Citation: Saad S. Alrwashdeh, Falah M. Alsaraireh, Mohammad A. Saraireh, Henning Markötter, Nikolay Kardjilov, Merle Klages, Joachim Scholta, Ingo Manke. In-situ investigation of water distribution in polymer electrolyte membrane fuel cells using high-resolution neutron tomography with 6.5 µm pixel size[J]. AIMS Energy, 2018, 6(4): 607-614. doi: 10.3934/energy.2018.4.607
[1] | Saad Ihsan Butt, Erhan Set, Saba Yousaf, Thabet Abdeljawad, Wasfi Shatanawi . Generalized integral inequalities for ABK-fractional integral operators. AIMS Mathematics, 2021, 6(9): 10164-10191. doi: 10.3934/math.2021589 |
[2] | Haoliang Fu, Muhammad Shoaib Saleem, Waqas Nazeer, Mamoona Ghafoor, Peigen Li . On Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes. AIMS Mathematics, 2021, 6(6): 6322-6339. doi: 10.3934/math.2021371 |
[3] | Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089 |
[4] | Bandar Bin-Mohsin, Muhammad Uzair Awan, Muhammad Zakria Javed, Sadia Talib, Hüseyin Budak, Muhammad Aslam Noor, Khalida Inayat Noor . On some classical integral inequalities in the setting of new post quantum integrals. AIMS Mathematics, 2023, 8(1): 1995-2017. doi: 10.3934/math.2023103 |
[5] | Soubhagya Kumar Sahoo, Fahd Jarad, Bibhakar Kodamasingh, Artion Kashuri . Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application. AIMS Mathematics, 2022, 7(7): 12303-12321. doi: 10.3934/math.2022683 |
[6] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[7] | Sarah Elahi, Muhammad Aslam Noor . Integral inequalities for hyperbolic type preinvex functions. AIMS Mathematics, 2021, 6(9): 10313-10326. doi: 10.3934/math.2021597 |
[8] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[9] | Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem . New inequalities via Caputo-Fabrizio integral operator with applications. AIMS Mathematics, 2023, 8(8): 19391-19412. doi: 10.3934/math.2023989 |
[10] | Muhammad Samraiz, Kanwal Saeed, Saima Naheed, Gauhar Rahman, Kamsing Nonlaopon . On inequalities of Hermite-Hadamard type via n-polynomial exponential type s-convex functions. AIMS Mathematics, 2022, 7(8): 14282-14298. doi: 10.3934/math.2022787 |
The famous Young's inequality, as a classical result, state that: if a,b>0 and t∈[0,1], then
atb1−t≤ta+(1−t)b | (1.1) |
with equality if and only if a=b. Let p,q>1 such that 1/p+1/q=1. The inequality (1.1) can be written as
ab≤app+bqq | (1.2) |
for any a,b≥0. In this form, the inequality (1.2) was used to prove the celebrated Hölder inequality. One of the most important inequalities of analysis is Hölder's inequality. It contributes wide area of pure and applied mathematics and plays a key role in resolving many problems in social science and cultural science as well as in natural science.
Theorem 1 (Hölder inequality for integrals [11]). Let p>1 and 1/p+1/q=1. If f and g are real functions defined on [a,b] and if |f|p,|g|q are integrable functions on [a,b] then
∫ba|f(x)g(x)|dx≤(∫ba|f(x)|pdx)1/p(∫ba|g(x)|qdx)1/q, | (1.3) |
with equality holding if and only if A|f(x)|p=B|g(x)|q almost everywhere, where A and B are constants.
Theorem 2 (Hölder inequality for sums [11]). Let a=(a1,...,an) and b=(b1,...,bn) be two positive n-tuples and p,q>1 such that 1/p+1/q=1. Then we have
n∑k=1akbk≤(n∑k=1apk)1/p(n∑k=1bqk)1/q. | (1.4) |
Equality hold in (1.4) if and only if ap and bq are proportional.
