \, - {q_2}S_2^3{x_1} + {q_2}S_2^3x_1^2\, \, - {q_1}S_1^3{x_1}{x_2} - 2n{q_1}S_1^3{x_1}{x_2} + {q_2}S_2^3{x_1}{x_2} + 2n{q_2}S_2^3{x_1}{x_2} $ |
$ \, \, \, \, \, \, - 3n{q_2}S_2^5{x_1}{x_2} - n{q_1}S_1^3{x_1}{\eta _{{L_i}}} - {q_1}S_1^3{x_1}{\eta _{{L_i}}} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_1}{q_1}S_1^5{x_1}{\eta _{{L_i}}} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{q_1}S_1^5{x_1}{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, - 3{P_{{x_1}}}{q_1}S_1^5{x_1}{\eta _{{L_i}}} - 3{P_{{x_2}}}{q_1}S_1^5{x_1}{\eta _{{L_i}}} + {q_2}S_2^3{x_1}{\eta _{{L_i}}} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_2}{q_2}S_2^5{x_1}{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_2}{q_2}S_2^5{x_1}{\eta _{{L_i}}} + 3{P_{{x_1}}}{q_2}S_2^5{x_1}{\eta _{{L_i}}} - 2n{q_2}S_2^3x_1^2 + {q_2}S_2^3x_1^2 - {q_1}S_1^3{x_1}{x_2} $ |
$ \, \, \, \, \, \, - 2n{q_1}S_1^3{x_1}{x_2} + {q_2}S_2^3{x_1}{x_2} - n{q_1}S_1^3{x_1}{\eta _{{L_i}}} + n{q_2}S_2^3{x_1}{\eta _{{L_i}}} + 3{P_{{x_2}}}{q_2}S_2^5{x_1}{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, + 3n{q_1}S_1^5x_1^2{\eta _{{L_i}}} - 3n{q_2}S_2^5x_1^2{\eta _{{L_i}}} + 3n{q_2}S_2^5{x_1}{x_2}{\eta _{{L_i}}} + 3{P_{{x_2}}}{q_1}S_1^5{x_1}\eta _{{L_i}}^2 $ |
$ \, \, \, \, \, \, - 3{P_{{x_2}}}{q_2}S_2^5{x_1}\eta _{{L_i}}^2 - 3n{q_1}S_1^5x_1^2\eta _{{L_i}}^2 + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_1}{q_1}S_1^5{x_1}{\xi _{{L_i}}} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{q_1}S_1^5{x_1}{\xi _{{L_i}}} $ |
$ \, \, \, \, \, \, - 6{P_{{x_1}}}{q_1}S_1^5{x_1}{\xi _{{L_i}}} - n{q_2}S_2^3{x_1}{\xi _{{L_i}}} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_2}{q_2}S_2^5{x_1}{\xi _{{L_i}}} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_2}{q_2}S_2^5{x_1}{\xi _{{L_i}}} $ |
$ \, \, \, \, \, \, + 6{P_{{x_1}}}{q_2}S_2^5{x_1}{\xi _{{L_i}}} - 6n{q_1}S_1^5{x_1}{x_2}{\xi _{{L_i}}} + {q_2}S_2^3{x_1}{\xi _{{L_i}}} + 6n{q_2}S_2^5{x_1}{x_2}{\xi _{{L_i}}} - 3n{q_2}S_2^5{x_1}{x_2}\xi _{{L_i}}^2 $ |
$ \, \, \, \, \, \, + 3n{q_2}S_2^5x_1^2{\eta _{{L_i}}}{\xi _{{L_i}}}\, + 3{P_{{x_2}}}{q_1}S_1^5{x_1}{\eta _{{L_i}}}{\xi _{{L_i}}} + 3n{q_1}S_1^5{x_1}{x_2}{\eta _{{L_i}}}{\xi _{{L_i}}} - 3n{q_2}S_2^5{x_1}{x_2}{\eta _{{L_i}}}{\xi _{{L_i}}} $ |
$ \, \, \, \, \, - 3n{q_1}S_1^5x_1^2{\eta _{{L_i}}}{\xi _{{L_i}}}\, + 3{P_{{x_1}}}{q_1}S_1^5{x_1}\xi _{{L_i}}^2 - 3{P_{{x_1}}}{q_2}S_2^5{x_1}\xi _{{L_i}}^2 + 3n{q_1}S_1^5{x_1}{x_2}\xi _{{L_i}}^2 $ |
$ \text{J}_2^2 = - {\mu ^2}{q_1}S_1^3{x_1} + n{\mu ^2}{q_1}S_1^3{x_1} - {q_1}S_1^3{x_1} + n{q_1}S_1^3{x_1} $ |
$ \text{N}_0^2 = 2{P_{{x_2}}} - 2n{x_1} - 2n{P_{{x_1}}}{x_2} - 2{n^2}{P_{{x_1}}}{x_2} + 2n{P_{{x_2}}}{x_2} - 2{n^2}{P_{{x_2}}}{x_2} + {q_1}S_1^3{x_1}{x_2} $ |
$ \, \, \, \, \, \, \, + {P_{{x_1}}}{q_1}S_1^3{x_2} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_1}}}{q_1}S_1^5{x_2} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_2}}}{q_1}S_1^5{x_2} - 2{n^2}{x_1}{x_2} + 2{n^3}{x_1}{x_2} $ |
$ \, \, \, \, \, \, \, - 2n{q_1}S_1^3{x_1}{x_2} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{q_1}S_1^5{x_1}{x_2} - 3n{A_1}{q_1}S_1^5{x_1}{x_2} + {q_1}S_1^3{x_2}{\eta _{{L_i}}} + n{q_1}S_1^3{x_2}{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, \, - 2{n^3}x_2^2 + {q_1}S_1^3x_2^2 + 2n{q_1}S_1^3x_2^2 - 2{n^2}x_2^2 + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{q_1}S_1^5x_2^2 + 3n{A_1}{q_1}S_1^5x_2^2 $ |
$ \, \, \, \, \, \, \, + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{q_1}S_1^5{x_2}{\eta _{{L_i}}} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_1}{q_1}S_1^5{x_2}{\eta _{{L_i}}} + n\mu {q_2}S_2^3{x_2}{\eta _{{L_i}}} - 3{P_{{x_1}}}{q_1}S_1^5{x_1}{x_2}{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, \, - 3{P_{{x_2}}}{q_1}S_1^5{x_1}{x_2}{\eta _{{L_i}}} - 6{P_{{x_2}}}{q_1}S_1^5x_2^2{\eta _{{L_i}}} + ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2})n{A_1}{q_1}S_1^7{x_1}{x_2}\eta _{{L_i}}^2 + 3n{q_1}S_1^5x_1^2{x_2}{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, \, + 3n{q_1}S_1^5{x_1}{x_2}\eta _{{L_i}}^2 - ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2}){A_1}{P_{{x_2}}}{q_1}S_1^7{x_2}\eta _{{L_i}}^2 + 3n{q_1}S_1^5{x_1}x_2^2{\eta _{{L_i}}} - 3{P_{{x_2}}}{q_1}S_1^5{x_2}\eta _{{L_i}}^2 $ |
$ \, \, \, \, \, \, \, + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{q_1}S_1^5{x_2}{\xi _{{L_i}}} + {q_1}S_1^3{x_2}{\xi _{{L_i}}} - n{q_1}S_1^3{x_2}{\xi _{{L_i}}} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_1}{q_1}S_1^5{x_2}{\xi _{{L_i}}} + \mu {q_2}S_2^3{x_2}{\xi _{{L_i}}} $ |
$ \, \, \, \, \, \, \, - 6{P_{{x_1}}}{q_1}S_1^5{x_1}{x_2}{\xi _{{L_i}}} - 3{P_{{x_1}}}{q_1}S_1^5x_2^2{\xi _{{L_i}}} - 3{P_{{x_2}}}{q_1}S_1^5x_2^2{\xi _{{L_i}}} - ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2}){A_1}{P_{{x_2}}}{q_1}S_1^7{x_2}{\eta _{{L_i}}}{\xi _{{L_i}}} $ |
$ \, \, \, \, \, \, \, - 3n{q_1}S_1^5{x_1}x_2^2{\xi _{{L_i}}} - 3n{q_1}S_1^5x_2^3{\xi _{{L_i}}} - 3{P_{{x_1}}}{q_1}S_1^5{x_2}{\eta _{{L_i}}}{\xi _{{L_i}}} + ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2})n{A_1}{q_1}S_1^7{x_1}{x_2}{\eta _{{L_i}}}{\xi _{{L_i}}} $ |
$ \, \, \, \, \, \, \, - ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2})n{A_1}{q_1}S_1^7x_2^2{\eta _{{L_i}}}{\xi _{{L_i}}} - 3{P_{{x_2}}}{q_1}S_1^5{x_2}{\eta _{{L_i}}}{\xi _{{L_i}}} - 3n{q_1}S_1^5x_2^2{\eta _{{L_i}}}{\xi _{{L_i}}} - 3{P_{{x_1}}}{q_1}S_1^5{x_2}\xi _{{L_i}}^2 $ |
$ \, \, \, \, \, \, \, - ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2}){A_1}{P_{{x_1}}}{q_1}S_1^7{x_2}{\eta _{{L_i}}}{\xi _{{L_i}}} - 3n{q_1}S_1^5x_2^2\xi _{{L_i}}^2 + 3n{q_1}S_1^5{x_1}{x_2}{\eta _{{L_i}}}{\xi _{{L_i}}} - \mu {q_1}S_1^3{x_2}{\xi _{{L_i}}} $ |
$ \, \, \, \, \, \, \, + {P_{{x_2}}}{q_1}S_1^3{x_2} - ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2}){A_1}{P_{{x_1}}}{q_1}S_1^7{x_2}\xi _{{L_i}}^2 - ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2})n{A_1}{q_1}S_1^7x_2^2\xi _{{L_i}}^2 $ |
$ \text{N}_1^2 = {q_1}S_1^3{x_2} - n{q_1}S_1^3{x_2} - {P_{{x_1}}}{q_1}S_1^3{x_2} - {P_{{x_2}}}{q_1}S_1^3x + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{q_1}S_1^5{x_2} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_1}{q_1}S_1^5{x_2} $ |
$ \, \, \, \, \, \, \, - {q_2}S_2^3{x_2} + n{q_2}S_2^3{x_2} + {P_{{x_1}}}{q_2}S_2^3{x_2} + {P_{{x_2}}}{q_2}S_2^3{x_2} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_2}{q_2}S_2^5{x_2} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_2}{q_2}S_2^5{x_2} $ |
