Citation: Saad S. Alrwashdeh, Falah M. Alsaraireh, Mohammad A. Saraireh, Henning Markötter, Nikolay Kardjilov, Merle Klages, Joachim Scholta, Ingo Manke. In-situ investigation of water distribution in polymer electrolyte membrane fuel cells using high-resolution neutron tomography with 6.5 µm pixel size[J]. AIMS Energy, 2018, 6(4): 607-614. doi: 10.3934/energy.2018.4.607
[1] | Osmar Alejandro Chanes-Cuevas, Adriana Perez-Soria, Iriczalli Cruz-Maya, Vincenzo Guarino, Marco Antonio Alvarez-Perez . Macro-, micro- and mesoporous materials for tissue engineering applications. AIMS Materials Science, 2018, 5(6): 1124-1140. doi: 10.3934/matersci.2018.6.1124 |
[2] | Miguel-Angel Rojas-Yañez, Claudia-Alejandra Rodríguez-González, Santos-Adriana Martel-Estrada, Laura-Elizabeth Valencia-Gómez, Claudia-Lucia Vargas-Requena, Juan-Francisco Hernández-Paz, María-Concepción Chavarría-Gaytán, Imelda Olivas-Armendáriz . Composite scaffolds of chitosan/polycaprolactone functionalized with protein of Mytilus californiensis for bone tissue regeneration. AIMS Materials Science, 2022, 9(3): 344-358. doi: 10.3934/matersci.2022021 |
[3] | Chiara Emma Campiglio, Chiara Marcolin, Lorenza Draghi . Electrospun ECM macromolecules as biomimetic scaffold for regenerative medicine: challenges for preserving conformation and bioactivity. AIMS Materials Science, 2017, 4(3): 638-669. doi: 10.3934/matersci.2017.3.638 |
[4] | Eugen A. Preoteasa, Elena S. Preoteasa, Ioana Suciu, Ruxandra N. Bartok . Atomic and nuclear surface analysis methods for dental materials: A review. AIMS Materials Science, 2018, 5(4): 781-844. doi: 10.3934/matersci.2018.4.781 |
[5] | Misato Kuroyanagi, Yoshimitsu Kuroyanagi . Tissue-engineered products capable of enhancing wound healing. AIMS Materials Science, 2017, 4(3): 561-581. doi: 10.3934/matersci.2017.3.561 |
[6] | Vincenzo Guarino, Tania Caputo, Rosaria Altobelli, Luigi Ambrosio . Degradation properties and metabolic activity of alginate and chitosan polyelectrolytes for drug delivery and tissue engineering applications. AIMS Materials Science, 2015, 2(4): 497-502. doi: 10.3934/matersci.2015.4.497 |
[7] | Raffaele Conte, Anna Di Salle, Francesco Riccitiello, Orsolina Petillo, Gianfranco Peluso, Anna Calarco . Biodegradable polymers in dental tissue engineering and regeneration. AIMS Materials Science, 2018, 5(6): 1073-1101. doi: 10.3934/matersci.2018.6.1073 |
[8] | Qinghua Qin . Applications of piezoelectric and biomedical metamaterials: A review. AIMS Materials Science, 2025, 12(3): 562-609. doi: 10.3934/matersci.2025025 |
[9] | Elena Kossovich . Theoretical study of chitosan-graphene and other chitosan-based nanocomposites stability. AIMS Materials Science, 2017, 4(2): 317-327. doi: 10.3934/matersci.2017.2.317 |
[10] | Sekhar Chandra Ray . Application of graphene/graphene-oxide: A comprehensive review. AIMS Materials Science, 2025, 12(3): 453-513. doi: 10.3934/matersci.2025023 |
It has been known that organic nutrients (e.g., nitrogen and phosphorus), light, and inorganic carbon are the important factors that affect the growth of phytoplankton. However, previous competition theory only focused on the interaction between the species and nutrients/light (see, e.g., [7,9]), and neglected the role of inorganic carbon. This is probably due to the complexities including the biochemistry of carbon acquisition by phytoplankton and the geochemistry of inorganic carbon in the ecosystem [10,20]. In the Supplementary Information of [20], the authors proposed a system of ODEs modeling the competition of the species for inorganic carbon and light in a well-mixed water column. Dissolved CO2 and carbonic acid are regarded as one resource (denoted as "CO2"), and bicarbonate and carbonate ions are regarded as another (denoted as "CARB"). The resources "CO2" and "CARB" are stored internally, and they are substitutable in their effects on algal growth [17,20]. On the other hand, uptake rates also includes self-shading by the phytoplankton population, namely, an increase in population density will reduce light available for photosynthesis, and thereby suppressing further carbon assimilation and population growth [20].
