
Citation: Michael J. Murray. Drosophila models of metastasis[J]. AIMS Genetics, 2015, 2(1): 25-53. doi: 10.3934/genet.2015.1.25
[1] | Mahmoud A. E. Abdelrahman, Wael W. Mohammed, Meshari Alesemi, Sahar Albosaily . The effect of multiplicative noise on the exact solutions of nonlinear Schrödinger equation. AIMS Mathematics, 2021, 6(3): 2970-2980. doi: 10.3934/math.2021180 |
[2] | Jalil Manafian, Onur Alp Ilhan, Sizar Abid Mohammed . Forming localized waves of the nonlinearity of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model. AIMS Mathematics, 2020, 5(3): 2461-2483. doi: 10.3934/math.2020163 |
[3] | Yongyi Gu, Najva Aminakbari . Two different systematic methods for constructing meromorphic exact solutions to the KdV-Sawada-Kotera equation. AIMS Mathematics, 2020, 5(4): 3990-4010. doi: 10.3934/math.2020257 |
[4] | P. Veeresha, D. G. Prakasha, Jagdev Singh . Solution for fractional forced KdV equation using fractional natural decomposition method. AIMS Mathematics, 2020, 5(2): 798-810. doi: 10.3934/math.2020054 |
[5] | M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque . New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative. AIMS Mathematics, 2019, 4(2): 199-214. doi: 10.3934/math.2019.2.199 |
[6] | Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264 |
[7] | Weiping Gao, Yanxia Hu . The exact traveling wave solutions of a class of generalized Black-Scholes equation. AIMS Mathematics, 2017, 2(3): 385-399. doi: 10.3934/Math.2017.3.385 |
[8] | Yousef Jawarneh, Humaira Yasmin, Ali M. Mahnashi . A new solitary wave solution of the fractional phenomena Bogoyavlenskii equation via Bäcklund transformation. AIMS Mathematics, 2024, 9(12): 35308-35325. doi: 10.3934/math.20241678 |
[9] | S. Owyed, M. A. Abdou, A. Abdel-Aty, H. Dutta . Optical solitons solutions for perturbed time fractional nonlinear Schrodinger equation via two strategic algorithms. AIMS Mathematics, 2020, 5(3): 2057-2070. doi: 10.3934/math.2020136 |
[10] | Safoura Rezaei Aderyani, Reza Saadati, Javad Vahidi, Nabil Mlaiki, Thabet Abdeljawad . The exact solutions of conformable time-fractional modified nonlinear Schrödinger equation by Direct algebraic method and Sine-Gordon expansion method. AIMS Mathematics, 2022, 7(6): 10807-10827. doi: 10.3934/math.2022604 |
In recent years, nonlinear partial differential equations (NPDEs) are widely used to describe complex phenomena in various fields of sciences, such as fluid mechanics, plasma, chemical reactions, optical fibers, solid state physics, relativity, ecology, gas dynamics physics and optical fiber, [1,2,3,4,5,6,7,8,9,10,11]. Therefore, exploring exact solutions for NPDEs plays an important role in nonlinear science. These solutions might be essential and important for the exploring some physical phenomena. Therefore investigating new technique to solve so many problems is so interesting topic. Thus, many new methods have been introduced, such as the F-expansion method [12,13], $ (\frac{G^{'}}{G})- $ expansion method [14,15], tanh-sech method [16,17,18], exp-expansion method [19,20], the homogeneous balance method [21,22], Jacobi elliptic function method [23,24], sine-cosine method [25,26,27], extended tanh-method [28,29] and the Riccati-Bernoulli sub-ODE method [30,31,32,33] proposed for solving more complicated problems. Indeed, there are recent development in analytical methods for investigation solutions for NPDEs, see [34,35,36,37,38,39,40].
The nonlinear Schrödinger equations (NLSEs) are so important models in nonlinear evolution equations, which come in many areas of applied sciences such as nonlinear optics, quantum mechanics, fluid dynamics, molecular biology, elastic media, hydrodynamics, biology and plasma physics.
This paper is concerned with the unstable nonlinear Schrödinger equation (UNS) [41,42] given by
$ iqt+qxx+2η∣q∣2q−2γq=0,i=√−1, $ | (1.1) |
where, $ \eta, \gamma $ is a free parameter and $ q = q(x, t) $ is a complex-valued function. Equation (1.1) is a type of nonlinear Schrödinger equation with space and time exchanged. This equation prescribes a time evolution of disturbances in unstable media. The behavior of type occurs for the two-layer baroclinic instability and the lossless symmetric two-stream plasma instability [43]. To the best of our knowledge, no previous research work has been done using the proposed methods for solving the unstable nonlinear Schrödinger equation. Actually, many numerical and analytical methods have been also implemented to get solutions for Eq (1.1) such as modified Kudraysov method, the sine-Gordon expansion approach [41], $ exp_{a} $ method and hyperbolic function method [42], the new Jacobi elliptic function rational expansion method and the exponential rational function method [44], the extended simple equation method[45].
The main aim of this paper is to explore the UNS equation using exp$ (-\varphi(\xi)) $-expansion method, sine-cosine method and Riccati-Bernoulli sub-ODE method. We also show that the Riccati-Bernoulli sub-ODE technique gives infinite solutions. Actually, we introduce new types of exact analytical solutions. Comparing our results with other results, one can see that our results are new and most extensive. Indeed the new solutions presented in this article are so important in the theory of soliton. Moreover these solutions turn out to be very useful for Physicists to explain many interesting physical phenomena.
The rest of the paper is arranged as follows: In Section 2, the exp-function method, sine-cosine method and Riccati-Bernoulli sub-ODE method are briefly reviewed. In Section 3, some new exact solutions of the unstable Schrödinger equation are presented. Discussion of our results and comparing with the results of other authors is in Section 4. Conclusion and future works will appear in Section 5.
We present a brief description about the exp$ (-\varphi(\xi)) $-expansion method, sine-cosine method and Riccati-Bernoulli sub-ODE method to obtain new exact solutions for a given NPDE. For this goal, consider a NPDE in two independent variables $ x $ and $ t $ as
$ G(ϑ,ϑt,ϑx,ϑtt,ϑxx,....)=0, $ | (2.1) |
where $ G $ is a polynomial in $ \vartheta(x, t) $ and its partial derivatives. The main steps are as follows [30]:
Step 1. Introducing the transformation
$ ϑ(x,t)=ϑ(ξ),ξ=k(x+ςt), $ | (2.2) |
varies Eq (2.1) to the following ordinary differential equation (ODE):
$ D(ϑ,ϑ′,ϑ″,ϑ‴,.....)=0, $ | (2.3) |
where $ D $ is a polynomial in $ \vartheta(\xi) $ and its derivatives such that the superscripts denote the ordinary derivatives with respect to $ \xi $.
According to the exp$ (-\varphi(\xi)) $-expansion technique [19,20,31], we assume that the solution of Eq (2.3) can be written in a polynomial form of $ exp(-\varphi(\xi)) $ as follows
$ ϑ(ξ)=Am(exp(−φ(ξ)))m+....., am≠0, $ | (2.4) |
where $ \varphi(\xi) $ obeys the following ODE
$ φ′(ξ)=exp(−φ(ξ))+νexp(φ(ξ))+λ. $ | (2.5) |
Eq (2.5) has the following solutions:
1. At $ \lambda^{2}-4\nu > 0, \nu\neq0, $
$ φ(ξ)=ln(−√λ2−4ν tanh(√λ2−4ν2(ξ+C))−λ2ν), $ | (2.6) |
2. At $ \lambda^{2}-4\nu < 0, \nu\neq0, $
$ φ(ξ)=ln(√4ν−λ2 tan(√4ν−λ22 (ξ+C))−λ2ν), $ | (2.7) |
3. At $ \lambda^{2}-4\nu > 0, \nu = 0, \lambda \neq0 $
$ φ(ξ)=−ln(λexp(λ(ξ+C))−1), $ | (2.8) |
4. At $ \lambda^{2}-4\nu = 0, \nu\neq0, \lambda\neq0, $
$ φ(ξ)=ln(−2(λ(ξ+C)+2)λ2(ξ+C)), $ | (2.9) |
5. At $ \lambda^{2}-4\nu = 0, \nu = 0, \lambda = 0, $
$ φ(ξ)=ln(ξ+C). $ | (2.10) |
Here $ C $ is an arbitrary constant.
Finally, superseding Eq (2.4) with Eq (2.5) into Eq (2.3) and agammaegating all terms of the same power $ exp\left(-m\varphi(\xi)\right) $, $ m = 0, 1, 2, 3, ... $. After that equating them to zero, we get algebraic equations solved by Mathematica or Maple to obtain the values of $ a_i $. Hence, we get the solutions (2.4), which give the exact solutions of Eq (2.3).