$ \, \, \, \, \, \, \, - {q_1}S_1^3x_2^2 - 2n{q_1}S_1^3x_2^2 - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{q_1}S_1^5{x_1}{x_2} + {q_2}S_2^3{x_1}{x_2} - 3{P_{{x_1}}}{q_2}S_2^5{x_2} - {q_1}S_1^3{x_1}{x_2} $ |
$ \, \, \, \, \, \, \, + 2n{q_1}S_1^3{x_1}{x_2} - 2n{q_2}S_2^3{x_1}{x_2}\, + {q_2}S_2^3x_2^2 + 2n{q_2}S_2^3x_2^2 - 3n{q_2}S_2^5x_2^2 - {q_1}S_1^3{x_2}{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, - n{q_1}S_1^3{x_2}{\eta _{{L_i}}} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{q_1}S_1^5{x_2}{\eta _{{L_i}}} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_1}{q_1}S_1^5{x_2}{\eta _{{L_i}}} - 3{P_{{x_1}}}{q_1}S_1^5{x_2}{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, \, - 3{P_{{x_2}}}{q_1}S_1^5{x_2}{\eta _{{L_i}}} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_2}{q_2}S_2^5{x_2}{\eta _{{L_i}}} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_2}{q_2}S_2^5{x_2}{\eta _{{L_i}}} + {q_2}S_2^3{x_2}{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, \, + 3{P_{{x_1}}}{q_2}S_2^5{x_2}{\eta _{{L_i}}} + 3{P_{{x_2}}}{q_2}S_2^5{x_2}{\eta _{{L_i}}} + 3n{q_1}S_1^5{x_1}{x_2}{\eta _{{L_i}}} - 3n{q_2}S_2^5{x_1}{x_2}{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, \, + 3n{q_2}S_2^5x_2^2{\eta _{{L_i}}} + 3{P_{{x_2}}}{q_1}S_1^5{x_2}\eta _{{L_i}}^2 - 3{P_{{x_2}}}{q_2}S_2^5{x_2}\eta _{{L_i}}^2 - 3n{q_1}S_1^5{x_1}{x_2}\eta _{{L_i}}^2 $ |
$ \, \, \, \, \, \, \, + n{q_1}S_1^3{x_2}{\xi _{{L_i}}}\, - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{q_1}S_1^5{x_2}{\xi _{{L_i}}}\, + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_1}{q_1}S_1^5{x_2}{\xi _{{L_i}}} - 6{P_{{x_1}}}{q_1}S_1^5{x_2}{\xi _{{L_i}}} $ |
$ \, \, \, \, \, \, \, - n{q_2}S_2^3{x_2}{\xi _{{L_i}}} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_2}{q_2}S_2^5{x_2}{\xi _{{L_i}}} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_2}{q_2}S_2^5{x_2}{\xi _{{L_i}}} - 6n{q_1}S_1^5x_2^2{\xi _{{L_i}}} $ |
$ \, \, \, \, \, \, \, + 6n{q_2}S_2^5x_2^2{\xi _{{L_i}}} + 3{P_{{x_1}}}{q_1}S_1^5{x_2}{\eta _{{L_i}}}{\xi _{{L_i}}} + 6{P_{{x_1}}}{q_2}S_2^5{x_2}{\xi _{{L_i}}} + 3{P_{{x_2}}}{q_1}S_1^5{x_2}{\eta _{{L_i}}}{\xi _{{L_i}}} $ |
$ \, \, \, \, \, \, \, - 3{P_{{x_1}}}{q_2}S_2^5{x_2}{\eta _{{L_i}}}{\xi _{{L_i}}} - 3{P_{{x_2}}}{q_2}S_2^5{x_2}{\eta _{{L_i}}}{\xi _{{L_i}}} + 3n{q_1}S_1^5x_2^2\xi _{{L_i}}^2 - 3{P_{{x_1}}}{q_2}S_2^5{x_2}\xi _{{L_i}}^2 $ |
$ \, \, \, \, \, \, \, + 3n{q_1}S_1^5x_2^2{\eta _{{L_i}}}{\xi _{{L_i}}} + 3{P_{{x_1}}}{q_1}S_1^5{x_2}\xi _{{L_i}}^2 - 3n{q_1}S_1^5{x_1}{x_2}{\eta _{{L_i}}}{\xi _{{L_i}}} - 3n{q_2}S_2^5x_2^2\xi _{{L_i}}^2 $ |
$ \, \, \, \, \, \, \, - 3n{q_2}S_2^5x_2^2{\eta _{{L_i}}}{\xi _{{L_i}}} + 3n{q_2}S_2^5{x_1}{x_2}{\eta _{{L_i}}}{\xi _{{L_i}}} - 3n{q_1}S_1^5x_2^2{\eta _{{L_i}}} + 3n{q_2}S_2^5{x_1}{x_2}\eta _{{L_i}}^2 $ |
$ \text{N}_2^2 = {\mu ^2}{q_2}S_2^3{x_2} - n{\mu ^2}{q_2}S_2^3{x_2} - {\mu ^2}{q_1}S_1^3{x_2} + n{\mu ^2}{q_1}S_1^3{x_2} $ |
$ \text{K}_0^2 = 2n{P_{{x_1}}}{P_{{x_2}}} - 2{n^2}{P_{{x_1}}}{P_{x2}} + P_{{x_1}}^2{q_1}S_1^3 + {P_{{x_1}}}{P_{{x_2}}}{q_1}S_1^3 - 3P_{{x_1}}^2{q_1}S_1^5{x_2}{\xi _{{L_i}}} - 2n{P_{{x_1}}}{q_1}S_1^3{x_1} $ |
$ \, \, \, \, \, \, \, + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_1}}}{P_{{x_2}}}{q_1}S_1^5 - 2{n^2}{x_1} - 2{n^2}{P_{{x_1}}}{x_1} + 2{n^3}{P_{{x_1}}}{x_1} + 2{q_1}S_1^3{x_1} + {P_{{x_1}}}{q_1}S_1^3{x_1} + 2n{P_{{x_2}}} $ |
$ \, \, \, \, \, \, \, + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}P_{{x_1}}^2{q_1}S_1^5 + 3{A_1}{q_1}S_1^5{x_1} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_1}}}{q_1}S_1^5{x_1} - 3n{A_1}{P_{{x_1}}}{q_1}S_1^5{x_1} - 2{n^2}{P_{{x_1}}}{x_2} $ |
$ \, \, \, \, \, \, \, - 2{n^3}{P_{{x_1}}}{x_2} + {P_{{x_1}}}{q_1}S_1^3{x_2} + 2n{P_{{x_1}}}{q_1}S_1^3{x_2} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_1}}}{q_1}S_1^5{x_2} + 3n{A_1}{P_{{x_1}}}{q_1}S_1^5{x_2} $ |
$ \, \, \, \, \, \, \, + ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2})n{A_1}{P_{{x_1}}}{q_1}S_1^7{x_1}\eta _{{L_i}}^2\, + n{P_{{x_1}}}{q_1}S_1^3{\eta _{{L_i}}} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_1}}}{q_1}S_1^5{\eta _{{L_i}}} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_1}{P_{{x_1}}}{q_1}S_1^5{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, \, \, - 3P_{{x_1}}^2{q_1}S_1^5{x_1}{\eta _{{L_i}}} - ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2}){A_1}{P_{{x_1}}}{P_{{x_2}}}{q_1}S_1^7\eta _{{L_i}}^2 + {P_{{x_1}}}{q_1}S_1^3{\xi _{{L_i}}} - n{P_{{x_1}}}{q_1}S_1^5{\xi _{{L_i}}} - 3{P_{{x_1}}}{P_{x2}}{q_1}S_1^5\eta _{{L_i}}^2 $ |
$ \, \, \, \, \, \, \, \, + 3{A_1}{q_1}S_1^5{\xi _{{L_i}}} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_1}}}{q_1}S_1^5{\xi _{{L_i}}} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_1}{P_{{x_1}}}{q_1}S_1^5{\xi _{{L_i}}} - 6P_{{x_1}}^2{q_1}S_1^5{x_1}{\xi _{{L_i}}} - 2{n^2}P_{{x_1}}^2 $ |
$ \, \, \, \, \, \, \, \, - 3P_{{x_1}}^2{q_1}S_1^5\xi _{{L_i}}^2 - 3n{P_{{x_1}}}{q_1}S_1^5{x_1}{x_2}{\xi _{{L_i}}} + 2{q_1}S_1^3{\xi _{{L_i}}}\, - 3P_{{x_1}}^2{q_1}S_1^5{\eta _{{L_i}}}{\xi _{{L_i}}} - 3{P_{{x_1}}}{P_{{x_2}}}{q_1}S_1^5{\eta _{{L_i}}}{\xi _{{L_i}}} $ |
$ \, \, \, \, \, \, \, \, - ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2}){A_1}P_{{x_1}}^2{q_1}S_1^7{\eta _{{L_i}}}{\xi _{{L_i}}} - ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2}){A_1}{P_{{x_1}}}{P_{{x_2}}}{q_1}S_1^7{\eta _{{L_i}}}{\xi _{{L_i}}} + ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2})n{A_1}{P_{{x_1}}}{q_1}S_1^7{x_1}{\eta _{{L_i}}}{\xi _{{L_i}}} $ |
$ \, \, \, \, \, \, \, \, - 3n{P_{{x_1}}}{q_1}S_1^5{x_2}{\eta _{{L_i}}}{\xi _{{L_i}}} - ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2}){A_1}P_{{x_1}}^2{q_1}S_1^7\xi _{{L_i}}^2 + {P_{{x_1}}}{q_1}S_1^3{\eta _{{L_i}}} - 3n{P_{{x_1}}}{q_1}S_1^5x_2^2{\xi _{{L_i}}} - 2nP_{{x_1}}^2 $ |
$ \, \, \, \, \, \, \, \, - 3n{P_{{x_1}}}{q_1}S_1^5{x_2}\xi _{{L_i}}^2 - ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2})n{A_1}{P_{{x_1}}}{q_1}S_1^7{x_2}\xi _{{L_i}}^2 - 3{P_{{x_1}}}{P_{{x_2}}}{q_1}S_1^5{x_2}{\xi _{{L_i}}} + 3{P_{{x_1}}}{q_1}S_1^3\xi _{{L_i}}^3 $ |