In [10], İşcan gave new improvements for integral ans sum forms of the Hölder inequality as follow:
Theorem 3. Let p>1 and 1p+1q=1. If f and g are real functions defined on interval [a,b] and if |f|p, |g|q are integrable functions on [a,b] then
∫ba|f(x)g(x)|dx≤1b−a{(∫ba(b−x)|f(x)|pdx)1p(∫ba(b−x)|g(x)|qdx)1q+(∫ba(x−a)|f(x)|pdx)1p(∫ba(x−a)|g(x)|qdx)1q} | (1.5) |
Theorem 4. Let a=(a1,...,an) and b=(b1,...,bn) be two positive n-tuples and p,q>1 such that 1/p+1/q=1. Then
n∑k=1akbk≤1n{(n∑k=1kapk)1/p(n∑k=1kbqk)1/q+(n∑k=1(n−k)apk)1/p(n∑k=1(n−k)bqk)1/q}. | (1.6) |
Let E be a nonempty set and L be a linear class of real valued functions on E having the following properties
L1: If f,g∈L then (αf+βg)∈L for all α,β∈R;
L2: 1∈L, that is if f(t)=1,t∈E, then f∈L;
We also consider positive isotonic linear functionals A:L→R is a functional satisfying the following properties:
A1: A(αf+βg)=αA(f)+β A(g) for f,g∈L and α,β∈R;
A2: If f∈L, f(t)≥0 on E then A(f)≥0.
Isotonic, that is, order-preserving, linear functionals are natural objects in analysis which enjoy a number of convenient properties. Functional versions of well-known inequalities and related results could be found in [1,2,3,4,5,6,7,8,9,11,12].
Example 1. i.) If E=[a,b]⊆R and L=L[a,b], then
A(f)=∫baf(t)dt |
is an isotonic linear functional.
ii.)If E=[a,b]×[c,d]⊆R2 and L=L([a,b]×[c,d]), then
A(f)=∫ba∫dcf(x,y)dxdy |
is an isotonic linear functional.
iii.)If (E,Σ,μ) is a measure space with μ positive measure on E and L=L(μ) then
A(f)=∫Efdμ |
is an isotonic linear functional.
iv.)If E is a subset of the natural numbers N with all pk≥0, then A(f)=∑k∈Epkfk is an isotonic linear functional. For example; If E={1,2,...,n} and f:E→R,f(k)=ak, then A(f)=∑nk=1ak is an isotonic linear functional. If E={1,2,...,n}×{1,2,...,m} and f:E→R,f(k,l)=ak,l, then A(f)=∑nk=1∑ml=1ak,l is an isotonic linear functional.
Theorem 5 (Hölder's inequality for isotonic functionals [13]). Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p−1+q−1=1. If w,f,g≥0 on E and wfp,wgq,wfg∈L then we have
A(wfg)≤A1/p(wfp)A1/q(wgq). | (2.1) |
In the case 0<p<1 and A(wgq)>0 (or p<0 and A(wfp)>0), the inequality in (2.1) is reversed.
Remark 1. i.) If we choose E=[a,b]⊆R, L=L[a,b], w=1 on E and A(f)=∫ba|f(t)|dt in the Theorem 5, then the inequality (2.1) reduce the inequality (1.3).
ii.) If we choose E={1,2,...,n}, w=1 on E, f:E→[0,∞),f(k)=ak, and A(f)=∑nk=1ak in the Theorem 5, then the inequality (2.1) reduce the inequality (1.4).
iii.) If we choose E=[a,b]×[c,d],L=L(E), w=1 on E and A(f)=∫ba∫dc|f(x,y)|dxdy in the Theorem 5, then the inequality (2.1) reduce the following inequality for double integrals:
∫ba∫dc|f(x,y)||g(x,y)|dxdy≤(∫ba∫dc|f(x,y)|pdx)1/p(∫ba∫dc|g(x,y)|qdx)1/q. |
The aim of this paper is to give a new general improvement of Hölder inequality for isotonic linear functional. As applications, this new inequality will be rewritten for several important particular cases of isotonic linear functionals. Also, we give an application to show that improvement is hold for double integrals.