The solutions of Eq (2.3) can be expressed in the form [46,47]
$ ϑ(x,t)={αsinr(βξ),∣ξ∣≤πβ,0,otherwise,, $ | (2.11) |
or in the form
$ ϑ(ξ)(x,t)={αcosr(βξ),∣ξ∣≤π2μ,0,otherwise,, $ | (2.12) |
where $ \alpha, \; \beta $ and $ r\neq0 $, are parameters determined in sequel. From (2.11) we have
$ ϑ(ξ)=αsinr(βξ),ϑn(ξ)=αnsinnr(βξ),(ϑn)ξ=nβrαncos(βξ)sinnr−1(βξ),(ϑn)ξξ=−n2β2rαnsinnr(βξ)+nβ2αnr(nr−1)sinnr−2(βξ), $ | (2.13) |
and from (2.12) we have
$ ϑ(ξ)=αcosr(βξ),ϑn(ξ)=αncosnr(βξ),(ϑn)ξ=−nβrαnsin(βξ)cosnr−1(βξ),(ϑn)ξξ=−n2β2rαncosnr(βξ)+nβ2αnr(nr−1)cosnr−2(βξ). $ | (2.14) |
Finally, superseding Eq (2.13) or Eq (2.14) into Eq (2.3), then balance the terms of the cosine functions (2.14) or the sine functions (2.13). Then, we sum all terms with the same power in $ cos^{r}(\beta\xi) $ or $ sin^{r}(\beta\xi) $ and equating their coefficients to zero in order to obtain an algebraic equations in the unknowns $ \beta, \; \alpha $ and $ r $. Solving this system yields these unknown constants.
According to description of this method [30,31,32,33,48,49], we assume that Eq (2.3) has the following solution:
$ ϑ′=aϑ2−n+bϑ+cϑn, $ | (2.15) |
where $ a, b, c $ and $ n $ are constants calculated later. From Eq (2.15), we get
$ ϑ″=ab(3−n)ϑ2−n+a2(2−n)ϑ3−2n+nc2ϑ2n−1+bc(n+1)ϑn+(2ac+b2)ϑ, $ | (2.16) |
$ ϑ‴=(ab(3−n)(2−n)ϑ1−n+a2(2−n)(3−2n)ϑ2−2n +n(2n−1)c2ϑ2n−2+bcn(n+1)ϑn−1+(2ac+b2))ϑ′. $ | (2.17) |
The exact solutions of Eq (2.15), for an arbitrary constant $ \mu $ are given as follow:
1. For $ n = 1 $, the solution is
$ ϑ(ξ)=μe(a+b+c)ξ. $ | (2.18) |
2. For $ n \neq 1 $, $ b = 0 $ and $ c = 0 $, the solution is
$ ϑ(ξ)=(a(n−1)(ξ+μ))1n−1. $ | (2.19) |
3. For $ n \neq 1 $, $ b\neq0 $ and $ c = 0 $, the solution is
$ ϑ(ξ)=(−ab+μeb(n−1)ξ)1n−1. $ | (2.20) |
4. For $ n \neq 1 $, $ a\neq 0 $ and $ b^2-4ac < 0 $, the solution is
$ ϑ(ξ)=(−b2a+√4ac−b22atan((1−n)√4ac−b22(ξ+μ)))11−n $ | (2.21) |
and
$ ϑ(ξ)=(−b2a−√4ac−b22acot((1−n)√4ac−b22(ξ+μ)))11−n. $ | (2.22) |
5. For $ n \neq 1 $, $ a\neq 0 $ and $ b^2-4ac > 0 $, the solution is
$ ϑ(ξ)=(−b2a−√b2−4ac2acoth((1−n)√b2−4ac2(ξ+μ)))11−n $ | (2.23) |
and
$ ϑ(ξ)=(−b2a−√b2−4ac2atanh((1−n)√b2−4ac2(ξ+μ)))11−n. $ | (2.24) |
6. For $ n \neq 1 $, $ a\neq0 $ and $ b^2-4ac = 0 $, the solution is
$ ϑ(ξ)=(1a(n−1)(ξ+μ)−b2a)11−n. $ | (2.25) |
Bäcklund transformation
When $ \vartheta_{m-1}(\xi) $ and $ \vartheta_{m}(\xi)(\vartheta_{m}(\xi) = \vartheta_{m}(\vartheta_{m-1}(\xi))) $ are the solutions of Eq (2.15), we obtain
$ \frac{d\vartheta_{m}(\xi)}{d\xi} = \frac{d\vartheta_{m}(\xi)}{d\vartheta_{m-1}(\xi)} \frac{d\vartheta_{m-1}(\xi)}{d\xi} = \frac{d\vartheta_{m}(\xi)}{d\vartheta_{m-1}(\xi)}(a\vartheta_{m-1}^{2-n}+b\vartheta_{m-1}+c\vartheta_{m-1}^{n}), $ |
namely
$ dϑm(ξ)aϑ2−nm+bϑm+cϑnm=dϑm−1(ξ)aϑ2−nm−1+bϑm−1+cϑnm−1. $ | (2.26) |
Integrating Eq (2.26) once with respect to $ \xi $, we obtain the following Bäcklund transformation of Eq (2.15):
$ ϑm(ξ)=(−cK1+aK2(ϑm−1(ξ))1−nbK1+aK2+aK1(ϑm−1(ξ))1−n)11−n, $ | (2.27) |
where $ K_1 $ and $ K_2 $ are arbitrary constants. If we get a solution for this equation, we use Eq (2.27) to obtain infinite sequence of solutions of Eq (2.15), as well of Eq (2.1).
In order to solve the Eq (1.1), using exp$ (-\varphi(\xi)) $-expansion method and the Riccati-Bernoulli sub-ODE method, the following solution structure is selected
$ q(x,t)=eiχ(x,t)u(ξ),χ(x,t)=px+νt,ξ=kx+ωt, $ | (3.1) |
where $ p $, $ \nu $, $ k $ and $ \omega $ are constants. Substituting (3.1) into (1.1), we have the ODE
$ k2u″−2u3−(p2+ν+2γ)u=0,ω=−2pk,η=−1. $ | (3.2) |
Now we apply exp$ (-\varphi(\xi)) $-expansion and the Riccati-Bernoulli sub-ODE methods for Eq (3.2).
According to the exp$ (-\varphi(\xi)) $-expansion technique, Eq (3.2) has the following solution
$ u=A0+A1exp(−φ), $ | (3.3) |
where $ A_0 $ and $ A_1 $ are constants and $ A_1 \neq 0 $. It is easy to see that
$ u″=A1(2exp(−3φ)+3λexp(−2φ)+(2μ+λ2)exp(−φ)+λμ), $ | (3.4) |
$ u3=A31exp(−3φ)+3A0A21exp(−2φ)+3A20A1exp(−φ)+A30. $ | (3.5) |
Superseding $ u $, $ u'' $, $ u^3 $ into Eq (3.2) and hence equating the coefficients of $ exp{(-\varphi)} $ to zero, we obtain
$ k2A1λμ−2A30−(p2+ν+2γ)A0=0, $ | (3.6) |
$ k2A1(λ2+2μ)−6A20A1−(p2+ν+2γ)A1=0, $ | (3.7) |
$ k2A1λ−2A0A21=0, $ | (3.8) |
$ k2A1−A31=0. $ | (3.9) |
Solving Eqs (3.6)–(3.9), we get
$ A_0 = \pm\frac{k\lambda}{2}, A_{1} = \pm k, \nu = -\frac{1}{2}(4\gamma+k^2(\lambda^2-4\mu)+2p^2). $ |
We consider only one case, whenever the other cases follow similarly. In this case, the solution of Eq (3.3) reads as:
$ u(ξ)=±k2(λ+2exp(−φ(ξ))). $ | (3.10) |
Superseding Eqs (2.6)–(2.7) into Eq (3.10), we obtain:
Case 1. At $ \lambda^{2}-4\mu > 0, \mu\neq0, $
$ u1,2(x,t)=±k2(λ−4μ√λ2−4μtanh(√λ2−4μ2(ξ+C))+λ). $ | (3.11) |
Using Eqs (3.1) and (3.11) the solutions of equation (1.1) are
$ q1,2(x,t)=±k2eiχ(λ−4μ√λ2−4μtanh(√λ2−4μ2(ξ+C))+λ). $ | (3.12) |
Case 2. At $ \lambda^{2}-4\mu < 0, \mu\neq0, $
$ u3,4(x,t)=±k2(λ+4μ√4μ−λ2tan(√4μ−λ22(ξ+C))−λ). $ | (3.13) |
Using Eqs (3.1) and (3.13) the solutions of Eq (1.1) are
$ q3,4(x,t)=±k2eiχ(λ+4μ√4μ−λ2tan(√4μ−λ22(ξ+C))−λ). $ | (3.14) |
Case 3. At $ \lambda^{2}-4\mu > 0, \mu = 0, \lambda \neq0 $
$ u5,6(x,t)=±k2(λ+2λexp(λ(ξ+C))−1). $ | (3.15) |
Using Eqs (3.1) and (3.15) the solutions of Eq (1.1) are
$ q5,6(x,t)=±k2eiχ(λ+2λexp(λ(ξ+C))−1). $ | (3.16) |
Case 4. At $ \lambda^{2}-4\mu = 0, \mu\neq0, \lambda\neq0, $
$ u7,8(x,t)=±k2(λ−λ2(ξ+C)λ(ξ+C)+2). $ | (3.17) |
Using Eq (3.1) and (3.17) the solutions of Eq (1.1) are
$ q7,8(x,t)=±k2eiχ(λ−λ2(ξ+C)λ(ξ+C)+2). $ | (3.18) |
Case 5. At $ \lambda^{2}-4\mu = 0, \mu = 0, \lambda = 0, $
$ u9,10(x,t)=±k2(1ξt+C). $ | (3.19) |
Using Eqs (3.1) and (3.19) the solutions of Eq (1.1) are
$ q9,10(x,t)=±k2eiχ(1ξt+C). $ | (3.20) |
Here $ k, \lambda, \mu, C $ are constants, $ \xi = k (x -2pt) $ and $ \chi = p x -\frac{1}{2}(4\gamma+k^2(\lambda^2-4\mu)+2p^2)\; t $.