$ \, \, \, \, \, \, \, \, - 2n{P_{{x_1}}}{q_1}S_1^3\xi _{{L_i}}^3 + 3\mu {q_2}S_2^3\xi _{{L_i}}^3 + 3n{P_{{x_1}}}{q_1}S_1^5{x_1}{\eta _{{L_i}}}{\xi _{{L_i}}} - ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2})n{A_1}{P_{{x_1}}}{q_1}S_1^7{x_2}{\eta _{{L_i}}}{\xi _{{L_i}}} $ |
$ \text{K}_1^2 = - {P_{{x_1}}}{q_1}S_1^3{\xi _{{L_i}}} + n{P_{{x_1}}}{q_1}S_1^3{\xi _{{L_i}}} - 3{A_1}{q_1}S_1^5{\xi _{{L_i}}} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_1}}}{q_1}S_1^5{\xi _{{L_i}}} - n{P_{{x_1}}}{q_1}S_2^3{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, \, + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_1}{P_{{x_1}}}{q_1}S_1^5{\xi _{{L_i}}} + 3{A_2}{q_2}S_2^5{x_1}\, \, - n{P_{{x_1}}}{q_2}S_2^3{\xi _{{L_i}}} + 3{A_2}{q_2}S_2^5{\xi _{{L_i}}} + 3n{P_{{x_1}}}{q_2}S_2^5{x_1}\eta _{{L_i}}^2 $ |
$ \, \, \, \, \, \, \, - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_2}{P_{{x_1}}}{q_2}S_2^5{\xi _{{L_i}}} + 2{q_2}S_2^3{\xi _{{L_i}}} + 6P_{{x_1}}^2{q_2}S_2^5{\xi _{{L_i}}}\, - 6n{P_{{x_1}}}{q_1}S_1^5{x_2}{\xi _{{L_i}}} + 6n{P_{{x_1}}}{q_2}S_2^5{x_2}{\xi _{{L_i}}} $ |
$ \, \, \, \, \, \, \, + 3P_{{x_1}}^2{q_1}S_1^5{\eta _{{L_i}}}{\xi _{{L_i}}} + 3{P_{{x_1}}}{P_{{x_2}}}{q_1}S_1^5{\eta _{{L_i}}}{\xi _{{L_i}}} + 3n{P_{{x_1}}}{q_1}S_1^5{x_2}{\eta _{{L_i}}}{\xi _{{L_i}}} + 3P_{{x_1}}^2{q_1}S_1^5\xi _{{L_i}}^2 + n{P_{{x_1}}}{q_2}S_2^3 $ |
$ \, \, \, \, \, \, \, - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_1}{P_{{x_1}}}{q_1}S_1^5{\eta _{{L_i}}} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_2}{P_{{x_1}}}{q_2}S_2^5{\xi _{{L_i}}}\, - 3P_{{x_1}}^2{q_2}S_2^5\xi _{{L_i}}^2 + 3n{P_{{x_1}}}{q_1}S_1^5{x_2}\xi _{{L_i}}^2 $ |
$ \, \, \, \, \, \, \, - 3n{P_{{x_1}}}{q_2}S_2^5{x_2}\xi _{{L_i}}^2 - 3n{P_{{x_1}}}{q_2}S_2^5{x_2}{\eta _{{L_i}}}{\xi _{{L_i}}} - 3{q_1}S_1^3\xi _{{L_i}}^3 - 3P_{{x_1}}^2{q_2}S_2^5{\eta _{{L_i}}}{\xi _{{L_i}}} - {P_{{x_1}}}{q_2}S_2^3 $ |
$ \, \, \, \, \, \, \, - 3{P_{{x_1}}}{P_{{x_2}}}{q_2}S_2^5{\eta _{{L_i}}}{\xi _{{L_i}}}\, - 3n{P_{{x_1}}}{q_1}S_1^5{x_1}{\eta _{{L_i}}}{\xi _{{L_i}}} + 3n{P_{{x_1}}}{q_2}S_2^5{x_1}{\eta _{{L_i}}}{\xi _{{L_i}}} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_1}{P_{{x_1}}}{q_1}S_1^5 $ |
$ \, \, \, \, \, \, \, + 2{q_1}S_1^3 + {P_{{x_1}}}{q_1}S_1^3 - n{P_{{x_1}}}{q_1}S_1^3 - P_{{x_1}}^2{q_1}S_1^3\, - {P_{{x_1}}}{P_{{x_2}}}{q_1}S_1^3 + 3{A_1}{q_1}S_1^5 + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_1}}}{q_1}S_1^5 $ |
$ \, \, \, \, \, \, \, - 2{q_2}S_2^3 + {P_{{x_1}}}{P_{{x_2}}}{q_2}S_2^3 - 3{A_2}{q_2}S_2^5 - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_2}{P_{{x_1}}}{q_2}S_2^5 + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_2}{P_{{x_1}}}{q_2}S_2^5 + P_{{x_1}}^2{q_2}S_2^3 $ |
$ \, \, \, \, \, \, \, - 2{q_1}S_1^3{x_1} - {P_{{x_1}}}{q_1}S_1^3{x_1} + 2n{P_{{x_1}}}{q_1}S_1^3{x_1} - 3{A_1}{q_1}S_1^5{x_1} + 2{q_2}S_2^3{x_1} + {P_{{x_1}}}{q_2}S_2^3{x_1} $ |
$ \, \, \, \, \, \, \, - 2n{P_{{x_1}}}{q_1}S_1^3{x_2} + {P_{{x_1}}}{q_2}S_2^3{x_2} - 2n{P_{{x_1}}}{q_2}S_2^3{x_1} - 3P_{{x_1}}^2{q_2}S_2^5\, - {P_{{x_1}}}{q_1}S_1^3{x_2} + {P_{{x_1}}}{q_2}S_2^3{\xi _{{L_i}}} $ |
$ \, \, \, \, \, \, \, - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_1}}}{q_1}S_1^5{\eta _{{L_i}}} + 2n{P_{{x_1}}}{q_2}S_2^3{x_2} - 3n{P_{{x_1}}}{q_2}S_2^5{x_2} - {P_{{x_1}}}{q_1}S_1^3{\eta _{{L_i}}} - 3P_{{x_1}}^2{q_1}S_1^5{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, \, + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_2}{P_{{x_1}}}{q_2}S_2^5{\eta _{{L_i}}} - 3{P_{{x_1}}}{P_{{x_2}}}{q_1}S_1^5{\eta _{{L_i}}} - 3{P_{{x_1}}}{P_{{x_2}}}{q_2}S_2^5\eta _{{L_i}}^2\, + n{P_{{x_1}}}{q_2}S_2^3{\eta _{{L_i}}}\, $ |
$ \, \, \, \, \, \, \, + 3P_{{x_1}}^2{q_2}S_2^5{\eta _{{L_i}}} - 3{P_{{x_1}}}{P_{{x_2}}}{q_1}S_1^5{x_1}{\eta _{{L_i}}} - 3n{P_{{x_1}}}{q_2}S_2^5{\eta _{{L_i}}} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_2}{P_{{x_1}}}{q_2}S_2^7\eta _{{L_i}}^2 $ |
$ \, \, \, \, \, \, \, + 3n{P_{{x_1}}}{q_1}S_1^5{\eta _{{L_i}}} - 3n{P_{{x_1}}}{q_1}S_1^5{x_2}{\eta _{{L_i}}} - 6{P_{{x_1}}}{P_{x2}}{q_1}S_1^3{x_2}{\eta _{{L_i}}} + 3n{P_{{x_1}}}{q_2}S_2^3{x_2}{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, \, + 3n{P_{{x_1}}}{q_1}S_1^5{x_1}{x_2}{\eta _{{L_i}}} + 3P_{{x_1}}^2P_{{x_2}}^2{q_1}S_1^5\eta _{{L_i}}^2 + 3{P_{{x_1}}}{P_{{x_2}}}{q_2}S_2^5{\eta _{{L_i}}} + 3n{P_{{x_1}}}{q_1}S_1^5{x_1}{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, \, + 3n{P_{{x_1}}}{q_1}S_1^7\eta _{{L_i}}^2 - 3n{P_{{x_1}}}{q_1}S_1^5{x_1}\eta _{{L_i}}^2 - {2_1}{q_1}S_1^3{\xi _{{L_i}}} - 6P_{{x_1}}^2{q_1}S_1^5{\xi _{{L_i}}} + {P_{{x_1}}}{q_2}S_2^3{\eta _{{L_i}}} $ |
$ \text{K}_2^2 = - 2{q_1}S_1^3 - {\mu ^2}{P_{{x_1}}}{q_1}S_1^3 + n{P_{{x_1}}}{q_1}S_1^3 + 2{q_2}S_2^3 + {P_{{x_1}}}{q_2}S_2^3 - n{P_{{x_1}}}{q_2}S_2^3 - 3{A_1}{q_1}S_1^5 + 3{A_2}{q_2}S_2^5 $ |
$ \text{G}_0^2 = - 2n{P_{{x_1}}}{P_{{x_2}}} - 2{n^2}{P_{{x_1}}}{P_{{x_2}}} + 2nP_{{x_2}}^2 - 2{n^2}P_{{x_2}}^2 + {P_{{x_1}}}{P_{{x_2}}}{q_1}S_1^3 + P_{{x_2}}^2{q_1}S_1^3 + {P_{{x_2}}}{q_1}S_1^3{x_1} $ |
$ \, \, \, \, \, \, \, + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_1}}}{P_{{x_2}}}{q_1}S_1^5 + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}P_{{x_2}}^2{q_1}S_1^5 - 2{n^2}{P_{{x_2}}}{x_1} + 2{n^3}{P_{{x_2}}}{x_1} - 2n{P_{{x_2}}}{q_1}S_1^3{x_1} $ |
$ \, \, \, \, \, \, \, + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_2}}}{q_1}S_1^5{x_1} - 3n{A_1}{P_{{x_2}}}{q_1}S_1^5{x_1} - 2{n^2}{x_2} - 2{n^2}{P_{{x_2}}}{x_2} - 2{n^3}{P_{{x_2}}}{x_2} + 2{q_1}S_1^3{x_2} $ |
$ \, \, \, \, \, \, \, + {P_{{x_2}}}{q_1}S_1^3{x_2} + 2n{P_{{x_2}}}{q_1}S_1^3{x_2} + 3{A_1}{q_1}S_1^5{x_2} + {P_{{x_2}}}{q_1}S_1^3{\eta _{{L_i}}} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_2}}}{q_1}S_1^5{x_2} $ |
$ \, \, \, \, \, \, \, + 3n{A_1}{P_{{x_2}}}{q_1}S_1^5{x_2} + 3{A_1}{q_1}S_1^5{\eta _{{L_i}}} + 2{q_1}S_1^3{\eta _{{L_i}}} + n{P_{{x_2}}}{q_1}S_1^3{\eta _{{L_i}}} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_1}{P_{{x_2}}}{q_1}S_1^5{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, \, + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_2}}}{q_1}S_1^5{\eta _{{L_i}}} - 3{P_{{x_1}}}{P_{{x_2}}}{q_1}S_1^5{x_1}{\eta _{{L_i}}} + 3n{P_{{x_2}}}{q_1}S_1^5x_1^2{\eta _{{L_i}}} - 6P_{{x_2}}^2{q_1}S_1^5{x_2}{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, \, - 3{P_{{x_1}}}{P_{{x_2}}}{q_1}S_1^5{x_2}{\xi _{{L_i}}} - 3P_{{x_2}}^2{q_1}S_1^5{x_2}{\xi _{{L_i}}} - 3n{P_{{x_2}}}{q_1}S_1^5x_2^2{\xi _{{L_i}}} - 3{P_{{x_1}}}{P_{{x_2}}}{q_1}S_1^5{\eta _{{L_i}}}{\xi _{{L_i}}} - 2n{P_{{x_1}}} $ |