It was known that pH and alkalinity are two main factors in the modeling of inorganic carbon [20]. The consumption terms for "CO2" and "CARB" used in [20] include computations of feedbacks that arise from changes in pH and alkalinity during algal growth. In the recent work [17], the authors ignore these latter feedbacks and assume that the parameters in the system are constants, simplifying the complex processes of "CO2" and "CARB" involved. Incorporating the simplifications used in [17], we modify the model presented in the Supplementary Information of [20] and we shall investigate the following chemostat-type model with internal storage:
{dRdt=(R(0)−R)D−fR1(R,Q1)g1(u1,u2)u1−fR2(R,Q2)g2(u1,u2)u2 +γ1(Q1)u1+γ2(Q2)u2−ωrR+ωsS,dSdt=(S(0)−S)D−fS1(S,Q1)g1(u1,u2)u1−fS2(S,Q2)g2(u1,u2)u2+ωrR−ωsS,dQ1dt=fR1(R,Q1)g1(u1,u2)+fS1(S,Q1)g1(u1,u2)−μ1(Q1)Q1−γ1(Q1),du1dt=[μ1(Q1)−D]u1,dQ2dt=fR2(R,Q2)g2(u1,u2)+fS2(S,Q2)g2(u1,u2)−μ2(Q2)Q2−γ2(Q2),du2dt=[μ2(Q2)−D]u2,R(0)≥0, S(0)≥0, ui(0)≥0, Qi(0)≥Qmin,i, i=1,2. | (1.1) |
Here
One type of the photosynthetic rate of the species
gi(u1,u2)=1zm∫zm0miˆI(z)ai+ˆI(z)dz, | (1.2) |
where
ˆI(z)=Iinexp(−k0z−k1zu1(t)−k2zu2(t)). | (1.3) |
Here we have assumed that the light intensity at each depth is described by Lambert-Beer law [11,14], which states that the amount of light absorbed is proportional to the light intensity (
gi(u1,u2)=mi(k0+k1u1+k2u2)zmln(ai+Iinai+ˆI(zm))=miln(IinˆI(zm))ln(ai+Iinai+ˆI(zm)), |
where
ˆI(zm)=Iinexp(−k0zm−k1zmu1(t)−k2zmu2(t)). |
We also note that the other type of the photosynthetic rate
gi(u1,u2)=miIai+I, | (1.4) |
with
I(t)=Iinexp(−k0zm−k1zmu1(t)−k2zmu2(t)). |
According to [20], we take the growth rate
μi(Qi)=μmax,iQi−Qmin,iQmax,i−Qmin,i, |
where
μi(Qi)=μ∞,i(1−Qmin,iQi),orμi(Qi)=μ∞,i(Qi−Qmin,i)+Ai+(Qi−Qmin,i)+, |
where
According to [6,16], for
fHi(H,Qi)=ρHi(Qi)HKHi+H. |
Here
ρHi(Qi)=ρhighmax,Hi−(ρhighmax,Hi−ρlowmax,Hi)Qi−Qmin,iQmax,i−Qmin,i, |
for
ρHi(Qi)=ρmax,HiQmax,i−QiQmax,i−Qmin,i. |
System (1.1) also includes the fact that carbon is lost by respiration. The respiration rate is proportional to the size of the transient carbon pool [20]:
γi(Qi)=γmax,iQi−Qmin,iQmax,i−Qmin,i, |
where
In this whole paper, we always assume that the photosynthetic rate
The rest of the paper is organized as follows. Section 2 is devoted to the study of the single population model. In Section 3, we shall investigate the possibility of coexistence of the two competing species system (1.1). A brief discussion section completes this paper.