We have plotted these solutions in Figures 1–5. Figure 1(a) shows the real part of $ q = q_1(x, t) $ in (3.12), while Figure 1(b) shows imaginary part of this solution for $ k $ = 1.5, $ p $ = 1.5, $ \gamma $ = 1.3, $ \lambda $ = 2.3, $ \mu = 1 $, $ \omega $ = -4.5, $ \nu $ = -6.3012 and $ C $ = 1.4.
Figure 2(a) shows the real part of $ q = q_3(x, t) $ in (3.14), while Figure 2(b) shows imaginary part of this solution for $ k $ = 1.2, $ p $ = 1.2, $ \gamma $ = 1.8, $ \lambda $ = 1.2, $ \mu = 2 $, $ \omega $ = -2.88, $ \nu $ = -0.3168 and $ C $ = 0.4.
Figure 3(a) shows the real part of $ q = q_5(x, t) $ in (3.16), while Figure 3(b) shows imaginary part of this solution for $ k $ = 0.4, $ p $ = 0.6, $ \gamma $ = 0.3, $ \lambda $ = 1.2, $ \mu = 0 $, $ \omega $ = -0.48, $ \nu $ = -1.0752 and $ C $ = 1.
Figure 4(a) shows the real part of $ q = q_7(x, t) $ in (3.18), while Figure 4(b) shows imaginary part of this solution for $ k $ = 0.5, $ p $ = 0.5, $ \gamma $ = 2.3, $ \lambda $ = 2, $ \mu = 1 $, $ \omega $ = -0.5, $ \nu $ = -4.85 and $ C $ = 4.
Figure 5(a) shows the real part of $ q = q_9(x, t) $ in (3.20), while Figure 5(b) shows imaginary part of this solution $ k $ = -0.7, $ p $ = -0.5, $ \gamma $ = 0.8, $ \lambda = \mu $ = 0, $ \omega $ = -0.7, $ \nu $ = -1.85 and $ C $ = 4.
According to sine-cosine technique, subtitling Eq (2.13) into Eq (3.2), gives
$ k2(−β2r2αsinr(βξ)+β2αr(r−1)sinr−2(βξ))−2α3sin3r(βξ)−(p2+ν+2γ)λsinr(βξ)=0. $ | (3.21) |
Thus by comparing the coefficients of the sine functions, we get
$ r−1≠0,r−2=3r, k2β2αr(r−1)−2α3=0, −k2β2r2α−(p2+ν+2γ)α=0. $ | (3.22) |
Solving this system gives
$ r=−1,α=±√−p2−ν−2γ,β=±√−(p2+ν+2γ)k, $ | (3.23) |
for $ p^{2}+\nu+2\gamma < 0 $ and $ k \neq0 $. We get the same result if we also use the cosine method (2.14). Thus, the periodic solutions are
$ ˜u1,2(x,t)=±√−p2−ν−2γsec(√−(p2+ν+2γ)k(kx+ωt)),∣√−(p2+ν+2γ)k(kx+ωt)∣<π2 $ | (3.24) |
and
$ ˜u3,4(x,t)=±√−p2−ν−2γcsc(√−(p2+ν+2γ)k(kx+ωt)),0<√−(p2+ν+2γ)k(kx+ωt)<π. $ | (3.25) |
Using Eqs (3.1) and (3.19) the solutions of Eq (1.1) are
$ ˜q1,2(x,t)=±√−(p2+ν+2γ)ei(px+νt)sec(√−(p2+ν+2γ)k(kx+ωt)),∣√−(p2+ν+2γ)k(kx+ωt)∣<π2 $ | (3.26) |
and
$ ˜q3,4(x,t)=±√−p2−ν−2γei(px+νt)csc(√−(p2+ν+2γ)k(kx+ωt)),0<√−(p2+ν+2γ)k(kx+ωt)<π. $ | (3.27) |
However, for $ p^{2}+\nu+2\gamma > 0 $ and $ k \neq0 $. we obtain the soliton and complex solutions
$ ˜u5,6(x,t)=±√−p2−ν−2γsech(√(p2+ν+2γ)k(kx+ωt)) $ | (3.28) |
and
$ ˜u7,8(x,t)=±√p2+ν+2γcsch(√(p2+ν+2γ)k(kx+ωt)). $ | (3.29) |
Using Eqs (3.1) and (3.19) the solutions of equation
$ ˜q5,6(x,t)=±√−p2−ν−2γei(px+νt)sech(√(p2+ν+2γ)k(kx+ωt)) $ | (3.30) |
and
$ ˜q7,8(x,t)=±√p2+ν+2γei(px+νt)csch(√(p2+ν+2γ)k(kx+ωt)). $ | (3.31) |
Figure 6(a) shows the real part of $ q = \tilde{q}_1(x, t) $ in (3.26), while Figure 6(b) shows imaginary part of this solution for $ p $ = 2, $ \nu $ = -2, $ \gamma $ = -3, $ k $ = 2 and $ \omega $ = 1.
Figure 7(a) shows the real part of $ q = \tilde{q}_5(x, t) $ in (3.30), while Figure 7(b) shows imaginary part of this solution for $ p $ = 2.6, $ \nu $ = 2.1, $ \gamma $ = 3.1, $ k $ = 1.2 and $ \omega $ = 2.
According to Riccati-Bernoulli Sub-ODE technique, substituting Eq (2.16) into Eq (3.2), we get
$ k2(ab(3−n)u2−n+a2(2−n)u3−2n+nc2u2n−1+bc(n+1)un+(2ac+b2)u)−2u3−(p2+ν+2γ)u=0. $ | (3.32) |
Putting $ n = 0 $, Eq (3.32) becomes
$ k2(3abu2+2a2u3+bc+(2ac+b2)u)−2u3−(p2+ν+2γ)u=0. $ | (3.33) |
Putting each coefficient of $ u^i (i = 0, 1, 2, 3) $ to zero, we get
$ bc=0, $ | (3.34) |
$ k2(2ac+b2)−(p2+ν+2γ)=0, $ | (3.35) |
$ 3ab=0, $ | (3.36) |
$ k2a2−1=0. $ | (3.37) |
Solving Eqs (3.34)–(3.37), we have
$ b=0, $ | (3.38) |
$ ac=p2+ν+2γ2k2, $ | (3.39) |
$ c=±p2+ν+2γ2k, $ | (3.40) |
$ a=±1k. $ | (3.41) |
Hence, we give the cases of solutions for Eq (3.2) as follows
Rational function solutions: (When $ b = 0 $ and $ c = 0 $, i.e., $ p^{2}+\nu+2\gamma = 0 $)
The solution of Eq (3.2) is
$ ˆu1(x,t)=(−a(kx+ωt+μ))−1. $ | (3.42) |
Therefore, using Eqs (3.1) and (3.42), the following new explicit exact solution of the unstable nonlinear Schrödinger equation can be acquired
$ ˆq1(x,t)=ei(px+νt)(−a(kx+ωt+μ))−1, $ | (3.43) |
where $ p, \nu, \gamma, k, \omega, \mu $ are arbitrary constants.