$ \, \, \, \, \, \, \, - 3{P_{{x_1}}}{P_{{x_2}}}{q_1}S_1^5\xi _{{L_i}}^2 + 3\mu {P_{{x_1}}}{P_{{x_2}}}{q_1}S_1^5\xi _{{L_i}}^2 - ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2}){A_1}P_{{x_2}}^2{q_1}S_1^7{\eta _{{L_i}}}{\xi _{{L_i}}} - 3n{P_{{x_2}}}{q_1}S_1^5{x_2}\xi _{{L_i}}^2 $ |
$ \, \, \, \, \, \, \, + ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2})n{A_1}{P_{{x_2}}}{q_1}S_1^7{x_1}{\eta _{{L_i}}}{\xi _{{L_i}}} + 3n{P_{{x_2}}}{q_1}S_1^5{x_1}{\eta _{{L_i}}}{\xi _{{L_i}}} - ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2}){A_1}{P_{{x_1}}}{P_{{x_2}}}{q_1}S_1^7\xi _{{L_i}}^2 + {P_{{x_2}}}{q_1}S_1^3{\xi _{{L_i}}}\, $ |
$ \, \, \, \, \, \, \, - 3n{P_{{x_2}}}{q_1}S_1^5{x_2}{\eta _{{L_i}}}{\xi _{{L_i}}} + 3n{P_{{x_2}}}{q_1}S_1^5{x_1}{x_2}{\eta _{{L_i}}} - 3P_{{x_2}}^2{q_1}S_1^5\eta _{{L_i}}^2 - ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2}){A_1}P_{{x_2}}^2{q_1}S_1^7\eta _{{L_i}}^2 $ |
$ \, \, \, \, \, \, \, + ({{15} \mathord{\left/ {\vphantom {{15} 2}} \right. } 2})n{A_1}{P_{{x_2}}}{q_1}S_1^7{x_1}\eta _{{L_i}}^2 + 3n{P_{{x_2}}}{q_1}S_1^5{x_1}\eta _{{L_i}}^2 + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_2}}}{q_1}S_1^5{\xi _{{L_i}}} - n{P_{{x_2}}}{q_1}S_1^3{\xi _{{L_i}}} $ |
$ \, \, \, \, \, \, \, - 6{P_{{x_1}}}{P_{{x_2}}}{q_1}S_1^5{x_1}{\xi _{{L_i}}} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_1}{P_{{x_2}}}{q_1}S_1^5{\xi _{{L_i}}} - 3n{P_{{x_2}}}{q_1}S_1^5{x_1}{x_2}{\xi _{{L_i}}} - 3P_{{x_2}}^2{q_1}S_1^5{\eta _{{L_i}}}{\xi _{{L_i}}} $ |
$ \text{G}_1^2 = ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_2}}}{q_1}S_1^5 - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_1}{P_{{x_2}}}{q_1}S_1^5 - P_{{x_2}}^2{q_1}S_1^3\mu {P_{{x_2}}}{q_1}S_1^3 - n{P_{{x_2}}}{q_1}S_1^3 - {P_{{x_1}}}{P_{{x_2}}}{q_1}S_1^3 $ |
$ \, \, \, \, \, \, \, - {P_{{x_2}}}{q_2}S_2^3 + n{P_{{x_2}}}{q_2}S_2^3 + {P_{{x_1}}}{P_{{x_2}}}{q_2}S_2^3 + P_{{x_2}}^2{q_2}S_2^3 - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_2}{P_{{x_2}}}{q_2}S_2^5 + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_2}{P_{{x_2}}}{q_2}S_2^5 $ |
$ \, \, \, \, \, \, \, - \, 3{P_{{x_1}}}{P_{{x_2}}}{q_2}S_2^5 - {P_{{x_2}}}{q_1}S_1^3{x_1} + 2n{P_{{x_2}}}{q_1}S_1^3{x_1}\, + {P_{{x_2}}}{q_2}S_2^3{x_1} - 2n{P_{{x_2}}}{q_2}S_2^3{x_1} - 2{q_1}S_1^3{x_2} $ |
$ \, \, \, \, \, \, \, - {P_{{x_2}}}{q_1}S_1^3{x_2} - 2n{P_{{x_2}}}{q_1}S_1^3{x_2} - 3{A_1}{q_1}S_1^5{x_2} + 2{q_2}S_2^3{x_2} + {P_{{x_2}}}{q_2}S_2^3{x_2} + 2n{P_{{x_2}}}{q_2}S_2^3{x_2} $ |
$ \, \, \, \, \, \, \, - {P_{{x_2}}}{q_1}S_1^3{\eta _{{L_i}}}\, \, + 2{q_2}S_2^3{\eta _{{L_i}}} + 3{A_2}{q_2}S_2^5{x_2} - 3n{P_{{x_2}}}{q_2}S_2^5{x_2} - 2{q_1}S_1^3{\eta _{{L_i}}} - n{P_{{x_2}}}{q_1}S_1^3{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, \, - 3{A_1}{q_1}S_1^5{\eta _{{L_i}}} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_2}}}{q_1}S_1^5{\eta _{{L_i}}} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_1}{P_{{x_2}}}{q_1}S_1^5{\eta _{{L_i}}} - 3{P_{{x_1}}}{P_{{x_2}}}{q_1}S_1^5{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, \, + {P_{{x_2}}}{q_2}S_2^3{\eta _{{L_i}}} + n{P_{{x_2}}}{q_2}S_2^3{\eta _{{L_i}}} + 3{A_2}{q_2}S_2^5{\eta _{{L_i}}} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_2}{P_{{x_2}}}{q_2}S_2^5{\eta _{{L_i}}} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_2}{P_{{x_2}}}{q_2}S_2^5{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, \, + 3{P_{{x_1}}}{P_{{x_2}}}{q_2}S_2^5{\eta _{{L_i}}} + 3P_{{x_2}}^2{q_2}S_2^5{\eta _{{L_i}}} + 3n{P_{{x_2}}}{q_1}S_1^5{x_1}{\eta _{{L_i}}} - 3n{P_{{x_2}}}{q_2}S_2^5{x_1}{\eta _{{L_i}}} - 3n{P_{{x_2}}}{q_1}S_1^5{x_2}{\eta _{{L_i}}} $ |
$ \, \, \, \, \, \, \, + 3n{P_{{x_2}}}{q_2}S_2^5{x_2}{\eta _{{L_i}}} + 3P_{{x_2}}^2{q_1}S_1^5\eta _{{L_i}}^2\, - 3P_{{x_2}}^2{q_2}S_2^5\eta _{{L_i}}^2 - 3n\mu {P_{{x_2}}}{q_1}S_1^5{x_1}\eta _{{L_i}}^2 - 6{P_{{x_1}}}{P_{{x_2}}}{q_1}S_1^5{\xi _{{L_i}}} $ |
$ \, \, \, \, \, \, \, + 3n{P_{{x_2}}}{q_2}S_2^5{x_1}\eta _{{L_i}}^2 + n\mu {P_{{x_2}}}{q_1}S_1^3{\xi _{{L_i}}} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_1}{P_{{x_2}}}{q_1}S_1^5{\xi _{{L_i}}} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_1}{P_{{x_2}}}{q_1}S_1^5{\xi _{{L_i}}} + {P_{{x_2}}}{q_2}S_2^3{\xi _{{L_i}}} $ |
$ \, \, \, \, \, \, \, - n{P_{{x_2}}}{q_2}S_2^3{\xi _{{L_i}}} + ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}){A_2}{P_{{x_2}}}{q_2}S_2^5{\xi _{{L_i}}} - ({3 \mathord{\left/ {\vphantom {3 2}} \right. } 2})n{A_2}{P_{{x_2}}}{q_2}S_2^5{\xi _{{L_i}}} + 6{P_{{x_1}}}{P_{{x_2}}}{q_2}S_2^5{\xi _{{L_i}}} - {P_{{x_2}}}{q_1}S_1^3{\xi _{{L_i}}} $ |
$ \, \, \, \, \, \, \, - 6n{P_{{x_2}}}{q_1}S_1^5{x_2}{\xi _{{L_i}}} + 3n{P_{{x_2}}}{q_2}S_2^5{x_1}{\eta _{{L_i}}}{\xi _{{L_i}}} + 3{P_{{x_1}}}{P_{{x_2}}}{q_1}S_1^5{\eta _{{L_i}}}{\xi _{{L_i}}} + 3P_{{x_2}}^2{q_1}S_1^5{\eta _{{L_i}}}{\xi _{{L_i}}} - 3{P_{{x_1}}}{P_{{x_2}}}{q_2}S_2^5\xi _{{L_i}}^2 $ |
$ \, \, \, \, \, \, \, - 3P_{{x_2}}^2{q_2}S_2^5{\eta _{{L_i}}}{\xi _{{L_i}}} - 3{P_{{x_1}}}{P_{{x_2}}}{q_2}S_2^5{\eta _{{L_i}}}{\xi _{{L_i}}} - 3n{P_{{x_2}}}{q_2}S_2^5{x_2}{\eta _{{L_i}}}{\xi _{{L_i}}}\, + 3n{P_{{x_2}}}{q_1}S_1^5{x_2}\xi _{{L_i}}^2 $ |
$ \, \, \, \, \, \, \, - 3n{P_{{x_2}}}{q_2}S_2^5{x_2}\xi _{{L_i}}^2\, + 3n{P_{{x_2}}}{q_1}S_1^5{x_2}{\eta _{{L_i}}}{\xi _{{L_i}}} - 3n{P_{{x_2}}}{q_1}S_1^5{x_1}{\eta _{{L_i}}}{\xi _{{L_i}}} + 6n{P_{{x_2}}}{q_2}S_2^5{x_2}{\xi _{{L_i}}} - 3P_{{x_2}}^2{q_1}S_1^5{\eta _{{L_i}}} $ |
$ \text{G}_2^2 = - {P_{{x_2}}}{q_1}S_1^3 + n{P_{{x_2}}}{q_1}S_1^3 + {P_{{x_2}}}{q_2}S_2^3 - n{P_{{x_2}}}{q_2}S_2^3 $ |
We can conclude our work in this research as follows: First we have outlined briefly the restricted three body problem, then we defined the infinitesimal orbits. We expressed the photogravitational oblate RTBP in both inertial and rotated coordinate systems. The Hamiltonian of the problem under investigation is constructed. Then it is transferred to any point of the equilibruim point as an origin. We have reviewed the Lie operator method, as a method of solution. Finally we have obtained the explicit first order as well as the second order solutions for the coordinates and their conjugate momenta of a test particle in an infinitesimal orbit around any equilibrium point.