Theorem 6. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p−1+q−1=1. If α,β,w,f,g≥0 on E, αwfg,βwfg,αwfp,αwgq,βwfp,βwgq,wfg∈L and α+β=1 on E, then we have
i.)
A(wfg)≤A1/p(αwfp)A1/q(αwgq)+A1/p(βwfq)A1/q(βwgq) | (3.1) |
ii.)
A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)≤A1/p(wfp)A1/q(wgq). | (3.2) |
Proof. ⅰ.) By using of Hölder inequality for isotonic functionals in (2.1) and linearity of A, it is easily seen that
A(wfg)=A(αwfg+βwfg)=A(αwfg)+A(βwfg)≤A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq). |
ⅱ.) Firstly, we assume that A1/p(wfp)A1/q(wgq)≠0. then
A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)A1/p(wfp)A1/q(wgq)=(A(αwfp)A(wfp))1/p(A(αwgq)A(wgq))1/q+(A(βwfp)A(wfp))1/p(A(βwgq)A(wgq))1/q, |
By the inequality (1.1) and linearity of A, we have
A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)A1/p(wfp)A1/q(wgq)≤1p[A(αwfp)A(wfp)+A(βwfp)A(wfp)]+1q[A(αwgq)A(wgq)+A(βwgq)A(wgq)]=1. |
Finally, suppose that A1/p(wfp)A1/q(wgq)=0. Then A1/p(wfp)=0 or A1/q(wgq)=0, i.e. A(wfp)=0 or A(wgq)=0. We assume that A(wfp)=0. Then by using linearity of A we have,
0=A(wfp)=A(αwfp+βwfp)=A(αwfp)+A(βwfp). |
Since A(αwf),A(βwf)≥0, we get A(αwfp)=0 and A(βwfp)=0. From here, it follows that
A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)=0≤0=A1/p(wfp)A1/q(wgq). |
In case of A(wgq)=0, the proof is done similarly. This completes the proof.
Remark 2. The inequality (3.2) shows that the inequality (3.1) is better than the inequality (2.1).
If we take w=1 on E in the Theorem 6, then we can give the following corollary:
Corollary 1. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p−1+q−1=1. If α,β,f,g≥0 on E, αfg,βfg,αfp,αgq,βfp,βgq,fg∈L and α+β=1 on E, then we have
i.)
A(fg)≤A1/p(αfp)A1/q(αgq)+A1/p(βfq)A1/q(βgq) | (3.3) |
ii.)
A1/p(αfp)A1/q(αgq)+A1/p(βfp)A1/q(βgq)≤A1/p(fp)A1/q(gq). |
Remark 3. i.) If we choose E=[a,b]⊆R, L=L[a,b], α(t)=b−tb−a,β(t)=t−ab−a on E and A(f)=∫ba|f(t)|dt in the Corollary 1, then the inequality (3.3) reduce the inequality (1.5).
ii.) If we choose E={1,2,...,n}, α(k)=kn,β(k)=n−kn on E, f:E→[0,∞),f(k)=ak, and A(f)=∑nk=1ak in the Theorem1, then the inequality (3.3) reduce the inequality (1.6).
We can give more general form of the Theorem 6 as follows:
Theorem 7. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p−1+q−1=1. If αi,w,f,g≥0 on E, αiwfg,αiwfp,αiwgq,wfg∈L,i=1,2,...,m, and ∑mi=1αi=1 on E, then we have
i.)
A(wfg)≤m∑i=1A1/p(αiwfp)A1/q(αiwgq) |
ii.)
m∑i=1A1/p(αiwfp)A1/q(αiwgq)≤A1/p(wfp)A1/q(wgq). |
Proof. The proof can be easily done similarly to the proof of Theorem 6.