Trigonometric function solution: (When $ p^{2}+\nu+2\gamma > 0 $)
Superseding Eq (3.1) and Eqs (3.38)–(3.41) into Eqs (2.21) and (2.22), then the exact solutions of Eq (1.1) are
$ ˆu2,3(x,t)=±√p2+ν+2γ2tan(√p2+ν+2γ√2k(kx+ωt+μ)) $ | (3.44) |
and
$ ˆu4,5(x,t)=±√p2+ν+2γ2cot(√p2+ν+2γ√2k(kx+ωt+μ)). $ | (3.45) |
Consequently, using Eqs (3.1) and (3.42), the following new explicit exact solution for the unstable nonlinear Schrödinger equation can be obtained
$ ˆq2,3(x,t)=±ei(px+νt)√p2+ν+2γ2tan(√p2+ν+2γ√2k(kx+ωt+μ)) $ | (3.46) |
and
$ ˆq4,5(x,t)=±ei(px+νt)√p2+ν+2γ2cot(√p2+ν+2γ√2k(kx+ωt+μ)), $ | (3.47) |
where $ p, \nu, \gamma, k, \omega, \mu $ are arbitrary constants.
Hyperbolic function solution : (When $ p^{2}+\nu+2\gamma < 0 $)
Substituting Eq (3.1) and Eqs (3.38)–(3.41) into Eqs (2.23) and (2.24), then the exact solutions of Eq (1.1) are
$ ˆu6,7(x,t)=±√−(p2+ν+2γ)2tanh(√−(p2+ν+2γ)√2k(kx+ωt+μ)) $ | (3.48) |
and
$ ˆu8,9(x,t)=±√−(p2+ν+2γ)2coth(√−(p2+ν+2γ)√2k(kx+ωt+μ)). $ | (3.49) |
Subsequently, the following new explicit exact solution to the unstable nonlinear Schrödinger equation can be gained
$ ˆq6,7(x,t)=±ei(px+νt)√−(p2+ν+2γ)2tanh(√−(p2+ν+2γ)√2k(kx+ωt+μ)) $ | (3.50) |
and
$ ˆq8,9(x,t)=±ei(px+νt)√−(p2+ν+2γ)2coth(√−(p2+ν+2γ)√2k(kx+ωt+μ)), $ | (3.51) |
where $ p, \nu, \gamma, k, \omega, \mu $ are arbitrary constants.
We have plotted these solutions in Figures 8–10. Figure 8(a) shows the real part of $ q = \hat{q}_2(x, t) $ in (3.46), while Figure 8(b) shows imaginary part of this solution for $ k $ = 0.5, $ p $ = -1.3, $ \omega $ = 1.3, $ \nu $ = 1.4, $ \gamma $ = 1.5 and $ \mu $ = 1.
Figure 9(a) shows the real part of $ q = \hat{q}_6(x, t) $ in (3.50), while Figure 9(b) shows imaginary part of this solution for $ k $ = 1.5, $ p $ = 1.3, $ \omega $ = -3.9, $ \nu $ = -2.4, $ \gamma $ = -1.3 and $ \mu $ = 1.
Figure 10(a) shows the real part of $ q = \hat{q}_1(x, t) $ in (3.43), while Figure 10(b) shows imaginary part of this solution for $ k $ = 0.2, $ a $ = 5, $ p $ = 1.2, $ \omega $ = -0.48, $ \nu $ = 1.4 and $ \mu $ = 1.
Remark 1. Using Eq (2.27) for $ u_i(x, y) $, $ i $ = 1, ..., 9, once, then Eq (3.2) as well as for Eq (1.1) has an infinite solutions. In sequence, by applying this process again, we get new families of solutions.
$ ˆu⋆1(x,t)=B3−aB3(kx+ωt+μ)±1, $ | (3.52) |
$ ˆu⋆2,3(x,t)=−p2+ν+2γ2±B3√p2+ν+2γ2tan(√p2+ν+2γ√2k(kx+ωt+μ))B3±√p2+ν+2γ2tan(√p2+ν+2γ√2k(kx+ωt+μ)), $ | (3.53) |
$ ˆu⋆4,5(x,t)=−p2+ν+2γ2±B3√p2+ν+2γ2cot(√p2+ν+2γ√2k(kx+ωt+μ))B3±√p2+ν+2γ2cot(√p2+ν+2γ√2k(kx+ωt+μ)), $ | (3.54) |
$ ˆu⋆6,7(x,t)=−p2+ν+2γ2±B3√−(p2+ν+2γ)2tanh(√−(p2+ν+2γ)√2k(kx+ωt+μ))B3±√−(p2+ν+2γ)2tanh(√−(p2+ν+2γ)√2k(kx+ωt+μ)), $ | (3.55) |
$ ˆu⋆8,9(x,t)=−p2+ν+2γ2±B3√−(p2+ν+2γ)2coth(√−(p2+ν+2γ)√2k(kx+ωt+μ))B3±√−(p2+ν+2γ)2coth(√−(p2+ν+2γ)√2k(kx+ωt+μ)), $ | (3.56) |
where $ B_{3}, p, \nu, \gamma, k, \omega $ and $ \mu $ are arbitrary constants.
In this article, the exp$ (-\varphi(\xi)) $-expansion, the sine-cosine and Riccati-Bernoulli sub-ODE techniques have been efficiently applied to construct many new solutions. As an outcome, a number of new exact solutions for the UNS equation were formally derived. Namely, the exp$ (-\varphi(\xi)) $-expansion method gives a first family of ten solutions. Whereas, sine-cosine method give another different second family of eight solutions. Indeed, Riccati-Bernoulli sub-ODE method gives a wide range of new explicit exact solutions including rational functions, trigonometric functions, hyperbolic functions and exponential functions in a straightforward manner. The effectiveness and helpfulness of the exp$ (-\varphi(\xi)) $-expansion, the sine-cosine and Riccati-Bernoulli sub-ODE methods to deal with UNS equation was proved. As a success, a wide range of new explicit exact solutions were obtained in a straightforward manner. Our study shows that the proposed three methods are reliable in handling NPDEs to establish a variety of exact solutions. Finally, we have plotted some 3D graphs of these solutions and we have shown that these graphs can be controlled by adjusting the parameters.
Remark 2.
1. Comparing our results concerning the UNS equation with the results in [41,42,44,45], one can see that our results are new and most extensive. Indeed, choosing suitable values for the parameters similar solutions can be verified.
2. The Riccati-Bernoulli sub-ODE method has an interesting feature, that admits infinite solutions, which has never given for any other method.
3. The three proposed methods in this article are efficient, powerful and adequate for solving other types of NPDEs and can be easily extended to solve nonlinear fractional differential equations, see [32,33,49,50,51,52,53,54,55,56].
The exp$ (-\varphi(\xi)) $-expansion, sine-cosine and Riccati-Bernoulli sub-ODE techniques have successfully been applied for the UNS equation. Many new exact solutions are obtained during the analytical treatment. The availability of computer systems like Matlab or Mathematica facilitates avoids us the tedious algebraic calculations. Indeed, the obtained solutions are of significant importance in the studies of applied science as they help in explaining some interesting physical mechanism for the complex phenomena. The 3D graphs of some exact solutions are plotted for suitable parameters. Finally, the proposed methods can be applied for a wide range of nonlinear partial differential equations arising in natural sciences. Currently, work is in progress on the applications of the proposed methods in this paper in order to solve the other nonlinear partial differential equations. Indeed these methods can be extended to solve fractional partial differential equations.
The authors thank the editor and anonymous reviewers for their valuable comments and suggestions.
The authors declare no conflict of interest.