The authors declare that there are no Conflict of interests associated with this work.
[1] |
Hori K, Sen A, Artavanis-Tsakonas S (2013) Notch signaling at a glance. J Cell Sci 126: 2135-2140. doi: 10.1242/jcs.127308
![]() |
[2] |
ArtavanisTsakonas S, Rand MD, Lake RJ (1999) Notch signaling: Cell fate control and signal itegration in development. Science 284: 770-776. doi: 10.1126/science.284.5415.770
![]() |
[3] |
Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mchanism. Cell 137: 216-233. doi: 10.1016/j.cell.2009.03.045
![]() |
[4] |
Andersson ER, Sandberg R, Lendahl U (2011) Notch signaling: simplicity in design, versatility i function. Development 138: 3593-3612. doi: 10.1242/dev.063610
![]() |
[5] |
Louvi A, Artavanis-Tsakonas S (2012) Notch and disease: a growing field. Semin Cell Dev Biol 23: 473-480. doi: 10.1016/j.semcdb.2012.02.005
![]() |
[6] |
Ntziachristos P, Lim JS, Sage J, et al. (2014) From fly wings to targeted cancer therapies: a cntennial for notch signaling. Cancer Cell 25: 318-334. doi: 10.1016/j.ccr.2014.02.018
![]() |
[7] |
Radtke F, Raj K (2003) The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rv Cancer 3: 756-767. doi: 10.1038/nrc1186
![]() |
[8] |
Ranganathan P, Weaver KL, Capobianco AJ (2011) Notch signalling in solid tumours: a little bit o everything but not all the time. Nat Rev Cancer 11: 338-351. doi: 10.1038/nrc3035
![]() |
[9] | Morgan T (1917) The theory of the gene. Am Nat 51: 513-544. |
[10] |
Dominguez M (2014) Oncogenic programmes and Notch activity: an 'organized crime'. Semin Cell Dev Biol 28: 78-85. doi: 10.1016/j.semcdb.2014.04.012
![]() |
[11] |
Blaumueller CM, Qi H, Zagouras P, et al. (1997) Intracellular cleavage of Notch leads to a hterodimeric receptor on the plasma membrane. Cell 90: 281-291. doi: 10.1016/S0092-8674(00)80336-0
![]() |
[12] |
Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7: 678-689. doi: 10.1038/nrm2009
![]() |
[13] |
Fortini ME (2009) Notch signaling: the core pathway and its posttranslational regulation. Dev Cll 16: 633-647. doi: 10.1016/j.devcel.2009.03.010
![]() |
[14] |
Bray S, Bernard F (2010) Notch targets and their regulation. Curr Top Dev Biol 92: 253-275. doi: 10.1016/S0070-2153(10)92008-5
![]() |
[15] |
Kandachar V, Roegiers F (2012) Endocytosis and control of Notch signaling. Curr Opin Cell Bol 24: 534-540. doi: 10.1016/j.ceb.2012.06.006
![]() |
[16] |
Baron M (2012) Endocytic routes to Notch activation. Semin Cell Dev Biol 23: 437-442. doi: 10.1016/j.semcdb.2012.01.008
![]() |
[17] |
Vaccari T, Bilder D (2009) At the crossroads of polarity, proliferation and apoptosis: the use of Dosophila to unravel the multifaceted role of endocytosis in tumor suppression. Mol Oncol 3: 354-365. doi: 10.1016/j.molonc.2009.05.005
![]() |
[18] |
Vaccari T, Lu H, Kanwar R, et al. (2008) Endosomal entry regulates Notch receptor activation in Dosophila melanogaster. J Cell Biol 180: 755-762. doi: 10.1083/jcb.200708127
![]() |
[19] |
Fortini ME, Bilder D (2009) Endocytic regulation of Notch signaling. Curr Opin Genet Dev 19: 323-328. doi: 10.1016/j.gde.2009.04.005
![]() |
[20] |
Lu H, Bilder D (2005) Endocytic control of epithelial polarity and proliferation in Drosophila. Nt Cell Biol 7: 1232-1239. doi: 10.1038/ncb1324
![]() |
[21] |
Morrison HA, Dionne H, Rusten TE, et al. (2008) Regulation of early endosomal entry by the Dosophila tumor suppressors Rabenosyn and Vps45. Mol Biol Cell 19: 4167-4176. doi: 10.1091/mbc.E08-07-0716
![]() |
[22] |
Herz HM, Chen Z, Scherr H, et al. (2006) vps25 mosaics display non-autonomous cell survival ad overgrowth, and autonomous apoptosis. Development 133: 1871-1880. doi: 10.1242/dev.02356
![]() |
[23] |
Herz HM, Bergmann A (2009) Genetic analysis of ESCRT function in Drosophila: a tumour mdel for human Tsg101. Biochem Soc Trans 37: 204-207. doi: 10.1042/BST0370204
![]() |
[24] |
Vaccari T, Rusten TE, Menut L, et al. (2009) Comparative analysis of ESCRT-I, ESCRT-II and ECRT-III function in Drosophila by efficient isolation of ESCRT mutants. J Cell Sci 122: 2413-2423. doi: 10.1242/jcs.046391
![]() |
[25] |
Thompson BJ, Mathieu J, Sung HH, et al. (2005) Tumor suppressor properties of the ESCRT-II cmplex component Vps25 in Drosophila. Dev Cell 9: 711-720. doi: 10.1016/j.devcel.2005.09.020
![]() |
[26] |
Moberg KH, Schelble S, Burdick SK, et al. (2005) Mutations in erupted, the Drosophila ortholog o mammalian tumor susceptibility gene 101, elicit non- cell-autonomous overgrowth. Dev Cell 9: 699-710. doi: 10.1016/j.devcel.2005.09.018
![]() |
[27] |
Vaccari T, Bilder D (2005) The Drosophila tumor suppressor vps25 prevents nonautonomous oerproliferation by regulating notch trafficking. Dev Cell 9:687-698. doi: 10.1016/j.devcel.2005.09.019
![]() |
[28] |
Parsons LM, Portela M, Grzeschik NA, et al. (2014) Lgl regulates Notch signaling via edocytosis, independently of the apical aPKC-Par6-Baz polarity complex. Curr Biol 24:2073-2084. doi: 10.1016/j.cub.2014.07.075
![]() |
[29] |
Haynie JL, Bryant PJ (1986) Development of the eye-antenna imaginal disc and morphogenesis o the adult head in Drosophila melanogaster. J Exp Zool 237: 293-308. doi: 10.1002/jez.1402370302
![]() |
[30] | Jurgens G, Hartenstein V (1993) The terminal region of the body pattern Cold Spring Harbor, N: Cold Spring Harbor Laboratory Press: 687-746. |
[31] | Wolff T, Ready DF (1993) Pattern formation in the Drosophila retina. In: Bate M, Mrtinez-Arias A, editors. The development of Drosophila melanogaster. Cold Spring Harbor, Nw York: Cold Spring Harbor Laboratory Press. |
[32] | Garcia-Bellido A (1975) Genetic control of wing disc development in Drosophila. In: Porter R, Rvers J, editors. Cell patterning. Boston: CIBA Symposium. pp. 161-183. |
[33] |
Baker WK (1978) A clonal analysis reveals early developmental restrictions in the Drosophila had. Dev Biol 62: 447-463. doi: 10.1016/0012-1606(78)90227-0
![]() |
[34] |
Blair SS (1995) Compartments and appendage development in Drosophila. BioEssays 17: 299-309. doi: 10.1002/bies.950170406
![]() |
[35] |
Irvine KD, Rauskolb C (2001) Boundaries in development: formation and function. Annu Rev Cell Dev Biol 17: 189-214. doi: 10.1146/annurev.cellbio.17.1.189
![]() |
[36] |
Kumar JP, Moses K (2001) EGF receptor and Notch signaling act upstream of Eyeless/Pax6 to cntrol eye specification. Cell 104: 687-697. doi: 10.1016/S0092-8674(01)00265-3
![]() |
[37] |
Kenyon KL, Ranade SS, Curtiss J, et al. (2003) Coordinating proliferation and tissue secification to promote regional identity in the Drosophila head. Dev Cell 5: 403-414. doi: 10.1016/S1534-5807(03)00243-0
![]() |
[38] | Singh A, Tare M, Puli OR, et al. (2011) A glimpse into dorso-ventral patterning of the Dosophila eye. Dev Dyn 241: 69-84. |
[39] |
Cho KO, Choi KW (1998) Fringe is essential for mirror symmetry and morphogenesis in the Dosophila eye. Nature 396: 272-276. doi: 10.1038/24394
![]() |
[40] |
Dominguez M, de Celis JF (1998) A dorsal/ventral boundary established by Notch controls gowth and polarity in the Drosophila eye. Nature 396: 276-278. doi: 10.1038/24402
![]() |
[41] | Papayannopoulos V, Tomlinson A, Panin VM, et al. (1998) Dorsal-ventral signaling in the Dosophila eye. Science 281: 2031-2034. |
[42] | Cavodeassi F, Diez Del Corral R, Campuzano S, et al. (1999) Compartments and organising bundaries in the Drosophila eye: the role of the homeodomain Iroquois proteins. Development 126: 4933-4942. |
[43] | Maurel-Zaffran C, Treisman JE (2000) pannier acts upstream of wingless to direct dorsal eye dsc development in Drosophila. Development 127: 1007-1016. |
[44] |
Haines N, Irvine KD (2003) Glycosylation regulates Notch signalling. Nat Rev Mol Cell Biol 4: 786-797. doi: 10.1038/nrm1228
![]() |
[45] |
Munro S, Freeman M (2000) The Notch signalling regulator Fringe acts in the Golgi apparatus ad requires the glycosyltransferase signature motif DxD. Curr Biol 10: 813-820. doi: 10.1016/S0960-9822(00)00578-9
![]() |
[46] |
Bruckner K, Perez L, Clausen H, et al. (2000) Glycosyltransferase activity of Fringe modulates Ntch-Delta interactions. Nature 406: 411-415. doi: 10.1038/35019075
![]() |
[47] |
