Citation: Abdelkarim El khantach, Mohamed Hamlich, Nour eddine Belbounaguia. Short-term load forecasting using machine learning and periodicity decomposition[J]. AIMS Energy, 2019, 7(3): 382-394. doi: 10.3934/energy.2019.3.382
[1] | Murthy Balijepalli VSK, Pradhan V, Khaparde SA, et al. (2011) Review of demand response under smart grid paradigm. ISGT2011-India, Kollam, Kerala, 236–243. |
[2] | Faria P, Vale Z (2011) Demand response in electrical energy supply: An optimal real time pricing approach. Energy 36: 5374–5384. doi: 10.1016/j.energy.2011.06.049 |
[3] | Moslehi K, Kumar R (2010) A reliability perspective of the smart grid. IEEE Trans Smart Grid 1: 57–64. doi: 10.1109/TSG.2010.2046346 |
[4] | Chan SC, Tsui KM, Wu HC, et al. (2012) Load/price forecasting and managing demand response for smart grids: Methodologies and challenges. IEEE Signal Process Mag 29: 68–85. doi: 10.1109/MSP.2012.2186531 |
[5] | Palma, Wilfredo (2016) Book: Time series analysis. |
[6] | Raza MQ, Khosravi A (2015) A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renewable Sustainable Energy Rev 50: 1352–1372. doi: 10.1016/j.rser.2015.04.065 |
[7] | Gross G, Galiana FD (1987) Short-Term load forecasting. Proc IEEE 75: 1558–1573. doi: 10.1109/PROC.1987.13927 |
[8] | Hyde O, Hodnett PF (1997) An adaptable automated procedure for short-term electricity load forecasting. IEEE Trans Power Syst 12: 84–94. doi: 10.1109/59.574927 |
[9] | Broadwater RR, Sargent A, Yarali A, et al. (1997) Estimating substation peaks from load research data. IEEE Trans Power Delivery, 12: 451–456. |
[10] | Huang SR (1997) Short-term load forecasting using threshold autoregressive models. IEE Proc- Gener, Transm Distrib 144: 477–481. doi: 10.1049/ip-gtd:19971144 |
[11] | El-Keib AA, Ma X, Ma H (1995) Advancement of statistical based modeling techniques for short-term load forecasting. Electr Power Syst Res 35: 51–58. doi: 10.1016/0378-7796(95)00987-6 |
[12] | Chen J, Wang W, Huang C (1995) Analysis of an adaptive time-series autoregressive moving-average (ARMA) model for short-term load forecasting. Electr Power Syst Res 34: 187–196. doi: 10.1016/0378-7796(95)00977-1 |
[13] | Barakat EH, Qayyum MA, Hamed MN, et al. (1990) Short-term peak demand forecasting in fast developing utility with inherit dynamic load characteristics. I. Application of classical time-series methods. II. Improved modelling of system dynamic load characteristics. IEEE Trans Power Syst 5: 813–824. |
[14] | Taylor JW (2003) Short-term electricity demand forecasting using double seasonal exponential smoothing. J Oper Res Soc 54: 799–805. doi: 10.1057/palgrave.jors.2601589 |
[15] | Hyndman RJ, Fan S (2010) Density forecasting for long-term peak electricity demand. IEEE Trans Power Syst 25: 1142–1153. doi: 10.1109/TPWRS.2009.2036017 |
[16] | Badri A, Ameli Z, Birjandi AM (2012) Application of artificial neural networks and fuzzy logic methods for short term load forecasting. Energy Procedia 14: 1883–1888. doi: 10.1016/j.egypro.2011.12.1183 |
[17] | Li D, Chang C, Chen C, et al. (2012) Forecasting short-term electricity consumption using the adaptive grey-based approach-An Asian case. Omega 40: 767–773. doi: 10.1016/j.omega.2011.07.007 |
[18] | Yang HY, Ye H, Wang G, et al. (2006) Fuzzy neural very-short-term load forecasting based on chaotic dynamics reconstruction. Chaos Solitons Fractals 29: 462–469. doi: 10.1016/j.chaos.2005.08.095 |
[19] | Al-kandari AM, Soliman SA, El-hawary ME (2004) Fuzzy short-term electric load forecasting. Int J Electr Power Energy Syst 26: 111–122. doi: 10.1016/S0142-0615(03)00069-3 |
[20] | Smith M (2000) Modeling and short-term forecasting of new South Wales electricity system load. J Bus Econ Stat 18: 465–478. |
[21] | Amina M, Kodogiannis VS, Petrounias I, et al. (2012) A hybrid intelligent approach for the prediction of electricity consumption. Int J Electr Power Energy Syst 43: 99–108. doi: 10.1016/j.ijepes.2012.05.027 |
[22] | Hsu C, Chen C (2003) Applications of improved grey prediction model for power demand forecasting. Energy Convers Manage 44: 2241–2249. doi: 10.1016/S0196-8904(02)00248-0 |
[23] | Fiot J, Dinuzzo F (2018) Electricity demand forecasting by multi-task learning. IEEE Trans Smart Grid 9: 544–551. doi: 10.1109/TSG.2016.2555788 |
[24] | Gonzalez-Romera E, Jaramillo-Moran MA, Carmona-Fernandez D (2006) Monthly electric energy demand forecasting based on trend extraction. IEEE Trans Power Syst 21: 1946–1953. doi: 10.1109/TPWRS.2006.883666 |
[25] | Zahedi G, Azizi S, Bahadori A, et al. (2013) Electricity demand estimation using an adaptive neuro-fuzzy network : A case study from the Ontario province-Canada. Energy 49: 323–328. doi: 10.1016/j.energy.2012.10.019 |
[26] | Dudek G (2015) Short-Term load forecasting using random forests. IEEE Conf Intell Syst 821–828. |
[27] | Chaturvedi DK, Sinha AP, Malik OP (2015) Short term load forecast using fuzzy logic and wavelet transform integrated generalized neural network. Int J Electr Power Energy Syst 67: 230–237. doi: 10.1016/j.ijepes.2014.11.027 |
[28] | Ryu S, Noh J, Kim H (2016) Deep neural network based demand side short term load forecasting. Energies 10: 1–20. doi: 10.3390/en10010001 |
[29] | Shevade SK, Keerthi SS, Bhattacharyya C, et al. (2000) Improvements to the SMO algorithm for SVM regression. IEEE Trans Neural Networks 11: 1188–1193. doi: 10.1109/72.870050 |
[30] | Mashor MY (2000) Hybrid training algorithm for RBF network. Int J Comput Internet Manage 8: 50–65. |
[31] | Quinlan JR (1987) Simplifying decision trees. Int J Man-Mach Stud 27: 221–234. doi: 10.1016/S0020-7373(87)80053-6 |
[32] | Rasmussen CE (2004) Gaussian processes in machine learning. Adv Lect Mach Learn 63–71. |