[1] |
Thiery JP, Acloque H, Huang RY, et al. (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139: 871-890. doi: 10.1016/j.cell.2009.11.007
![]() |
[2] |
Chaffer CL, Thompson EW, Williams ED (2007) Mesenchymal to Epithelial Transition in Development and Disease. Cells Tissues Organs 185: 7-19. doi: 10.1159/000101298
![]() |
[3] |
Yao D, Dai C, Peng S (2011) Mechanism of the Mesenchymal-Epithelial Transition and Its Relationship with Metastatic Tumor Formation. Mol Cancer Res 9: 1608-1620. doi: 10.1158/1541-7786.MCR-10-0568
![]() |
[4] |
Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3: 362-374. doi: 10.1038/nrc1075
![]() |
[5] |
Calbo J, van Montfort E, Proost N, et al. (2011) A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell 19: 244-256. doi: 10.1016/j.ccr.2010.12.021
![]() |
[6] |
Mateo F, Meca-Cortes O, Celia-Terrassa T, et al. (2014) SPARC mediates metastatic cooperation between CSC and non-CSC prostate cancer cell subpopulations. Mol Cancer 13: 237. doi: 10.1186/1476-4598-13-237
![]() |
[7] |
Tsuji T, Ibaragi S, Hu GF (2009) Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res 69: 7135-7139. doi: 10.1158/0008-5472.CAN-09-1618
![]() |
[8] |
Nakashima Y, Yoshinaga K, Kitao H, et al. (2013) Podoplanin is expressed at the invasive front of esophageal squamous cell carcinomas and is involved in collective cell invasion. Cancer Sci 104: 1718-1725. doi: 10.1111/cas.12286
![]() |
[9] |
Wicki A, Lehembre F, Wick N, et al. (2006) Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 9: 261-272. doi: 10.1016/j.ccr.2006.03.010
![]() |
[10] |
Nieto MA (2013) Epithelial plasticity: a common theme in embryonic and cancer cells. Science 342: 1234850. doi: 10.1126/science.1234850
![]() |
[11] |
Montell DJ (2006) The social lives of migrating cells in Drosophila. Curr Opin Genet Dev 16: 374-383. doi: 10.1016/j.gde.2006.06.010
![]() |
[12] |
Montell DJ, Yoon WH, Starz-Gaiano M (2012) Group choreography: mechanisms orchestrating the collective movement of border cells. Nat Rev Mol Cell Biol 13: 631-645. doi: 10.1038/nrm3433
![]() |
[13] |
Pocha SM, Montell DJ (2014) Cellular and Molecular Mechanisms of Single and Collective Cell Migrations in Drosophila: Themes and Variations. Annu Rev Genet 48: 295-318. doi: 10.1146/annurev-genet-120213-092218
![]() |
[14] |
Ribeiro C, Petit V, Affolter M (2003) Signaling systems, guided cell migration, and organogenesis: insights from genetic studies in Drosophila. Dev Biol 260: 1-8. doi: 10.1016/S0012-1606(03)00211-2
![]() |
[15] |
Wilson R, Leptin M (2000) Fibroblast growth factor receptor-dependent morphogenesis of the Drosophila mesoderm. Philos Trans R Soc Lond B Biol Sci 355: 891-895. doi: 10.1098/rstb.2000.0625
![]() |
[16] |
Winklbauer R, Muller HA (2011) Mesoderm layer formation in Xenopus and Drosophila gastrulation. Phys Biol 8: 045001. doi: 10.1088/1478-3975/8/4/045001
![]() |
[17] |
Nieto MA (2011) The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol 27: 347-376. doi: 10.1146/annurev-cellbio-092910-154036
![]() |
[18] |
Affolter M, Caussinus E (2008) Tracheal branching morphogenesis in Drosophila: new insights into cell behaviour and organ architecture. Development 135: 2055-2064. doi: 10.1242/dev.014498
![]() |
[19] |
Harris TJ, Sawyer JK, Peifer M (2009) How the cytoskeleton helps build the embryonic body plan: models of morphogenesis from Drosophila. Curr Top Dev Biol 89: 55-85. doi: 10.1016/S0070-2153(09)89003-0
![]() |
[20] | Simpson P (1983) Maternal-Zygotic Gene Interactions during Formation of the Dorsoventral Pattern in Drosophila Embryos. Genetics 105: 615-632. |
[21] |
Khan MA, Chen HC, Zhang D, et al. (2013) Twist: a molecular target in cancer therapeutics. Tumour Biol 34: 2497-2506. doi: 10.1007/s13277-013-1002-x
![]() |
[22] |
Wang Y, Shi J, Chai K, et al. (2013) The Role of Snail in EMT and Tumorigenesis. Curr Cancer Drug Targets 13: 963-972. doi: 10.2174/15680096113136660102
![]() |
[23] |
Sandmann T, Girardot C, Brehme M, et al. (2007) A core transcriptional network for early mesoderm development in Drosophila melanogaster. Genes Dev 21: 436-449. doi: 10.1101/gad.1509007
![]() |
[24] |
Leptin M (2005) Gastrulation movements: the logic and the nuts and bolts. Dev Cell 8: 305-320. doi: 10.1016/j.devcel.2005.02.007
![]() |
[25] |
Manning AJ, Rogers SL (2014) The Fog signaling pathway: insights into signaling in morphogenesis. Dev Biol 394: 6-14. doi: 10.1016/j.ydbio.2014.08.003
![]() |
[26] |
Murray MJ, Southall TD, Liu W, et al. (2012) Snail-dependent repression of the RhoGEF pebble is required for gastrulation consistency in Drosophila melanogaster. Dev Genes Evol 222: 361-368. doi: 10.1007/s00427-012-0414-8
![]() |
[27] |
Wheelock MJ, Shintani Y, Maeda M, et al. (2008) Cadherin switching. J Cell Sci 121: 727-735. doi: 10.1242/jcs.000455
![]() |
[28] |
Jeanes A, Gottardi CJ, Yap AS (2008) Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27: 6920-6929. doi: 10.1038/onc.2008.343
![]() |
[29] |
Mariotti A, Perotti A, Sessa C, et al. (2007) N-cadherin as a therapeutic target in cancer. Expert Opin Investig Drugs 16: 451-465. doi: 10.1517/13543784.16.4.451
![]() |
[30] |
Oda H, Tsukita S, Takeichi M (1998) Dynamic behavior of the cadherin-based cell-cell adhesion system during Drosophila gastrulation. Dev Biol 203: 435-450. doi: 10.1006/dbio.1998.9047
![]() |
[31] |
Schafer G, Narasimha M, Vogelsang E, et al. (2014) Cadherin switching during the formation and differentiation of the Drosophila mesoderm - implications for epithelial-to-mesenchymal transitions. J Cell Sci 127: 1511-1522. doi: 10.1242/jcs.139485
![]() |
[32] |
Clark IB, Muha V, Klingseisen A, et al. (2011) Fibroblast growth factor signalling controls successive cell behaviours during mesoderm layer formation in Drosophila. Development 138: 2705-2715. doi: 10.1242/dev.060277
![]() |
[33] |
Murray MJ, Saint R (2007) Photoactivatable GFP resolves Drosophila mesoderm migration behaviour. Development 134: 3975-3983. doi: 10.1242/dev.005389
![]() |
[34] |
Smallhorn M, Murray MJ, Saint R (2004) The epithelial-mesenchymal transition of the Drosophila mesoderm requires the Rho GTP exchange factor Pebble. Development 131: 2641-2651. doi: 10.1242/dev.01150
![]() |
[35] |
Williams M, Burdsal C, Periasamy A, et al. (2012) Mouse primitive streak forms in situ by initiation of epithelial to mesenchymal transition without migration of a cell population. Dev Dyn 241: 270-283. doi: 10.1002/dvdy.23711
![]() |
[36] |
Berndt JD, Clay MR, Langenberg T, et al. (2008) Rho-kinase and myosin II affect dynamic neural crest cell behaviors during epithelial to mesenchymal transition in vivo. Dev Biol 324: 236-244. doi: 10.1016/j.ydbio.2008.09.013
![]() |
[37] |
Eisenhoffer GT, Rosenblatt J (2013) Bringing balance by force: live cell extrusion controls epithelial cell numbers. Trends Cell Biol 23: 185-192. doi: 10.1016/j.tcb.2012.11.006
![]() |
[38] | Polakis P (2012) Wnt signaling in cancer. Cold Spring Harb Perspect Biol 4. |
[39] |
Rembold M, Ciglar L, Yanez-Cuna JO, et al. (2014) A conserved role for Snail as a potentiator of active transcription. Genes Dev 28: 167-181. doi: 10.1101/gad.230953.113
![]() |
[40] |
Hahn S, Jackstadt R, Siemens H, et al. (2013) SNAIL and miR-34a feed-forward regulation of ZNF281/ZBP99 promotes epithelial-mesenchymal transition. EMBO J 32: 3079-3095. doi: 10.1038/emboj.2013.236