Roignant JY, Treisman JE (2009) Pattern formation in the Drosophila eye disc. Int J Dev Biol 53: 795-804. doi: 10.1387/ijdb.072483jr
![]() |
[48] |
Chao JL, Tsai YC, Chiu SJ, et al. (2004) Localized Notch signal acts through eyg and upd to pomote global growth in Drosophila eye. Development 131: 3839-3847. doi: 10.1242/dev.01258
![]() |
[49] |
Dominguez M, Ferres-Marco D, Gutierrez-Avino FJ, et al. (2004) Growth and specification of te eye are controlled independently by Eyegone and Eyeless in Drosophila melanogaster. Nat Gnet 36: 31-39. doi: 10.1038/ng1281
![]() |
[50] | Hombria JC, Brown S (2002) The fertile field of Drosophila Jak/STAT signalling. Curr Biol 12: R69-575. |
[51] |
Tsai YC, Sun YH (2004) Long-range effect of upd, a ligand for Jak/STAT pathway, on cell cycle i Drosophila eye development. Genesis 39: 141-153. doi: 10.1002/gene.20035
![]() |
[52] |
Reynolds-Kenneally J, Mlodzik M (2005) Notch signaling controls proliferation through cll-autonomous and non-autonomous mechanisms in the Drosophila eye. Dev Biol 285: 38-48. doi: 10.1016/j.ydbio.2005.05.038
![]() |
[53] |
Gutierrez-Avino FJ, Ferres-Marco D, Dominguez M (2009) The position and function of the Ntch-mediated eye growth organizer: the roles of JAK/STAT and four-jointed. EMBO Rep 10: 1051-1058. doi: 10.1038/embor.2009.140
![]() |
[54] |
Ishikawa HO, Takeuchi H, Haltiwanger RS, et al. (2008) Four-jointed is a Golgi kinase that posphorylates a subset of cadherin domains. Science 321: 401-404. doi: 10.1126/science.1158159
![]() |
[55] |
Edgar BA (2006) From cell structure to transcription: Hippo forges a new path. Cell 124: 267-273. doi: 10.1016/j.cell.2006.01.005
![]() |
[56] |
Halder G, Johnson RL (2011) Hippo signaling: growth control and beyond. Development 138: 9-22. doi: 10.1242/dev.045500
![]() |
[57] | Da Ros VG, Gutierrez-Perez I, Ferres-Marco D, et al. (2013) Dampening the signals transduced trough hedgehog via microRNA miR-7 facilitates notch- induced tumourigenesis. PLoS Biol 11: e001554. |
[58] |
Yao S, Lum L, Beachy P (2006) The ihog cell-surface proteins bind Hedgehog and mediate pthway activation. Cell 125: 343-357. doi: 10.1016/j.cell.2006.02.040
![]() |
[59] |
McLellan JS, Yao S, Zheng X, et al. (2006) Structure of a heparin-dependent complex of Hdgehog and Ihog. Proc Natl Acad Sci U S A 103: 17208-17213. doi: 10.1073/pnas.0606738103
![]() |
[60] |
Camp D, Currie K, Labbe A, et al. (2010) Ihog and Boi are essential for Hedgehog signaling in Dosophila. Neural Dev 5: 28. doi: 10.1186/1749-8104-5-28
![]() |
[61] |
Yan D, Wu Y, Yang Y, et al. (2010) The cell-surface proteins Dally-like and Ihog differentially rgulate Hedgehog signaling strength and range during development. Development 137:2033-2044. doi: 10.1242/dev.045740
![]() |
[62] |
Heberlein U, Singh CM, Luk AY, et al. (1995) Growth and differentiation in the Drosophila eye coordinated by hedgehog. Nature 373: 709-711. doi: 10.1038/373709a0
![]() |
[63] |
Christiansen AE, Ding T, Bergmann A (2012) Ligand-independent activation of the Hedgehog pthway displays non-cell autonomous proliferation during eye development in Drosophila. Mch Dev 129: 98-108. doi: 10.1016/j.mod.2012.05.009
![]() |
[64] |
Jones S, Zhang X, Parsons DW, et al. (2008) Core signaling pathways in human pancreatic cncers revealed by global genomic analyses. Science 321: 1801-1806. doi: 10.1126/science.1164368
![]() |
[65] |
Treisman JE, Heberlein U (1998) Eye development in Drosophila: formation of the eye field and cntrol of differentiation. Curr Top Dev Biol 39: 119-158. doi: 10.1016/S0070-2153(08)60454-8
![]() |
[66] | Wolff T, Ready DF (1991) The beginning of pattern formation in the Drosophila compound eye: te morphogenetic furrow and the second mitotic wave. Development 113: 841-850. |
[67] |
Heberlein U, Moses K (1995) Mechanisms of Drosophila retinal morphogenesis: The virtues of bing progressive. Cell 81: 987-990. doi: 10.1016/S0092-8674(05)80003-0
![]() |
[68] | Horsfield J, Penton A, Secombe J, et al. (1998) decapentaplegic is required for arrest in G1 phase dring Drosophila eye development. Development 125: 5069-5078. |
[69] |
Penton A, Selleck SB, Hoffmann FM (1997) Regulation of cell cycle synchronization by dcapentaplegic during Drosophila eye development. Science 275: 203-206. doi: 10.1126/science.275.5297.203
![]() |
[70] |
Thomas BJ, Gunning DA, Cho J, et al. (1994) Cell cycle progression in the developing Dosophila eye: Roughex encodes a novel protein required for the establishment of G1. Cell 77:1003-1014. doi: 10.1016/0092-8674(94)90440-5
![]() |
[71] |
De Nooij JC, Hariharan IK (1995) Uncoupling cell fate determination from patterned cell dvision in the Drosophila eye. Science 270: 983-985. doi: 10.1126/science.270.5238.983
![]() |
[72] |
Baonza A, Freeman M (2005) Control of cell proliferation in the Drosophila eye by Notch sgnaling. Dev Cell 8: 529-539. doi: 10.1016/j.devcel.2005.01.019
![]() |
[73] |
Firth LC, Baker NE (2005) Extracellular signals responsible for spatially regulated proliferation i the differentiating Drosophila eye. Dev Cell 8: 541-551. doi: 10.1016/j.devcel.2005.01.017
![]() |
[74] |
Sukhanova MJ, Du W (2008) Control of cell cycle entry and exiting from the second mitotic wve in the Drosophila developing eye. BMC Dev Biol 8: 7. doi: 10.1186/1471-213X-8-7
![]() |
[75] |
Knoblich JA, Sauer K, Jones L, et al. (1994) Cyclin E controls S phase progression and its down rgulation during Drosophila embryogenesis is required for the arrest of cell proliferation. Cell77: 107-120. doi: 10.1016/0092-8674(94)90239-9
![]() |
[76] |
Lane ME, Sauer K, Wallace K, et al. (1996) Dacapo, a cyclin-dependent kinase inhibitor, stops cll proliferation during Drosophila development. Cell 87: 1225-1235. doi: 10.1016/S0092-8674(00)81818-8
![]() |
[77] |
Reis T, Edgar BA (2004) Negative regulation of dE2F1 by cyclin-dependent kinases controls cell ccle timing. Cell 117: 253-264. doi: 10.1016/S0092-8674(04)00247-8
![]() |
[78] | Ma C, Moses K (1995) wingless and patched are negative regulators of the morphogenetic frrow and can affect tissue polarity in the developing Drosophila compound eye. Development121: 2279-2289. |
[79] |
Heberlein U, Hariharan IK, Rubin GM (1993) Star is required for neuronal differentiation in the Dosophila retina and displays dosage-sensitive interactions with Ras1. Devl Biol 160: 51-63. doi: 10.1006/dbio.1993.1285
![]() |
[80] |
Domínguez M, Hafen E (1997) Hedgehog directly controls initiation and propagation of retinal dfferentiation in the Drosophila eye. Genes Dev 11: 3254-3264. doi: 10.1101/gad.11.23.3254
![]() |
[81] | Greenwood S, Struhl G (1999) Progression of the morphogenetic furrow in the Drosophila eye: te roles of Hedgehog, Decapentaplegic and the Raf pathway. Development 126: 5795-5808. |
[82] |
Masucci JD, Miltenberger RJ, Hoffmann FM (1990) Pattern-specific expression of the Drosophila decapentaplegic gene in inaginal disks is regulated by 3' cis- regulatory elements. Gnes Dev 4: 2011-2023. doi: 10.1101/gad.4.11.2011
![]() |
[83] |
Baker NE, Yu SY (2001) The EGF receptor defines domains of cell cycle progression and srvival to regulate cell number in the developing Drosophila eye. Cell 104: 699-708. doi: 10.1016/S0092-8674(01)00266-5
![]() |
[84] |
Duman-Scheel M, Weng L, Xin S, et al. (2002) Hedgehog regulates cell growth and proliferation b inducing Cyclin D and Cyclin E. Nature 417: 299-304. doi: 10.1038/417299a
![]() |
[85] |
Dominguez M, Brunner M, Hafen E, et al. (1996) Sending and receiving the hedgehog signal: Cntrol by the Drosophila Gli protein Cubitus interruptus. Science 272: 1621-1625. doi: 10.1126/science.272.5268.1621
![]() |
[86] | Domínguez M (1999) Dual role for Hedgehog in the regulation of the proneural gene atonal dring ommatidia development. Development 126: 2345-2353. |
[87] |
Jarman AP, Grell EH, Ackerman L, et al. (1994) atonal is the proneural gene for Drosophila potoreceptors. Nature 369: 398-400. doi: 10.1038/369398a0
![]() |
[88] |
Bossuyt W, De Geest N, Aerts S, et al. (2009) The atonal proneural transcription factor links dfferentiation and tumor formation in Drosophila. PLoS Biol 7: e40. doi: 10.1371/journal.pbio.1000040