In this section, we first investigate the extinction and persistence of the single population model. Mathematically, it simply means that we remove equations of
{dRdt=(R(0)−R)D−fR(R,Q)G(u)u+γ(Q)u−ωrR+ωsS,dSdt=(S(0)−S)D−fS(S,Q)G(u)u+ωrR−ωsS,dQdt=fR(R,Q)G(u)+fS(S,Q)G(u)−μ(Q)Q−γ(Q),dudt=[μ(Q)−D]u,R(0)≥0, S(0)≥0, u(0)≥0, Q(0)≥Qmin. | (2.1) |
The specific growth rate
G(u)=1zm∫zm0m˜I(z)a+˜I(z)dz=mln(Iin˜I(zm))ln(a+Iina+˜I(zm)), |
where
˜I(z)=Iinexp(−k0z−kzu(t)), 0≤z≤zm, |
or
G(u)=mIa+I, with I(t)=Iinexp(−k0zm−kzmu(t)). |
The feasible domain for system (2.1) takes the form
X={(R,S,Q,u)∈R4+:Q≥Qmin}. | (2.2) |
Then it is easy to show that
Lemma 2.1. Every solution
Proof. By the continuation theorem, it suffices to prove that the solution of system (2.1) is bounded on finite time intervals. Let
Θ(t)=R(t)+S(t)+u(t)Q(t). | (2.3) |
Then
dΘ(t)dt=(R(0)+S(0)−Θ(t))D. | (2.4) |
Thus,
It remains to show that
dV(t)dt=dQ(t)dtQ≤G(0)[fR(R(t),Qmin)+fS(S(t),Qmin)]Q≤12G(0)[fR(R(t),Qmin)+fS(S(t),Qmin)][1+Q2]=G(0)[fR(R(t),Qmin)+fS(S(t),Qmin)][12+V]. | (2.5) |
Since
From (2.4), it is easy to see that
limt→∞Θ(t)=R(0)+S(0), | (2.6) |
and hence,
dQdt≤G(0)[fR(R(0)+S(0),Q)+fS(R(0)+S(0),Q)]+η0−μ(Q)Q−γ(Q), t≥τ0. |
Then
limt→∞Q(t)≤Qη0, |
where
G(0)[fR(R(0)+S(0),Q)+fS(R(0)+S(0),Q)]+η0−μ(Q)Q−γ(Q)=0. |
Thus, solutions of (2.1) are ultimately bounded on
In order to find the species-free equilibrium of system (2.1), which corresponds to the absence of species, we put
{dRdt=(R(0)−R)D−ωrR+ωsS,dSdt=(S(0)−S)D+ωrR−ωsS,R(0)≥0, S(0)≥0. | (2.7) |
It is easy to see that (2.7) is a cooperative/monotone system (see, e.g., [18]), and
(R∗,S∗):=(DR(0)+ωsR(0)+ωsS(0)D+ωr+ωs,DS(0)+ωrS(0)+ωrR(0)D+ωr+ωs) |
is the unique equilibrium for (2.7). For a monotone dynamical system, the unique steady state is globally asymptotically stable if and only if every forward orbit has compact closure (see [13,Theorem D]). By Lemma 2.1 and the above discussions, we have the following results:
Lemma 2.2. The unique equilibrium
From Lemma 2.2, the species-free equilibrium of system (2.1), which we label
E0=(R,S,Q,u)=(R∗,S∗,Q∗,0), |
where
fR(R∗,Q∗)G(0)+fS(S∗,Q∗)G(0)−μ(Q∗)Q∗−γ(Q∗)=0 | (2.8) |
The local stability of
J0=(−D−ωrωs0−fR(R∗,Q∗)G(0)+γ(Q∗)ωr−D−ωs0−fS(S∗,Q∗)G(0)∂fR(R∗,Q∗)∂RG(0)∂fS(S∗,Q∗)∂SG(0)j33[fR(R∗,Q∗)+fS(S∗,Q∗)]G′(0)000μ(Q∗)−D), |
where
j33=[∂fR(R∗,Q∗)∂Q+∂fS(S∗,Q∗)∂Q]G(0)−[μ(Q∗)+μ′(Q∗)Q∗]−γ′(Q∗)<0. |
It is easy to see that the eigenvalues of
˜J0=(−D−ωrωsωr−D−ωs). |
Since
Lemma 2.3.
This subsection is devoted to the investigations of persistence of system (2.1).