![]() |
[41] |
Stemmer V, de Craene B, Berx G, et al. (2008) Snail promotes Wnt target gene expression and interacts with beta-catenin. Oncogene 27: 5075-5080. doi: 10.1038/onc.2008.140
![]() |
[42] |
Wels C, Joshi S, Koefinger P, et al. (2011) Transcriptional activation of ZEB1 by Slug leads to cooperative regulation of the epithelial-mesenchymal transition-like phenotype in melanoma. J Invest Dermatol 131: 1877-1885. doi: 10.1038/jid.2011.142
![]() |
[43] |
Tao G, Levay AK, Gridley T, et al. (2011) Mmp15 is a direct target of Snai1 during endothelial to mesenchymal transformation and endocardial cushion development. Dev Biol 359: 209-221. doi: 10.1016/j.ydbio.2011.08.022
![]() |
[44] |
Campbell K, Whissell G, Franch-Marro X, et al. (2011) Specific GATA factors act as conserved inducers of an endodermal-EMT. Dev Cell 21: 1051-1061. doi: 10.1016/j.devcel.2011.10.005
![]() |
[45] |
Godde NJ, Pearson HB, Smith LK, et al. (2014) Dissecting the role of polarity regulators in cancer through the use of mouse models. Exp Cell Res 328: 249-257. doi: 10.1016/j.yexcr.2014.08.036
![]() |
[46] |
Humbert PO, Grzeschik NA, Brumby AM, et al. (2008) Control of tumourigenesis by the Scribble/Dlg/Lgl polarity module. Oncogene 27: 6888-6907. doi: 10.1038/onc.2008.341
![]() |
[47] |
Khursheed M, Bashyam MD (2014) Apico-basal polarity complex and cancer. J Biosci 39: 145-155. doi: 10.1007/s12038-013-9410-z
![]() |
[48] | Gao X, Sedgwick T, Shi YB, et al. (1998) Distinct functions are implicated for the GATA-4, -5, and -6 transcription factors in the regulation of intestine epithelial cell differentiation. Mol Cell Biol 18: 2901-2911. |
[49] | Molkentin JD, Antos C, Mercer B, et al. (2000) Direct activation of a GATA6 cardiac enhancer by Nkx2.5: evidence for a reinforcing regulatory network of Nkx2.5 and GATA transcription factors in the developing heart. Dev Biol 217: 301-309. |
[50] |
Fu B, Luo M, Lakkur S, et al. (2008) Frequent genomic copy number gain and overexpression of GATA-6 in pancreatic carcinoma. Cancer Biol Ther 7: 1593-1601. doi: 10.4161/cbt.7.10.6565
![]() |
[51] |
Kwei KA, Bashyam MD, Kao J, et al. (2008) Genomic profiling identifies GATA6 as a candidate oncogene amplified in pancreatobiliary cancer. PLoS Genet 4: e1000081. doi: 10.1371/journal.pgen.1000081
![]() |
[52] |
Shureiqi I, Zuo X, Broaddus R, et al. (2007) The transcription factor GATA-6 is overexpressed in vivo and contributes to silencing 15-LOX-1 in vitro in human colon cancer. FASEB J 21: 743-753. doi: 10.1096/fj.06-6830com
![]() |
[53] |
Bokel C, Brown NH (2002) Integrins in development: moving on, responding to, and sticking to the extracellular matrix. Dev Cell 3: 311-321. doi: 10.1016/S1534-5807(02)00265-4
![]() |
[54] |
Devenport D, Brown NH (2004) Morphogenesis in the absence of integrins: mutation of both Drosophila beta subunits prevents midgut migration. Development 131: 5405-5415. doi: 10.1242/dev.01427
![]() |
[55] | Martin-Bermudo MD, Alvarez-Garcia I, Brown NH (1999) Migration of the Drosophila primordial midgut cells requires coordination of diverse PS integrin functions. Development 126: 5161-5169. |
[56] |
Urbano JM, Dominguez-Gimenez P, Estrada B, et al. (2011) PS integrins and laminins: key regulators of cell migration during Drosophila embryogenesis. PLoS One 6: e23893. doi: 10.1371/journal.pone.0023893
![]() |
[57] | Pert M, Gan M, Saint R, et al. (2015) Netrins and Frazzled/DCC promote the migration and mesenchymal to epithelial transition of Drosophila midgut cells. Biology Open. doi:10.1242/bio.201410827 [Epub ahead of print] |
[58] |
Tepass U, Hartenstein V (1994) The development of cellular junctions in the Drosophila embryo. Dev Biol 161: 563-596. doi: 10.1006/dbio.1994.1054
![]() |
[59] | Tepass U, Hartenstein V (1994) Epithelium formation in the Drosophila midgut depends on the interaction of endoderm and mesoderm. Development 120: 579-590. |
[60] |
Yarnitzky T, Volk T (1995) Laminin is required for heart, somatic muscles, and gut development in the Drosophila embryo. Dev Biol 169: 609-618. doi: 10.1006/dbio.1995.1173
![]() |
[61] |
Pastor-Pareja JC, Grawe F, Martin-Blanco E, et al. (2004) Invasive cell behavior during Drosophila imaginal disc eversion is mediated by the JNK signaling cascade. Dev Cell 7: 387-399. doi: 10.1016/j.devcel.2004.07.022
![]() |
[62] |
Martin-Blanco E, Pastor-Pareja JC, Garcia-Bellido A (2000) JNK and decapentaplegic signaling control adhesiveness and cytoskeleton dynamics during thorax closure in Drosophila. Proc Natl Acad Sci U S A 97: 7888-7893. doi: 10.1073/pnas.97.14.7888
![]() |
[63] |
Tateno M, Nishida Y, Adachi-Yamada T (2000) Regulation of JNK by Src during Drosophila development. Science 287: 324-327. doi: 10.1126/science.287.5451.324
![]() |
[64] |
Ishimaru S, Ueda R, Hinohara Y, et al. (2004) PVR plays a critical role via JNK activation in thorax closure during Drosophila metamorphosis. EMBO J 23: 3984-3994. doi: 10.1038/sj.emboj.7600417
![]() |
[65] |
Srivastava A, Pastor-Pareja JC, Igaki T, et al. (2007) Basement membrane remodeling is essential for Drosophila disc eversion and tumor invasion. Proc Natl Acad Sci U S A 104: 2721-2726. doi: 10.1073/pnas.0611666104
![]() |
[66] |
Homsy JG, Jasper H, Peralta XG, et al. (2006) JNK signaling coordinates integrin and actin functions during Drosophila embryogenesis. Dev Dyn 235: 427-434. doi: 10.1002/dvdy.20649
![]() |
[67] |
Bubici C, Papa S (2014) JNK signalling in cancer: in need of new, smarter therapeutic targets. Br J Pharmacol 171: 24-37. doi: 10.1111/bph.12432
![]() |
[68] | Manhire-Heath R, Golenkina S, Saint R, et al. (2013) Netrin-dependent downregulation of Frazzled/DCC is required for the dissociation of the peripodial epithelium in Drosophila. Nat Commun 4: 2790. |
[69] |
Speck O, Hughes SC, Noren NK, et al. (2003) Moesin functions antagonistically to the Rho pathway to maintain epithelial integrity. Nature 421: 83-87. doi: 10.1038/nature01295
![]() |
[70] |
VanZomeren-Dohm A, Sarro J, Flannery E, et al. (2011) The Drosophila Netrin receptor frazzled/DCC functions as an invasive tumor suppressor. BMC Dev Biol 11: 41. doi: 10.1186/1471-213X-11-41
![]() |
[71] | Castets M, Broutier L, Molin Y, et al. (2012) DCC constrains tumour progression via its dependence receptor activity. Nature 482: 534-537. |
[72] |
Fitamant J, Guenebeaud C, Coissieux MM, et al. (2008) Netrin-1 expression confers a selective advantage for tumor cell survival in metastatic breast cancer. Proc Natl Acad Sci U S A 105: 4850-4855. doi: 10.1073/pnas.0709810105
![]() |
[73] | Papanastasiou AD, Pampalakis G, Katsaros D, et al. (2011) Netrin-1 overexpression is predictive of ovarian malignancies. Oncotarget 2: 363-367. |
[74] |
Mazelin L, Bernet A, Bonod-Bidaud C, et al. (2004) Netrin-1 controls colorectal tumorigenesis by regulating apoptosis. Nature 431: 80-84. doi: 10.1038/nature02788
![]() |
[75] |
Lai Wing Sun K, Correia JP, Kennedy TE (2011) Netrins: versatile extracellular cues with diverse functions. Development 138: 2153-2169. doi: 10.1242/dev.044529
![]() |
[76] |
Dumartin L, Quemener C, Laklai H, et al. (2010) Netrin-1 mediates early events in pancreatic adenocarcinoma progression, acting on tumor and endothelial cells. Gastroenterology 138: 1595-1606, 1606 e1591-1598. doi: 10.1053/j.gastro.2009.12.061
![]() |