![]() |
[89] | Lim J, Jafar-Nejad H, Hsu YC, et al. (2008) Novel function of the class I bHLH protein Dughterless in the negative regulation of proneural gene expression in the Drosophila eye. EBO Rep 9: 1128-1133. |
[90] |
Sukhanova MJ, Deb DK, Gordon GM, et al. (2007) Proneural basic helix-loop- helix proteins ad epidermal growth factor receptor signaling coordinately regulate cell type specification and ck inhibitor expression during development. Mol Cell Biol 27: 2987-2996. doi: 10.1128/MCB.01685-06
![]() |
[91] |
Singh A, Choi KW (2003) Initial state of the Drosophila eye before dorsoventral specification is euivalent to ventral. Development 130: 6351-6360. doi: 10.1242/dev.00864
![]() |
[92] | Chern JJ, Choi KW (2002) Lobe mediates Notch signaling to control domain- specific growth in te Drosophila eye disc. Development 129: 4005-4013. |
[93] | Sun X, Artavanis-Tsakonas S (1996) The intracellular deletions of Delta and Serrate define dminant negative forms of the Drosophila Notch ligands. Development 122: 2465-2474. |
[94] |
Furriols M, Bray S (2001) A model Notch response element detects Suppressor of Hirless-dependent molecular switch. Curr Biol 11: 60-64. doi: 10.1016/S0960-9822(00)00044-0
![]() |
[95] | de Celis JF, Tyler DM, de Celis J, et al. (1998) Notch signalling mediates segmentation of the Dosophila leg. Development 125: 4617-4626. |
[96] |
Rafel N, Milan M (2008) Notch signalling coordinates tissue growth and wing fate specification i Drosophila. Development 135: 3995-4001. doi: 10.1242/dev.027789
![]() |
[97] |
Diaz-Benjumea F, Cohen SM (1993) Interactions between dorsal and ventral cells in the iaginal disc directs wing development in Drosophila. Cell 75: 741-752. doi: 10.1016/0092-8674(93)90494-B
![]() |
[98] | Tabata T, Schwartz C, Gustavson E, et al. (1995) Creating a Drosophila wing de novo, the role o engrailed and the compartment hypotesis. Development 121: 3359-3369. |
[99] | Zecca M, Basler K, Struhl G (1995) Sequential organizing activities of engrailed, hedgehog and dcapentaplegic in the Drosophila wing. Development 121: 2265-2278. |
[100] |
Lawrence PA, Morata G (1976) Compartments in the wing of Drosophila: a study of the egrailed gene. Dev Biol 50: 321-337. doi: 10.1016/0012-1606(76)90155-X
![]() |
[101] | Blair SS, Brower DL, Thomas JB, et al. (1994) The role of apterous in the control of drsoventral compartmentalization and PS integrin gene expression in the developing wing of Dosophila. Development 120: 1805-1815. |
[102] | Diaz-Benjumea FJ, Cohen SM (1995) Serrate signals through Notch to establish a Wingless-dependent organizer at the dorsal/ventral compartment boundary of the Drosophila wng. Development 121: 4215-4225. |
[103] |
Milan M, Cohen SM (2000) Subdividing cell populations in the developing limbs of Drosophila: d wing veins and leg segments define units of growth control? Dev Biol 217: 1-9. doi: 10.1006/dbio.1999.9493
![]() |
[104] | de Celis JF, García-Bellido A, Bray SJ (1996a) Activation and function of Notch at the drso-ventral boundary of the wing imaginal disc. Development 122: 359-369. |
[105] |
Doherty D, Feger G, Younger-Shepherd S, et al. (1996) Delta is a ventral to dorsal signal cmplementary to Serrate, another Notch ligand, in Drosophila wing formation. Genes Dev 10:421-434. doi: 10.1101/gad.10.4.421
![]() |
[106] | Fleming RJ, Gu Y, Hukriede NA (1997) Serrate-mediated activaction of Notch is specifically bocked by the product of the gene fringe in the dorsal compartment of the Drosophila wing iaginal disc. Development 124: 2973-2981. |
[107] |
Panin VM, Papayannopoulos V, Wilson R, et al. (1997) fringe modulates Notch-ligand iteractions. Nature 387: 908-912. doi: 10.1038/43191
![]() |
[108] |
Kim J, Irvine KD, Carroll SB (1995) Cell recognition, signal induction, and symmetrical gene ativation at the dorsal-ventral boundary of the developing Drosophila wing. Cell 82: 795-802. doi: 10.1016/0092-8674(95)90476-X
![]() |
[109] |
Couso JP, Knust E, Martínez Arias A (1995) Serrate and wingless cooperate to induce vestigial gne expression and wing formation in Drosophila. Curr Biol 5: 1437-1448. doi: 10.1016/S0960-9822(95)00281-8
![]() |
[110] |
Irvine KD, Wieschaus E (1994) fringe, a boundary-specific signalling molecule, mediates iteractions between dorsal and ventral cells during Drosophila wing development. Cell 79:595-606. doi: 10.1016/0092-8674(94)90545-2
![]() |
[111] |
Kim J, Sebring A, Esch JJ, et al. (1996) Integration of positional signals and regulation of wing frmation and identity by Drosophila vestigial gene. Nature 382: 133-138. doi: 10.1038/382133a0
![]() |
[112] |
Baena-Lopez LA, Garcia-Bellido A (2006) Control of growth and positional information by the gaded vestigial expression pattern in the wing of Drosophila melanogaster. Proc Natl Acad Sci US A 103: 13734-13739. doi: 10.1073/pnas.0606092103
![]() |
[113] |
Baena-Lopez LA, Nojima H, Vincent JP (2012) Integration of morphogen signalling within the gowth regulatory network. Curr Opin Cell Biol 24: 166-172. doi: 10.1016/j.ceb.2011.12.010
![]() |
[114] | Neumann CJ, Cohen SM (1996) A hierarchy of cross-regulation involving Notch, wingless, vstigial and cut organizes the dorsal/ventral axis of the Drosophila wing. Development 122:3477-3485. |
[115] |
Zecca M, Struhl G (2007) Recruitment of cells into the Drosophila wing primordium by a fed-forward circuit of vestigial autoregulation. Development 134: 3001-3010. doi: 10.1242/dev.006411
![]() |
[116] | Klein T, Martinez-Arias A (1999) The Vestigial gene product provides a molecular context for te interpretation of signals during the development of the wing in Drosophila. Development 126:913-925. |
[117] | Klein T, Martinez Arias A (1998) Different spatial and temporal interactions between Notch, wngless, and vestigial specify proximal and distal pattern elements of the wing in Drosophila. Dv Biol 194: 196-212. |
[118] |
Williams JA, Bell JB, Carroll SB (1991) Control of Drosophila wing and haltere development by te nuclear vestigial gene product. Genes Dev 5: 2481-2495. doi: 10.1101/gad.5.12b.2481
![]() |
[119] |
Baonza A, Garcia-Bellido A (2000) Notch signaling directly controls cell proliferation in the Dosophila wing disc. Proc Natl Acad Sci U S A 97: 2609-2614. doi: 10.1073/pnas.040576497
![]() |
[120] | Go JM, Eastman DS, Artavanis-Tsakonas S (1998) Cell proliferation control by Notch signaling in Drosophila development. Development 125: 2031-2040. |
[121] |
Giraldez AJ, Cohen SM (2003) Wingless and Notch signaling provide cell survival cues and cntrol cell proliferation during wing development. Development 130: 6533-6543. doi: 10.1242/dev.00904
![]() |
[122] |
de Celis JF, Garcia-Bellido A (1994) Roles of the Notch gene in Drosophila wing morphogenesis. Mch Dev 46: 109-122. doi: 10.1016/0925-4773(94)90080-9
![]() |
[123] |
Baonza A, Roch F, Martin-Blanco E (2000) DER signaling restricts the boundaries of the wing feld during Drosophila development. Proc Natl Acad Sci U S A 97: 7331-7335. doi: 10.1073/pnas.97.13.7331
![]() |
[124] | Zecca M, Struhl G (2002) Subdivision of the Drosophila wing imaginal disc by EGFR-mediated sgnaling. Development 129: 1357-1368. |
[125] |
Wang SH, Simcox A, Campbell G (2000) Dual role for Drosophila epidermal growth factor rceptor signaling in early wing disc development. Genes Dev 14: 2271-2276. doi: 10.1101/gad.827000
![]() |
[126] |
Simcox AA, Grumbling G, Schnepp B, et al. (1996) Molecular, phenotypic, and expression aalysis of vein, a gene required for growth of the Drosophila wing disc. Devl Biol 177:475-489. doi: 10.1006/dbio.1996.0179
![]() |
[127] |
Paul L, Wang SH, Manivannan SN, et al. (2013) Dpp-induced Egfr signaling triggers pstembryonic wing development in Drosophila. Proc Natl Acad Sci U S A 110: 5058-5063. doi: 10.1073/pnas.1217538110
![]() |
[128] |
O'Brochta D, Bryant PJ (1985) A zone of non-proliferating cells at a lineage restriction boundary i Drosophila. Nature 313: 138-141. doi: 10.1038/313138a0
![]() |
[129] |
Johnston LA, Edgar BA (1998) Wingless and Notch regulate cell-cycle arrest in the developing Dosophila wing. Nature 394: 82-84. doi: 10.1038/27925