If we take w=1 on E in the Theorem 6, then we can give the following corollary:
Corollary 2. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p−1+q−1=1. If αi,f,g≥0 on E, αifg,αifp,αigq,fg∈L,i=1,2,...,m, and ∑mi=1αi=1 on E, then we have
i.)
A(fg)≤m∑i=1A1/p(αifp)A1/q(αigq) | (3.4) |
ii.)
m∑i=1A1/p(αifp)A1/q(αigq)≤A1/p(fp)A1/q(gq). |
Corollary 3 (Improvement of Hölder inequality for double integrals). Let p,q>1 and 1/p+1/q=1. If f and g are real functions defined on E=[a,b]×[c,d] and if |f|p,|g|q∈L(E) then
∫ba∫dc|f(x,y)||g(x,y)|dxdy≤4∑i=1(∫ba∫dcαi(x,y)|f(x,y)|pdx)1/p(∫ba∫dcαi(x,y)|g(x,y)|qdx)1/q, | (3.5) |
where α1(x,y)=(b−x)(d−y)(b−a)(d−c),α2(x,y)=(b−x)(y−c)(b−a)(d−c),α3(x,y)=(x−a)(y−c)(b−a)(d−c),,α4(x,y)=(x−a)(d−y)(b−a)(d−c) on E
Proof. If we choose E=[a,b]×[c,d]⊆R2, L=L(E), α1(x,y)=(b−x)(d−y)(b−a)(d−c),α2(x,y)=(b−x)(y−c)(b−a)(d−c),α3(x,y)=(x−a)(y−c)(b−a)(d−c),α4(x,y)=(x−a)(d−y)(b−a)(d−c) on E and A(f)=∫ba∫dc|f(x,y)|dxdy in the Corollary 1, then we get the inequality (3.5).
Corollary 4. Let (ak,l) and (bk,l) be two tuples of positive numbers and p,q>1 such that 1/p+1/q=1. Then we have
n∑k=1m∑l=1ak,lbk,l≤4∑i=1(n∑k=1m∑l=1αi(k,l)apk,l)1/p(n∑k=1m∑l=1αi(k,l)bqk,l)1/q, | (3.6) |
where α1(k,l)=klnm,α2(k,l)=(n−k)lnm,α3(k,l)=(n−k)(m−l)nm,α4(k,l)=k(m−l)nm on E.
Proof. If we choose E={1,2,...,n}×{1,2,...,m}, α1(k,l)=klnm,α2(k,l)=(n−k)lnm,α3(k,l)=(n−k)(m−l)nm,α4(k,l)=k(m−l)nm on E, f:E→[0,∞),f(k,l)=ak,l, and A(f)=∑nk=1∑ml=1ak,l in the Theorem1, then we get the inequality (3.6).
In [14], Sarıkaya et al. gave the following lemma for obtain main results.
Lemma 1. Let f:Δ⊆R2→R be a partial differentiable mapping on Δ=[a,b]×[c,d] in R2with a<b and c<d. If ∂2f∂t∂s∈L(Δ), then the following equality holds:
f(a,c)+f(a,d)+f(b,c)+f(b,d)4−1(b−a)(d−c)∫ba∫dcf(x,y)dxdy−12[1b−a∫ba[f(x,c)+f(x,d)]dx+1d−c∫dc[f(a,y)+f(b,y)]dy]=(b−a)(d−c)4∫10∫10(1−2t)(1−2s)∂2f∂t∂s(ta+(1−t)b,sc+(1−s)d)dtds. |
By using this equality and Hölder integral inequality for double integrals, Sar\i kaya et al. obtained the following inequality:
Theorem 8. Let f:Δ⊆R2→R be a partial differentiable mapping on Δ=[a,b]×[c,d] in R2with a<b and c<d. If |∂2f∂t∂s|q,q>1, is convex function on the co-ordinates on Δ, then one has the inequalities:
|f(a,c)+f(a,d)+f(b,c)+f(b,d)4−1(b−a)(d−c)∫ba∫dcf(x,y)dxdy−A|≤(b−a)(d−c)4(p+1)2/p[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q4]1/q, | (4.1) |
where
A=12[1b−a∫ba[f(x,c)+f(x,d)]dx+1d−c∫dc[f(a,y)+f(b,y)]dy], |
1/p+1/q=1 and fst=∂2f∂t∂s.