[77] | Kaufmann S, Kuphal S, Schubert T, et al. (2009) Functional implication of Netrin expression in malignant melanoma. Cell Oncol 31: 415-422. |
[78] |
Rodrigues S, De Wever O, Bruyneel E, et al. (2007) Opposing roles of netrin-1 and the dependence receptor DCC in cancer cell invasion, tumor growth and metastasis. Oncogene 26: 5615-5625. doi: 10.1038/sj.onc.1210347
![]() |
[79] | Salminen M, Meyer BI, Bober E, et al. (2000) Netrin 1 is required for semicircular canal formation in the mouse inner ear. Development 127: 13-22. |
[80] |
Martin M, Simon-Assmann P, Kedinger M, et al. (2006) DCC regulates cell adhesion in human colon cancer derived HT-29 cells and associates with ezrin. Eur J Cell Biol 85: 769-783. doi: 10.1016/j.ejcb.2006.02.013
![]() |
[81] |
Kee N, Wilson N, De Vries M, et al. (2008) Neogenin and RGMa control neural tube closure and neuroepithelial morphology by regulating cell polarity. J Neurosci 28: 12643-12653. doi: 10.1523/JNEUROSCI.4265-08.2008
![]() |
[82] |
Fulga TA, Rorth P (2002) Invasive cell migration is initiated by guided growth of long cellular extensions. Nat Cell Biol 4: 715-719. doi: 10.1038/ncb848
![]() |
[83] |
Majumder P, Aranjuez G, Amick J, et al. (2012) Par-1 controls myosin-II activity through myosin phosphatase to regulate border cell migration. Curr Biol 22: 363-372. doi: 10.1016/j.cub.2012.01.037
![]() |
[84] |
Wang X, Adam JC, Montell D (2007) Spatially localized Kuzbanian required for specific activation of Notch during border cell migration. Dev Biol 301: 532-540. doi: 10.1016/j.ydbio.2006.08.031
![]() |
[85] |
Prasad M, Montell DJ (2007) Cellular and molecular mechanisms of border cell migration analyzed using time-lapse live-cell imaging. Dev Cell 12: 997-1005. doi: 10.1016/j.devcel.2007.03.021
![]() |
[86] |
Ara T, Declerck YA (2010) Interleukin-6 in bone metastasis and cancer progression. Eur J Cancer 46: 1223-1231. doi: 10.1016/j.ejca.2010.02.026
![]() |
[87] |
Sullivan NJ, Sasser AK, Axel AE, et al. (2009) Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene 28: 2940-2947. doi: 10.1038/onc.2009.180
![]() |
[88] |
Min Y, Ghose S, Boelte K, et al. (2011) C/EBP-delta regulates VEGF-C autocrine signaling in lymphangiogenesis and metastasis of lung cancer through HIF-1alpha. Oncogene 30: 4901-4909. doi: 10.1038/onc.2011.187
![]() |
[89] |
Doronkin S, Djagaeva I, Nagle ME, et al. (2010) Dose-dependent modulation of HIF-1alpha/sima controls the rate of cell migration and invasion in Drosophila ovary border cells. Oncogene 29: 1123-1134. doi: 10.1038/onc.2009.407
![]() |
[90] |
Anzick SL, Kononen J, Walker RL, et al. (1997) AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277: 965-968. doi: 10.1126/science.277.5328.965
![]() |
[91] |
Mazzone M, Selfors LM, Albeck J, et al. (2010) Dose-dependent induction of distinct phenotypic responses to Notch pathway activation in mammary epithelial cells. Proc Natl Acad Sci U S A 107: 5012-5017. doi: 10.1073/pnas.1000896107
![]() |
[92] |
Bell GP, Thompson BJ (2014) Colorectal cancer progression: lessons from Drosophila? Semin Cell Dev Biol 28: 70-77. doi: 10.1016/j.semcdb.2014.02.007
![]() |
[93] |
Gandille P, Narbonne-Reveau K, Boissonneau E, et al. (2010) Mutations in the polycomb group gene polyhomeotic lead to epithelial instability in both the ovary and wing imaginal disc in Drosophila. PLoS One 5: e13946. doi: 10.1371/journal.pone.0013946
![]() |
[94] |
Widmann TJ, Dahmann C (2009) Dpp signaling promotes the cuboidal-to-columnar shape transition of Drosophila wing disc epithelia by regulating Rho1. J Cell Sci 122: 1362-1373. doi: 10.1242/jcs.044271
![]() |
[95] |
Marinari E, Mehonic A, Curran S, et al. (2012) Live-cell delamination counterbalances epithelial growth to limit tissue overcrowding. Nature 484: 542-545. doi: 10.1038/nature10984
![]() |
[96] |
Tepass U (2012) The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu Rev Cell Dev Biol 28: 655-685. doi: 10.1146/annurev-cellbio-092910-154033
![]() |
[97] |
Bilder D, Li M, Perrimon N (2000) Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289: 113-116. doi: 10.1126/science.289.5476.113
![]() |
[98] |
Brumby AM, Goulding KR, Schlosser T, et al. (2011) Identification of novel Ras-cooperating oncogenes in Drosophila melanogaster: a RhoGEF/Rho-family/JNK pathway is a central driver of tumorigenesis. Genetics 188: 105-125. doi: 10.1534/genetics.111.127910
![]() |
[99] |
Ohsawa S, Sugimura K, Takino K, et al. (2011) Elimination of oncogenic neighbors by JNK-mediated engulfment in Drosophila. Dev Cell 20: 315-328. doi: 10.1016/j.devcel.2011.02.007
![]() |
[100] |
Uhlirova M, Bohmann D (2006) JNK- and Fos-regulated Mmp1 expression cooperates with Ras to induce invasive tumors in Drosophila. EMBO J 25: 5294-5304. doi: 10.1038/sj.emboj.7601401
![]() |
[101] |
Kulshammer E, Uhlirova M (2013) The actin cross-linker Filamin/Cheerio mediates tumor malignancy downstream of JNK signaling. J Cell Sci 126: 927-938. doi: 10.1242/jcs.114462
![]() |
[102] |
Brock AR, Wang Y, Berger S, et al. (2012) Transcriptional regulation of Profilin during wound closure in Drosophila larvae. J Cell Sci 125: 5667-5676. doi: 10.1242/jcs.107490
![]() |
[103] |
Dekanty A, Barrio L, Muzzopappa M, et al. (2012) Aneuploidy-induced delaminating cells drive tumorigenesis in Drosophila epithelia. Proc Natl Acad Sci U S A 109: 20549-20554. doi: 10.1073/pnas.1206675109
![]() |
[104] |
Hipfner DR, Keller N, Cohen SM (2004) Slik Sterile-20 kinase regulates Moesin activity to promote epithelial integrity during tissue growth. Genes Dev 18: 2243-2248. doi: 10.1101/gad.303304
![]() |
[105] |
Neisch AL, Formstecher E, Fehon RG (2013) Conundrum, an ARHGAP18 orthologue, regulates RhoA and proliferation through interactions with Moesin. Mol Biol Cell 24: 1420-1433. doi: 10.1091/mbc.E12-11-0800
![]() |
[106] |
Coso OA, Chiariello M, Yu JC, et al. (1995) The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81: 1137-1146. doi: 10.1016/S0092-8674(05)80018-2
![]() |
[107] | Teramoto H, Crespo P, Coso OA, et al. (1996) The small GTP-binding protein rho activates c-Jun N-terminal kinases/stress-activated protein kinases in human kidney 293T cells. Evidence for a Pak-independent signaling pathway. J Biol Chem 271: 25731-25734. |
[108] |
Neisch AL, Speck O, Stronach B, et al. (2010) Rho1 regulates apoptosis via activation of the JNK signaling pathway at the plasma membrane. J Cell Biol 189: 311-323. doi: 10.1083/jcb.200912010
![]() |
[109] |
Khoo P, Allan K, Willoughby L, et al. (2013) In Drosophila, RhoGEF2 cooperates with activated Ras in tumorigenesis through a pathway involving Rho1-Rok-Myosin-II and JNK signalling. Dis Model Mech 6: 661-678. doi: 10.1242/dmm.010066
![]() |
[110] |
Vidal M, Larson DE, Cagan RL (2006) Csk-deficient boundary cells are eliminated from normal Drosophila epithelia by exclusion, migration, and apoptosis. Dev Cell 10: 33-44. doi: 10.1016/j.devcel.2005.11.007
![]() |
[111] |
Rudrapatna VA, Bangi E, Cagan RL (2014) A Jnk-Rho-Actin remodeling positive feedback network directs Src-driven invasion. Oncogene 33: 2801-2806. doi: 10.1038/onc.2013.232
![]() |
[112] |
Singh J, Aaronson SA, Mlodzik M (2010) Drosophila Abelson kinase mediates cell invasion and proliferation through two distinct MAPK pathways. Oncogene 29: 4033-4045. doi: 10.1038/onc.2010.155
![]() |
[113] |