![]() |
[130] | Buceta J, Herranz H, Canela-Xandri O, et al. (2007) Robustness and stability of the gene rgulatory network involved in DV boundary formation in the Drosophila wing. PLoS One 2: e02. |
[131] |
Herranz H, Perez L, Martin FA, et al. (2008) A Wingless and Notch double- repression mchanism regulates G1-S transition in the Drosophila wing. Embo J 27: 1633-1645. doi: 10.1038/emboj.2008.84
![]() |
[132] |
Andrade-Zapata I, Baonza A (2014) The bHLH factors extramacrochaetae and daughterless cntrol cell cycle in Drosophila imaginal discs through the transcriptional regulation of the Cc25 phosphatase string. PLoS Genet 10: e1004233. doi: 10.1371/journal.pgen.1004233
![]() |
[133] | de Celis JF, de Celis J, Ligoxiars P, et al. (1996) Functional relationships between Notch and bLH genes of the E(spl) complex: the E(spl) genes mediate only a subset of Notch activies dring imaginal development. Development 122: 2719-2728. |
[134] |
Massari ME, Murre C (2000) Helix-loop-helix proteins: regulators of transcription in eucaryotic oganisms. Mol Cell Biol 20: 429-440. doi: 10.1128/MCB.20.2.429-440.2000
![]() |
[135] |
San Juan BP, Andrade-Zapata I, Baonza A (2012) The bHLH factors Dpn and members of the Espl) complex mediate the function of Notch signaling regulating cell proliferation during wing dsc development. Biol Open 1: 667-676. doi: 10.1242/bio.20121172
![]() |
[136] | Djiane A, Krejci A, Bernard F, et al. (2013) Dissecting the mechanisms of Notch induced hperplasia. Embo J 32: 60-71. |
[137] | Rulifson EJ, Blair SS (1995) Notch regulates wingless expression and is not required for the rception of paracrine wingless signals during wing margin development in Drosophila. Dvelopment 121: 2813-2824. |
[138] |
Klein T, Martinez-Arias A (1997) An intrisic dominant negative activity of Serrate that is mdulated during wing development in Drosophila. Dev Biol 189: 123-134. doi: 10.1006/dbio.1997.8564
![]() |
[139] | Alexandre C, Baena-Lopez A, Vincent JP (2014) Patterning and growth control by membrane-tethered Wingless. Nature 505: 180-185. |
[140] |
Johnston LA, Sanders AL (2003) Wingless promotes cell survival but constrains growth during Dosophila wing development. Nat Cell Biol 5: 827-833. doi: 10.1038/ncb1041
![]() |
[141] |
Halder G, Polaczyk P, Kraus ME, et al. (1998) The Vestigial and Scalloped proteins act together t directly regulate wing-specific gene expression in Drosophila. Genes Dev 12: 3900-3909. doi: 10.1101/gad.12.24.3900
![]() |
[142] |
Simmonds AJ, Liu X, Soanes KH, et al. (1998) Molecular interactions between Vestigial and Salloped promote wing formation in Drosophila. Genes Dev 12: 3815-3820. doi: 10.1101/gad.12.24.3815
![]() |
[143] |
Zhao B, Tumaneng K, Guan KL (2011) The Hippo pathway in organ size control, tissue rgeneration and stem cell self-renewal. Nat Cell Biol 13: 877-883. doi: 10.1038/ncb2303
![]() |
[144] |
Djiane A, Zaessinger S, Babaoglan AB, et al. (2014) Notch inhibits Yorkie activity in Drosophila wng discs. PLoS One 9: e106211. doi: 10.1371/journal.pone.0106211
![]() |
[145] |
Graves HK, Woodfield SE, Yang CC, et al. (2012) Notch signaling activates Yorkie non-cell atonomously in Drosophila. PLoS One 7: e37615. doi: 10.1371/journal.pone.0037615
![]() |
[146] |
Bach EA, Ekas LA, Ayala-Camargo A, et al. (2007) GFP reporters detect the activation of the Dosophila JAK/STAT pathway in vivo. Gene Expr Patterns 7: 323-331. doi: 10.1016/j.modgep.2006.08.003
![]() |
[147] |
Rauskolb C, Irvine KD (1999) Notch-mediated segmentation and growth control of the Dosophila leg. Dev Biol 210: 339-350. doi: 10.1006/dbio.1999.9273
![]() |
[148] | Bishop SA, Klein T, Arias AM, et al. (1999) Composite signalling from Serrate and Delta etablishes leg segments in Drosophila through Notch. Development 126: 2993-3003. |
[149] |
Estella C, Voutev R, Mann RS (2012) A dynamic network of morphogens and transcription fctors patterns the fly leg. Curr Top Dev Biol 98: 173-198. doi: 10.1016/B978-0-12-386499-4.00007-0
![]() |
[150] | Kerber B, Monge I, Mueller M, et al. (2001) The AP-2 transcription factor is required for joint frmation and cell survival in Drosophila leg development. Development 128: 1231-1238. |
[151] |
Saj A, Arziman Z, Stempfle D, et al. (2010) A combined ex vivo and in vivo RNAi screen for ntch regulators in Drosophila reveals an extensive notch interaction network. Dev Cell 18:862-876. doi: 10.1016/j.devcel.2010.03.013
![]() |
[152] |
Ferres-Marco D, Gutierrez-Garcia I, Vallejo DM, et al. (2006) Epigenetic silencers and Notch cllaborate to promote malignant tumours by Rb silencing. Nature 439: 430-436. doi: 10.1038/nature04376
![]() |
[153] |
Brumby AM, Richardson HE (2003) scribble mutants cooperate with oncogenic Ras or Notch to cuse neoplastic overgrowth in Drosophila. Embo J 22: 5769-5779. doi: 10.1093/emboj/cdg548
![]() |
[154] |
Brumby AM, Richardson HE (2005) Using Drosophila melanogaster to map human cancer pthways. Nat Rev Cancer 5: 626-639. doi: 10.1038/nrc1671
![]() |
[155] |
Pagliarini RA, Xu T (2003) A genetic screen in Drosophila for metastatic behavior. Science 302:1227-1231. doi: 10.1126/science.1088474
![]() |
[156] |
Miles WO, Dyson NJ, Walker JA (2011) Modeling tumor invasion and etastasis in Drosophila. Ds Model Mech 4: 753-761. doi: 10.1242/dmm.006908
![]() |
[157] |
Elsum I, Yates L, Humbert PO, et al. (2012) The Scribble-Dlg-Lgl polarity module in dvelopment and cancer: from flies to man. Essays Biochem 53: 141-168. doi: 10.1042/bse0530141
![]() |
[158] |
Leong GR, Goulding KR, Amin N, et al. (2009) Scribble mutants promote aPKC and JK-dependent epithelial neoplasia independently of Crumbs. BMC Biol 7: 62. doi: 10.1186/1741-7007-7-62
![]() |
[159] |
Zeitler J, Hsu CP, Dionne H, et al. (2004) Domains controlling cell polarity and proliferation in te Drosophila tumor suppressor Scribble. J Cell Biol 167: 1137-1146. doi: 10.1083/jcb.200407158
![]() |
[160] |
Parsons LM, Grzeschik NA, Allott ML, et al. (2010) Lgl/aPKC and Crb regulate the Slvador/Warts/Hippo pathway. Fly (Austin) 4: 288-293. doi: 10.4161/fly.4.4.13116
![]() |
[161] |
Robinson BS, Huang J, Hong Y, et al. (2010) Crumbs regulates Salvador/Warts/Hippo signaling i Drosophila via the FERM-domain protein Expanded. Curr Biol 20: 582-590. doi: 10.1016/j.cub.2010.03.019
![]() |
[162] |
Grzeschik NA, Amin N, Secombe J, et al. (2007) Abnormalities in cell proliferation and aico-basal cell polarity are separable in Drosophila lgl mutant clones in the developing eye. Dev Bol 311: 106-123. doi: 10.1016/j.ydbio.2007.08.025
![]() |
[163] |
Cohen B, Shimizu M, Izrailit J, et al. (2010) Cyclin D1 is a direct target of JAG1-mediated Ntch signaling in breast cancer. Breast Cancer Res Treat 123: 113-124. doi: 10.1007/s10549-009-0621-9
![]() |
[164] |
Ling H, Sylvestre JR, Jolicoeur P (2010) Notch1-induced mammary tumor development is cyclin D-dependent and correlates with expansion of pre- malignant multipotent duct-limited pogenitors. Oncogene 29: 4543-4554. doi: 10.1038/onc.2010.186
![]() |
[165] |
Sharma VM, Calvo JA, Draheim KM, et al. (2006) Notch1 contributes to mouse T-cell leukemia b directly inducing the expression of c-myc. Mol Cell Biol 26: 8022-8031. doi: 10.1128/MCB.01091-06
![]() |
[166] |
Weng AP, Millholland JM, Yashiro-Ohtani Y, et al. (2006) c-Myc is an important direct target of Ntch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 20: 2096-2109. doi: 10.1101/gad.1450406
![]() |
[167] |
Klinakis A, Szabolcs M, Politi K, et al. (2006) Myc is a Notch1 transcriptional target and a rquisite for Notch1-induced mammary tumorigenesis in mice. Proc Natl Acad Sci U S A 103:9262-9267. doi: 10.1073/pnas.0603371103
![]() |
[168] |
Dohda T, Maljukova A, Liu L, et al. (2007) Notch signaling induces SKP2 expression and pomotes reduction of p27Kip1 in T-cell acute lymphoblastic leukemia cell lines. Exp Cell Res 313: 3141-3152. doi: 10.1016/j.yexcr.2007.04.027
![]() |
1. | Poonam Duggad, S. Dewangan, A. Narayan, Effects of triaxiality of primaries on oblate infinitesimal in elliptical restricted three body problem, 2021, 85, 13841076, 101538, 10.1016/j.newast.2020.101538 |