If Theorem 8 are resulted again by using the inequality (3.5), then we get the following result:
Theorem 9. Let f:Δ⊆R2→R be a partial differentiable mapping on Δ=[a,b]×[c,d] in R2with a<b and c<d. If |∂2f∂t∂s|q,q>1, is convex function on the co-ordinates on Δ, then one has the inequalities:
|f(a,c)+f(a,d)+f(b,c)+f(b,d)4−1(b−a)(d−c)∫ba∫dcf(x,y)dxdy−A|≤(b−a)(d−c)41+1/p(p+1)2/p{[4|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+|fst(b,d)|q36]1/q+[2|fst(a,c)|q+|fst(a,d)|q+4|fst(b,c)|q+2|fst(b,d)|q36]1/q+[2|fst(a,c)|q+4|fst(a,d)|q+|fst(b,c)|q+2|fst(b,d)|q36]1/q+[|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+4|fst(b,d)|q36]1/q}, | (4.2) |
where
A=12[1b−a∫ba[f(x,c)+f(x,d)]dx+1d−c∫dc[f(a,y)+f(b,y)]dy], |
1/p+1/q=1 and fst=∂2f∂t∂s.
Proof. Using Lemma 1 and the inequality (3.5), we find
|f(a,c)+f(a,d)+f(b,c)+f(b,d)4−1(b−a)(d−c)∫ba∫dcf(x,y)dxdy−A|≤(b−a)(d−c)4∫10∫10|1−2t||1−2s||fst(ta+(1−t)b,sc+(1−s))|dtds≤(b−a)(d−c)4{(∫10∫10ts|1−2t|p|1−2s|pdtds)1/p×(∫10∫10ts|fst(ta+(1−t)b,sc+(1−s))|qdtds)1/q+(∫10∫10t(1−s)|1−2t|p|1−2s|pdtds)1/p×(∫10∫10t(1−s)|fst(ta+(1−t)b,sc+(1−s))|qdtds)1/q+(∫10∫10(1−t)s|1−2t|p|1−2s|pdtds)1/p×(∫10∫10(1−t)s|fst(ta+(1−t)b,sc+(1−s))|qdtds)1/q+(∫10∫10(1−t)(1−s)|1−2t|p|1−2s|pdtds)1/p×(∫10∫10(1−t)(1−s)|fst(ta+(1−t)b,sc+(1−s))|qdtds)1/q}. | (4.3) |
Since |fst|q is convex function on the co-ordinates on Δ, we have for all t,s∈[0,1]
|fst(ta+(1−t)b,sc+(1−s))|q≤ts|fst(a,c)|q+t(1−s)|fst(a,d)|q+(1−t)s|fst(a,c)|q+(1−t)(1−s)|fst(a,c)|q | (4.4) |
for all t,s∈[0,1]. Further since
∫10∫10ts|1−2t|p|1−2s|pdtds=∫10∫10t(1−s)|1−2t|p|1−2s|pdtds=∫10∫10(1−t)s|1−2t|p|1−2s|pdtds | (4.5) |
=∫10∫10(1−t)(1−s)|1−2t|p|1−2s|pdtds=14(p+1)2, | (4.6) |
a combination of (4.3) - (4.5) immediately gives the required inequality (4.2).