Theorem 2.4. Assume that
lim inft→∞u(t)≥ξ, provided that u0≠0. |
Further, system (2.1) admits at least one positive equilibrium
Proof. Recall that
X0={(R,S,Q,u)∈X:u>0}, |
and
∂X0:=X∖X0:={(R,S,Q,u)∈X:u=0}. |
It is easy to see that both
Claim:
Since
limt→∞(R(t,P),S(t,P))=(R∗,S∗). |
Then, the equation for
dQdt=fR(R,Q)G(0)+fS(S,Q)G(0)−μ(Q)Q−γ(Q). |
From the theory for asymptotically autonomous semiflows (see, e.g., [19,Corollary 4.3]), it follows that
Let
μ(Q)>μ(Q∗)−η1, ∀ |Q−Q∗|<σ1. | (2.9) |
Claim:
lim supt→∞|Φt(P)−E0|≥σ1, ∀ P∈X0. |
Suppose not. Then there exists a
lim supt→∞|Φt(P)−E0|<σ1. |
Thus, there exists a
|Q(t,P)−Q∗|<σ1, ∀ t≥τ1. |
This and (2.9) imply that
μ(Q(t,P))−D>μ(Q∗)−D−η1=η1, ∀ t≥τ1. |
From this inequality and the fourth equation of (2.1), we have
du(t,P)dt>η1u(t,P), ∀ t≥τ1, |
which shows that
Therefore,
(ˆR,ˆS,ˆQ,ˆu)∈X0. |
Then
{(R(0)−ˆR)D−fR(ˆR,ˆQ)g(ˆu)ˆu+γ(ˆQ)ˆu−ωrˆR+ωsˆS=0,(S(0)−ˆS)D−fS(ˆS,ˆQ)g(ˆu)ˆu+ωrˆR−ωsˆS=0. | (2.10) |
In view of (2.10), we deduce that
In this subsection, we neglect the effect of respiration and investigate the extinction of system (2.1). Putting the respiration rate to be zero,
γ(Q)≡0, ∀ Q≥Qmin. | (2.11) |
Then we have the following result:
Theorem 2.5. Suppose
limt→∞(R(t),S(t),Q(t),u(t))=(R∗,S∗,Q∗,0). |
Proof. For
G(0)[fR(R∗,Q)+fS(S∗,Q)]+η−μ(Q)Q=0. | (2.12) |
Recall that
limη→0[μ(Qη)−D]=μ(Q∗)−D and −13[μ(Q∗)−D]>0, |
we may find an
μ(Qη2)−D<[μ(Q∗)−D]+−13[μ(Q∗)−D]=23[μ(Q∗)−D]. | (2.13) |
On the other hand, by the continuity, we may find a
{fR(R∗+σ2,Q)<fR(R∗,Q)+η22G(0),fS(S∗+σ2,Q)<fS(S∗,Q)+η22G(0),μ(Qη2+σ2)<μ(Qη2)+−13[μ(Q∗)−D] | (2.14) |
In view of the assumption (2.11) and the first two equations of system (2.1), it follows that
{dRdt≤(R(0)−R)D−ωrR+ωsS,dSdt≤(S(0)−S)D+ωrR−ωsS. |
By the comparison arguments and Lemma 2.2, we have
limt→∞(R(t),S(t))≤(R∗,S∗). |
Then there exists a
R(t)≤R∗+σ2, S(t)≤S∗+σ2, ∀ t≥τ2. |
Then it follows from the third equation of (2.1) that
dQdt≤G(0)[fR(R∗+σ2,Q)+fS(S∗+σ2,Q)]−μ(Q)Q, ∀ t≥τ2. | (2.15) |
In view of the first two inequalities of (2.14) and (2.15), we have
dQdt≤G(0)[fR(R∗,Q)+fS(S∗,Q)]+η2−μ(Q)Q, ∀ t≥τ2. |
Using the comparison arguments, we have
limt→∞Q(t)≤Qη2, | (2.16) |
where
Q(t)≤Qη2+σ2, ∀ t≥τ3, |
and hence,
μ(Q(t))≤μ(Qη2+σ2), ∀ t≥τ3. | (2.17) |
In view of the third inequality of (2.14) and (2.17), we have
μ(Q(t))≤μ(Qη2)+−13[μ(Q∗)−D], ∀ t≥τ3. | (2.18) |
By (2.13), (2.18) together with the fourth equation of (2.1), it follows that
dudt=[μ(Q(t))−D]u≤13[μ(Q∗)−D]u, ∀ t≥τ3. | (2.19) |
Since
limt→∞u(t)=0. |
Then
limt→∞(R(t),S(t))=(R∗,S∗). |
Similarly,
dQdt=fR(R∗,Q)G(0)+fS(S∗,Q)G(0)−μ(Q)Q, |
and
In this section, we shall concentrate on the study of coexistence of system (1.1). The subsequent discussions will reveal that two semi-trivial steady-state solutions of system (1.1), corresponds to the presence of one of the species and the absence of the other species, are not necessarily unique. This makes our analysis more difficult. Fortunately, we can adopt the ideas developed in [12,Section 4] to overcome this difficulty.