Das TK, Sangodkar J, Negre N, et al. (2013) Sin3a acts through a multi-gene module to regulate invasion in Drosophila and human tumors. Oncogene 32: 3184-3197. doi: 10.1038/onc.2012.326
![]() |
[114] |
Brumby AM, Richardson HE (2003) scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J 22: 5769-5779. doi: 10.1093/emboj/cdg548
![]() |
[115] |
Pagliarini RA, Xu T (2003) A genetic screen in Drosophila for metastatic behavior. Science 302: 1227-1231. doi: 10.1126/science.1088474
![]() |
[116] |
Igaki T, Pagliarini RA, Xu T (2006) Loss of cell polarity drives tumor growth and invasion through JNK activation in Drosophila. Curr Biol 16: 1139-1146. doi: 10.1016/j.cub.2006.04.042
![]() |
[117] |
Ma X, Shao Y, Zheng H, et al. (2013) Src42A modulates tumor invasion and cell death via Ben/dUev1a-mediated JNK activation in Drosophila. Cell Death Dis 4: e864. doi: 10.1038/cddis.2013.392
![]() |
[118] |
Rudrapatna VA, Bangi E, Cagan RL (2013) Caspase signalling in the absence of apoptosis drives Jnk-dependent invasion. EMBO Rep 14: 172-177. doi: 10.1038/embor.2012.217
![]() |
[119] | Yang L, Cao Z, Yan H, et al. (2003) Coexistence of high levels of apoptotic signaling and inhibitor of apoptosis proteins in human tumor cells: implication for cancer specific therapy. Cancer Res 63: 6815-6824. |
[120] |
Wu M, Pastor-Pareja JC, Xu T (2010) Interaction between Ras(V12) and scribbled clones induces tumour growth and invasion. Nature 463: 545-548. doi: 10.1038/nature08702
![]() |
[121] |
Herranz H, Hong X, Hung NT, et al. (2012) Oncogenic cooperation between SOCS family proteins and EGFR identified using a Drosophila epithelial transformation model. Genes Dev 26: 1602-1611. doi: 10.1101/gad.192021.112
![]() |
[122] |
de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6: 24-37. doi: 10.1038/nrc1782
![]() |
[123] |
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 646-674. doi: 10.1016/j.cell.2011.02.013
![]() |
[124] | Landskron G, De la Fuente M, Thuwajit P, et al. (2014) Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014: 149185. |
[125] |
Pastor-Pareja JC, Wu M, Xu T (2008) An innate immune response of blood cells to tumors and tissue damage in Drosophila. Dis Model Mech 1: 144-154; discussion 153. doi: 10.1242/dmm.000950
![]() |
[126] |
Cordero JB, Macagno JP, Stefanatos RK, et al. (2010) Oncogenic Ras diverts a host TNF tumor suppressor activity into tumor promoter. Dev Cell 18: 999-1011. doi: 10.1016/j.devcel.2010.05.014
![]() |
[127] | Shen J, Lu J, Sui L, et al. (2014) The orthologous Tbx transcription factors Omb and TBX2 induce epithelial cell migration and extrusion in vivo without involvement of matrix metalloproteinases. Oncotarget 5: 11998-12015. |
[128] |
Das TK, Dana D, Paroly SS, et al. (2013) Centrosomal kinase Nek2 cooperates with oncogenic pathways to promote metastasis. Oncogenesis 2: e69. doi: 10.1038/oncsis.2013.34
![]() |
[129] |
Dominguez M (2014) Oncogenic programmes and Notch activity: an 'organized crime'? Semin Cell Dev Biol 28: 78-85. doi: 10.1016/j.semcdb.2014.04.012
![]() |
[130] |
Gratz SJ, Wildonger J, Harrison MM, et al. (2013) CRISPR/Cas9-mediated genome engineering and the promise of designer flies on demand. Fly (Austin) 7: 249-255. doi: 10.4161/fly.26566
![]() |
[131] | Kvon EZ, Kazmar T, Stampfel G, et al. (2014) Genome-scale functional characterization of Drosophila developmental enhancers in vivo. Nature 512: 91-95. |
[132] |
Southall TD, Gold KS, Egger B, et al. (2013) Cell-type-specific profiling of gene expression and chromatin binding without cell isolation: assaying RNA Pol II occupancy in neural stem cells. Dev Cell 26: 101-112. doi: 10.1016/j.devcel.2013.05.020
![]() |
[133] |
Ferres-Marco D, Gutierrez-Garcia I, Vallejo DM, et al. (2006) Epigenetic silencers and Notch collaborate to promote malignant tumours by Rb silencing. Nature 439: 430-436. doi: 10.1038/nature04376
![]() |
[134] |
Willoughby LF, Schlosser T, Manning SA, et al. (2013) An in vivo large-scale chemical screening platform using Drosophila for anti-cancer drug discovery. Dis Model Mech 6: 521-529. doi: 10.1242/dmm.009985
![]() |
[135] |
Vidal M, Wells S, Ryan A, et al. (2005) ZD6474 suppresses oncogenic RET isoforms in a Drosophila model for type 2 multiple endocrine neoplasia syndromes and papillary thyroid carcinoma. Cancer Res 65: 3538-3541. doi: 10.1158/0008-5472.CAN-04-4561
![]() |
[136] |
Dar AC, Das TK, Shokat KM, et al. (2012) Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature 486: 80-84. doi: 10.1038/nature11127
![]() |
[137] |
Kasai Y, Cagan R (2010) Drosophila as a tool for personalized medicine: a primer. Per Med 7: 621-632. doi: 10.2217/pme.10.65
![]() |
1. | Mostafa M.A. Khater, Mustafa Inc, K.S. Nisar, Raghda A.M. Attia, Multi–solitons, lumps, and breath solutions of the water wave propagation with surface tension via four recent computational schemes, 2021, 20904479, 10.1016/j.asej.2020.10.029 | |
2. | Mostafa M. A. Khater, Yu-Ming Chu, Raghda A. M. Attia, Mustafa Inc, Dianchen Lu, On the Analytical and Numerical Solutions in the Quantum Magnetoplasmas: The Atangana Conformable Derivative (1+3)-ZK Equation with Power-Law Nonlinearity, 2020, 2020, 1687-9120, 1, 10.1155/2020/5809289 | |
3. | Usman Younas, Muhammad Bilal, Tukur Abdulkadir Sulaiman, Jingli Ren, Abdullahi Yusuf, On the exact soliton solutions and different wave structures to the double dispersive equation, 2022, 54, 0306-8919, 10.1007/s11082-021-03445-2 | |
4. | Ghazala Akram, Maasoomah Sadaf, Iqra Zainab, Observations of fractional effects of β-derivative and M-truncated derivative for space time fractional Phi-4 equation via two analytical techniques, 2022, 154, 09600779, 111645, 10.1016/j.chaos.2021.111645 | |
5. | Mojtaba Shahraki, Hossein Malekpoor, The effects of polarization on soliton interactions inside optical fibers, 2022, 54, 0306-8919, 10.1007/s11082-022-03514-0 | |
6. | Md. Abdul Kayum, Ripan Roy, M. Ali Akbar, M. S. Osman, Study of W-shaped, V-shaped, and other type of surfaces of the ZK-BBM and GZD-BBM equations, 2021, 53, 0306-8919, 10.1007/s11082-021-03031-6 | |
7. | Khalid K. Ali, Hadi Rezazadeh, Nauman Raza, Mustafa Inc, Highly dispersive optical soliton perturbation with cubic–quintic–septic law via two methods, 2021, 35, 0217-9792, 10.1142/S0217979221502763 | |
8. | Delmar Sherriffe, Diptiranjan Behera, P. Nagarani, Different forms for exact traveling wave solutions of unstable and hyperbolic nonlinear Schrödinger equations, 2024, 38, 0217-9792, 10.1142/S0217979224501315 | |
9. | Handenur Esen, Neslihan Ozdemir, Aydin Secer, Mustafa Bayram, Tukur Abdulkadir Sulaiman, Hijaz Ahmad, Abdullahi Yusuf, M. Daher Albalwi, On the soliton solutions to the density-dependent space time fractional reaction–diffusion equation with conformable and M-truncated derivatives, 2023, 55, 0306-8919, 10.1007/s11082-023-05109-9 | |
10. | Hira Tariq, Hira Ashraf, Hadi Rezazadeh, Ulviye Demirbilek, Travelling wave solutions of nonlinear conformable Bogoyavlenskii equations via two powerful analytical approaches, 2024, 39, 1005-1031, 502, 10.1007/s11766-024-5030-7 | |
11. | Rui Cui, New waveform solutions of Calogero–Degasperis (CD) and potential Kadomtsev–Petviashvili (pKP) equations, 2024, 7, 2520-8160, 1673, 10.1007/s41939-023-00254-w | |
12. | Kang-Jia Wang, Ming Li, Variational Principle of the Unstable Nonlinear Schrödinger Equation with Fractal Derivatives, 2025, 14, 2075-1680, 376, 10.3390/axioms14050376 |