Remark 4. Since η:[0,∞)→R,η(x)=xs,0<s≤1, is a concave function, for all u,v≥0 we have
η(u+v2)=(u+v2)s≥η(u)+η(v)2=us+vs2. |
From here, we get
I={[4|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+|fst(b,d)|q36]1/q+[2|fst(a,c)|q+|fst(a,d)|q+4|fst(b,c)|q+2|fst(b,d)|q36]1/q+[2|fst(a,c)|q+4|fst(a,d)|q+|fst(b,c)|q+2|fst(b,d)|q36]1/q+[|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+4|fst(b,d)|q36]1/q}≤2{[6|fst(a,c)|q+3|fst(a,d)|q+6|fst(b,c)|q+3|fst(b,d)|q72]1/q+[3|fst(a,c)|q+6|fst(a,d)|q+3|fst(b,c)|q+6|fst(b,d)|q72]1/q} |
≤4{[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q16]1/q |
Thus we obtain
(b−a)(d−c)41+1/p(p+1)2/pI≤(b−a)(d−c)41+1/p(p+1)2/p4{[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q16]1/q}≤(b−a)(d−c)4(p+1)2/p{[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q4]1/q}. |
This shows that the inequality (4.2) is better than the inequality (4.1).
The aim of this paper is to give a new general improvement of Hölder inequality via isotonic linear functional. An important feature of the new inequality obtained here is that many existing inequalities related to the Hölder inequality can be improved. As applications, this new inequality will be rewritten for several important particular cases of isotonic linear functionals. Also, we give an application to show that improvement is hold for double integrals. Similar method can be applied to the different type of convex functions.
This research didn't receive any funding.
The author declares no conflicts of interest in this paper.
[1] | Hoogers G (2003) Fuel Cell Technology Handbook. Boca Raton, FL: CRC Press LLC. |
[2] | Vielstich W, Lamm A, Gasteiger HA (2003) Handbook of fuel cells–fundamentals, technology and applications. Chichester: John Wiley & Sons. |
[3] |
Alrwashdeh SS, Manke I, Markötter H, et al. (2017) In operando quantification of three-dimensional water distribution in nanoporous carbon-based layers in polymer electrolyte membrane fuel cells. ACS Nano 11: 5944–5949. doi: 10.1021/acsnano.7b01720
![]() |
[4] |
Alrwashdeh SS, Manke I, Markötter H, et al. (2017) Neutron radiographic in operando investigation of water transport in polymer electrolyte membrane fuel cells with channel barriers. Energ Convers Manage 148: 604–610. doi: 10.1016/j.enconman.2017.06.032
![]() |
[5] |
Alrwashdeh SS, Manke I, Markötter H, et al. (2017) Improved performance of polymer electrolyte membrane fuel cells with modified microporous layer structures. Energy Technol 5: 1612–1618. doi: 10.1002/ente.201700005
![]() |
[6] |
Saad SA, Henning M, Haußmann J, et al. (2017) Investigation of water transport in newly developed micro porous layers for polymer electrolyte membrane fuel cells. Appl Microscopy 47: 101–104. doi: 10.9729/AM.2017.47.3.101
![]() |
[7] |
Mehta V, Cooper JS (2003) Review and analysis of PEM fuel cell design and manufacturing. J Power Sources 114: 32–53. doi: 10.1016/S0378-7753(02)00542-6
![]() |
[8] | Carrette L, Friedrich KA, Stimming U (2000) Fuel cells: principles, types, fuels, and applications: WILEY-VCH Verlag GmbH, Weinheim. |
[9] |
Barelli L, Bidini G, Gallorini F, et al. (2012) Dynamic analysis of PEMFC-based CHP systems for domestic application. Appl Energ 91: 13–28. doi: 10.1016/j.apenergy.2011.09.008
![]() |
[10] |