The trivial steady-state solution of (1.1), labeled
E0=(R,S,Q1,u1,Q2,u2)=(R∗,S∗,Q∗1,0,Q∗2,0), |
where
fRi(R∗,Q∗i)Gi(0)+fSi(S∗,Q∗i)Gi(0)−μi(Q∗i)Q∗i−γi(Q∗i)=0, i=1,2, |
where
In order to determine the semi-trivial steady-state solutions of (1.1), we need the following single population system associated with the growth of species
{dRdt=(R(0)−R)D−fRi(R,Qi)Gi(ui)ui+γi(Qi)ui−ωrR+ωsS,dSdt=(S(0)−S)D−fSi(S,Qi)Gi(ui)ui+ωrR−ωsS,dQidt=fRi(R,Qi)Gi(ui)+fSi(S,Qi)Gi(ui)−μi(Qi)Qi−γi(Qi),duidt=[μi(Qi)−D]ui,R(0)≥0, S(0)≥0, ui(0)≥0, Qi(0)≥Qmin,i, i=1,2. | (3.1) |
Next, we shall summarize the result of system (3.1). By Theorem 2.4, for
\mathcal{E}_1 = (R, S, Q_1, u_1, Q_2, u_2) = (\hat{R}_1, \hat{S}_1, \hat{Q}_1, \hat{u}_1, \hat{Q}_2, 0), |
where
\begin{equation}\label{Droop-Co2-light-ori-species-E1-Q} f_{R2}(\hat{R}_1, Q_{2})g_2(\hat{u}_1, 0)+f_{S2}(\hat{S}_1, Q_{2})g_2(\hat{u}_1, 0)-\mu_{2}(Q_{2})Q_{2}-\gamma_2(Q_2) = 0. \end{equation} | (3.2) |
Inspired by the arguments in [12,Section 4], we assume that
\begin{equation}\label{Droop-Co2-light-ori-species-E1-Q-min} \hat{Q}_2^{\min} = \inf\{\hat{Q}_2(\hat{R}_1, \hat{S}_1, \hat{Q}_1, \hat{u}_1):(\hat{R}_1, \hat{S}_1, \hat{Q}_1, \hat{u}_1)\in A_1^{0} \}. \end{equation} | (3.3) |
The other semi-trivial steady-state solution of (1.1), labeled
\mathcal{E}_2 = (R, S, Q_1, u_1, Q_2, u_2) = (\check{R}_2, \check{S}_2, \check{Q}_1, 0, \check{Q}_2, \check{u}_2), |
where
\begin{equation*}\label{Droop-Co2-light-ori-species-E2-Q} f_{R1}(\check{R}_2, Q_{1})g_1(0, \check{u}_2)+f_{S1}(\check{S}_2, Q_{1})g_1(0, \check{u}_2)-\mu_{1}(Q_{1})Q_{1}-\gamma_1(Q_1) = 0. \end{equation*} |
Similarly, we assume
\begin{equation}\label{Droop-Co2-light-ori-species-E2-Q-min} \check{Q}_1^{\min} = \inf\{\check{Q}_1(\check{R}_2, \check{S}_2, \check{Q}_2, \check{u}_2):(\check{R}_2, \check{S}_2, \check{Q}_2, \check{u}_2)\in A_2^{0} \}. \end{equation} | (3.4) |
The feasible domain for system (1.1) takes the form
\begin{equation*}\label{Droop-Co2-light-ori-dom} \mathbf{Y} = \{(R, S, Q_1, u_1, Q_2, u_2)\in \mathbb{R}_{+}^6:Q \ge Q_{\min, i}, \ i = 1, 2\}. \end{equation*} |
Then it is easy to show that
Lemma 3.1. Every solution
Assume that
\begin{equation*}\label{Droop-Co2-light-ori-dom-interior} \mathbf{Y}_0 = \{(R, S, Q_1, u_1, Q_2, u_2)\in \mathbf{Y}:u_1 \gt 0\ \mbox{and}\ u_2 \gt 0\}, \end{equation*} |
and
\begin{equation*}\label{Droop-Co2-light-ori-dom-bd} \partial \mathbf{Y}_0: = \mathbf{Y}\backslash\mathbf{Y}_0: = \{(R, S, Q_1, u_1, Q_2, u_2)\in \mathbf{Y}: u_1 = 0\ \mbox{or}\ u_2 = 0\}. \end{equation*} |