Gigliucci G, Petruzzi L, Cerelli E, et al. (2004) Demonstration of a residential CHP system based on PEM fuel cells. J Power Sources 131: 62–68. doi: 10.1016/j.jpowsour.2004.01.010
![]() |
[11] |
Krüger P, Markötter H, Haußmann J, et al. (2011) Synchrotron X-ray tomography for investigations of water distribution in polymer electrolyte membrane fuel cells. J Power Sources 196: 5250–5255. doi: 10.1016/j.jpowsour.2010.09.042
![]() |
[12] |
Manke I, Hartnig C, Kardjilov N, et al. (2009) In-situ investigation of the water distribution in PEM fuel cells by neutron radiography and tomography. Mater Test 51: 219–226. doi: 10.3139/120.110015
![]() |
[13] |
Alrwashdeh SS, Markötter H, Haußmann J, et al. (2016) Investigation of water transport dynamics in polymer electrolyte membrane fuel cells based on high porous micro porous layers. Energy 102: 161–165. doi: 10.1016/j.energy.2016.02.075
![]() |
[14] |
Cindrella L, Kannan AM (2009) Membrane electrode assembly with doped polyaniline interlayer for proton exchange membrane fuel cells under low relative humidity conditions. J Power Sources 193: 447–453. doi: 10.1016/j.jpowsour.2009.04.002
![]() |
[15] |
Cindrella L, Kannan AM, Ahmad R, et al. (2009) Surface modification of gas diffusion layers by inorganic nanomaterials for performance enhancement of proton exchange membrane fuel cells at low RH conditions. Int J Hydrogen Energ 34: 6377–6383. doi: 10.1016/j.ijhydene.2009.05.086
![]() |
[16] |
Mohanraju K, Sreejith V, Ananth R, et al. (2015) Enhanced electrocatalytic activity of PANI and CoFe2O4/PANI composite supported on graphene for fuel cell applications. J Power Sources 284: 383–391. doi: 10.1016/j.jpowsour.2015.03.025
![]() |
[17] |
Cindrella L, Kannan AM, Lin JF, et al. (2009) Gas diffusion layer for proton exchange membrane fuel cells-A review. J Power Sources 194: 146–160. doi: 10.1016/j.jpowsour.2009.04.005
![]() |
[18] |
Chevalier S, Ge N, George MG, et al. (2017) Synchrotron X-ray radiography as a highly precise and accurate method for measuring the spatial distribution of liquid water in operating polymer electrolyte membrane fuel cells. J Electrochem Soc 164: F107–F114. doi: 10.1149/2.0041702jes
![]() |
[19] |
Ge N, Chevalier S, Lee J, et al. (2017) Non-isothermal two-phase transport in a polymer electrolyte membrane fuel cell with crack-free microporous layers. Int J Heat Mass Transfer 107: 418–431. doi: 10.1016/j.ijheatmasstransfer.2016.11.045
![]() |
[20] |
Antonacci P, Chevalier S, Lee J, et al. (2015) Feasibility of combining electrochemical impedance spectroscopy and synchrotron X-ray radiography for determining the influence of liquid water on polymer electrolyte membrane fuel cell performance. Int J Hydrogen Energ 40: 16494–1502. doi: 10.1016/j.ijhydene.2015.10.008
![]() |
[21] |
Lee J, Hinebaugh J, Bazylak A (2013) Synchrotron X-ray radiographic investigations of liquid water transport behavior in a PEMFC with MPL-coated GDLs. J Power Sources 227: 123–130. doi: 10.1016/j.jpowsour.2012.11.006
![]() |
[22] |
Arlt T, Grothausmann R, Manke I, et al. (2013) Tomographic methods for fuel cell research. Mater Test 55: 207–213. doi: 10.3139/120.110429
![]() |
[23] |
Eberhardt SH, Marone F, Stampanoni M, et al. (2016) Operando X-ray tomographic microscopy imaging of HT-PEFC: A comparative study of phosphoric acid electrolyte migration. J Electrochem Soc 163: F842–F847. doi: 10.1149/2.0801608jes