Following the ideas in [12,Section 4], we assume that
\begin{equation*}\label{} \mathcal{M}_1 = \{(\hat{R}_1, \hat{S}_1, \hat{Q}_1, \hat{u}_1, \hat{Q}_2, 0)\in \mathbf{Y}: (\hat{R}_1, \hat{S}_1, \hat{Q}_1, \hat{u}_1)\in A_1^{0}\ \mbox{and}\ \hat{Q}_2\ \ \mbox{is defined by} \ (3.2)\}, \end{equation*} |
and
\begin{equation*}\label{} \mathcal{M}_2 = \{(\check{R}_2, \check{S}_2, \check{Q}_1, 0, \check{Q}_2, \check{u}_2)\in \mathbf{Y}: (\check{R}_2, \check{S}_2, \check{Q}_2, \check{u}_2)\in A_2^{0}\ \mbox{and}\ \check{Q}_1\ \ \mbox{is defined by} \ (3.4)\}. \end{equation*} |
One can easily to use "the method of proof by contradiction" to deduce the following result:
Lemma 3.2. Let
\begin{equation*}\label{Droop-Co2-light-ori-M0-repeller-eq} \limsup\limits_{t\rightarrow\infty}|\Psi(t) \mathbf{v}^0-\mathcal{M}_0|\geq \delta_0, \ for~all\ \mathbf{v}^0\in \mathbf{Y}_0. \end{equation*} |
Next, we shall use the strategy in [12,Lemma 4.2] to show the following result:
Lemma 3.3. Let
\begin{equation}\label{Droop-Co2-light-ori-M1-repeller-eq} \limsup\limits_{t\rightarrow\infty}\text{dist}(\Psi(t) \mathbf{v}^0, \mathcal{M}_1)\geq \delta_1, \ for ~all\ \mathbf{v}^0\in \mathbf{Y}_0. \end{equation} | (3.5) |
Proof. Let
\begin{equation*}\label{} B_1 = \{\hat{Q}_2 = \hat{Q}_2(\hat{R}_1, \hat{S}_1, \hat{Q}_1, \hat{u}_1): (\hat{R}_1, \hat{S}_1, \hat{Q}_1, \hat{u}_1)\in A_1^{0}\ \mbox{and}\ \hat{Q}_2\ \ \mbox{is defined by} \ (3.2)\}. \end{equation*} |
Then
\hat{Q}_2^{\min} = \inf\{\hat{Q}_2(\hat{R}_1, \hat{S}_1, \hat{Q}_1, \hat{u}_1):\hat{Q}_2(\hat{R}_1, \hat{S}_1, \hat{Q}_1, \hat{u}_1)\in B_1\}. |
Setting
\epsilon_1 = \frac{1}{2}[\mu_2(\hat{Q}_2^{\min})-D] \gt 0. |
Define
\mathcal{G}(\phi) = \mu_2(\phi), \ \phi\in B_1. |
We may find a
\text{dist}(\mathcal{G}(\phi), \mathcal{G}(B_1)) \lt \epsilon_1, |
whenever
|\mathcal{G}(\phi)-\mathcal{G}(\phi_*)| = \text{dist}(\mathcal{G}(\phi), \mathcal{G}(B_1)) \lt \epsilon_1. |
Thus, we have
\begin{equation}\label{Droop-Co2-light-ori-M1-repeller-eq1} |\mu_2(\phi)-\mu_2(\phi_*)| = |\mathcal{G}(\phi)-\mathcal{G}(\phi_*)| \lt \epsilon_1, \end{equation} |
whenever
Suppose that (3.5) is not true. Then there exists
\begin{equation*}\label{} \limsup\limits_{t\rightarrow\infty}\text{dist}(\Psi(t) \mathbf{v}^0, \mathcal{M}_1) \lt \delta_1. \end{equation*} |
This implies that