![]() |
[24] |
Arlt T, Klages M, Messerschmidt M, et al. (2017) Influence of artificially aged gas diffusion layers on the water management of polymer electrolyte membrane fuel cells analyzed with in-operando synchrotron imaging. Energy 118: 502–511. doi: 10.1016/j.energy.2016.10.061
![]() |
[25] | Chevalier S, Ge N, Lee J, et al. (2017) Novel electrospun gas diffusion layers for polymer electrolyte membrane fuel cells: Part II. In operando synchrotron imaging for microscale liquid water transport characterization. J Power Sources 352: 281–290. |
[26] |
Matsui H, Ishiguro N, Uruga T, et al. (2017) Operando 3D visualization of migration and degradation of a platinum cathode catalyst in a polymer electrolyte fuel cell. Angew Chem Int Ed Engl 56: 9371–9375. doi: 10.1002/anie.201703940
![]() |
[27] |
Kardjilov N, Hilger A, Manke I, et al. (2011) Neutron tomography instrument CONRAD at HZB. Nucl Instrum Meth A 651: 47–52. doi: 10.1016/j.nima.2011.01.067
![]() |
[28] |
Kardjilov N, Manke I, Hilger A, et al. (2011) Neutron imaging in materials science. Mater Today 14: 248–256. doi: 10.1016/S1369-7021(11)70139-0
![]() |
[29] | Kardjilov N, Hilger A, Manke I, et al. (2015) Imaging with cold neutrons at the CONRAD-2 Facility. In: Lehmann EH, Kaestner AP, Mannes D, editors, Proceedings of the 10th World Conference on Neutron Radiography. Amsterdam: Elsevier Science Bv, 60–66. |
[30] |
Kardjilov N, Hilger A, Manke I, et al. (2016) CONRAD-2: the new neutron imaging instrument at the Helmholtz-Zentrum Berlin. J Appl Crystallogr 49: 195–202. doi: 10.1107/S1600576715023353
![]() |
[31] | Williams SH, Hilger A, Kardjilov N, et al. (2012) Detection system for microimaging with neutrons. J Instrum 7: 1–25. |
[32] |
Kardjilov N, Dawson M, Hilger A, et al. (2011) A highly adaptive detector system for high resolution neutron imaging. Nucl Instrum Meth A 651: 95–99. doi: 10.1016/j.nima.2011.02.084
![]() |
[33] |
Totzke C, Manke I, Hilger A, et al. (2011) Large area high resolution neutron imaging detector for fuel cell research. J Power Sources 196: 4631–4637. doi: 10.1016/j.jpowsour.2011.01.049
![]() |
[34] | Banhart J (2008) Advanced tomographic methods in materials research and engineering. Oxford, UK: Oxford University, Press. |
[35] | Manke I, Hartnig C, Kardjilov N, et al. (2008) Characterization of water exchange and two-phase flow in porous gas diffusion materials by hydrogen-deuterium contrast neutron radiography. Appl Phys Lett 92: 337–347. |
[36] |
Cho KT, Mench MM (2012) Investigation of the role of the micro-porous layer in polymer electrolyte fuel cells with hydrogen deuterium contrast neutron radiography. Phys Chem Chem Phys 14: 4296–4302. doi: 10.1039/c2cp23686a
![]() |
[37] |
Haussmann J, Markotter H, Alink R, et al. (2013) Synchrotron radiography and tomography of water transport in perforated gas diffusion media. J Power Sources 239: 611–622. doi: 10.1016/j.jpowsour.2013.02.014
![]() |
[38] |
Weber AZ, Borup RL, Darling RM, et al. (2014) A critical review of modeling transport phenomena in polymer-electrolyte fuel cells. J Electrochem Soc 161: F1254–F1299. doi: 10.1149/2.0751412jes
![]() |
1. | Ludmila Nikolova, Lars-Erik Persson, Sanja Varošanec, 2025, Chapter 2, 978-3-031-83371-7, 31, 10.1007/978-3-031-83372-4_2 |