\begin{equation}\label{Droop-Co2-light-ori-M1-repeller-eq2} \limsup\limits_{t\rightarrow\infty}\text{dist}(Q_2(t), B_1) \lt \delta_1\ \ \mbox{and}\ \ \limsup\limits_{t\rightarrow\infty}|u_2(t)| \lt \delta_1. \end{equation} | (3.7) |
From the first inequality of (3.7), we can choose
\begin{equation*}\label{Droop-Co2-light-ori-M1-repeller-eq3} \text{dist}(Q_2(t), B_1) \lt \delta_1, \ \forall \ t\geq t_1. \end{equation*} |
By (3.6), it follows that there exists
\begin{equation*}\label{Droop-Co2-light-ori-M1-repeller-eq4} |\mu_2(Q_2(t))-\mu_2(\phi_*^t)| \lt \epsilon_1, \ \forall \ t\geq t_1, \end{equation*} |
which implies that
\begin{equation*}\label{Droop-Co2-light-ori-M1-repeller-eq5} \mu_2(Q_2(t))-D \gt \mu_2(\phi_*^t)-D-\epsilon_1\geq \mu_2(\hat{Q}_2^{\min})-D-\epsilon_1 = \epsilon_1, \ \forall \ t\geq t_1. \end{equation*} |
From the sixth equation of (1.1), we have
\begin{equation*}\label{Droop-Co2-light-ori-M1-repeller-eq6} \frac{du_{2}(t)}{dt} = \left[\mu_{2}(Q_{2}(t))-D\right]u_{2}(t) \gt \epsilon_1u_{2}(t), \ \forall \ t\geq t_1. \end{equation*} |
We deduce that
By the same arguments in Lemma 3.3, the following result holds:
Lemma 3.4. Let
\begin{equation*}\label{Droop-Co2-light-ori-M2-repeller-eq} \limsup\limits_{t\rightarrow\infty}\text{dist}(\Psi(t) \mathbf{v}^0, \mathcal{M}_2)\geq \delta_2, \ for~ all\ \mathbf{v}^0\in \mathbf{Y}_0. \end{equation*} |
Now we are in a position to prove the main result of this paper.
Theorem 3.5. Assume that
\begin{equation*}\label{roop-Co2-light-ori-co-eq} \liminf\limits_{t\rightarrow \infty}u_i(t)\geq \zeta, \ i = 1, 2. \end{equation*} |
Furthermore, system (1.1) admits at least one (componentwise) positive equilibrium.
Proof. Recall that
M_{\partial}: = \{\mathbf{v}^0 \in \partial \mathbf{Y}_{0}:\Psi(t)\mathbf{v}^0\in \partial \mathbf{Y}_{0}, \forall \ t\geq 0\}, |
and
Claim:
For any given
(ⅰ) If
(ⅱ) If
(R(t, \mathbf{v}^0), S(t, \mathbf{v}^0), Q_1(t, \mathbf{v}^0), u_1(t, \mathbf{v}^0)) |
will eventually enter the global attractor
(ⅲ) If
(R(t, \mathbf{v}^0), S(t, \mathbf{v}^0), Q_2(t, \mathbf{v}^0), u_2(t, \mathbf{v}^0)) |
will eventually enter the global attractor
The proof of the claim is complete.
By Lemma 3.2, Lemma 3.3 and Lemma 3.4, it follows that for
\begin{equation*}\label{} \limsup\limits_{t\rightarrow\infty}\text{dist}(\Psi(t) \mathbf{v}^0, \mathcal{M}_i)\geq \delta_i, \ \mbox{for all}\ \mathbf{v}^0\in \mathbf{Y}_0. \end{equation*} |
Note that
(\tilde{R}, \tilde{S}, \tilde{Q}_1, \tilde{u}_1, \tilde{Q}_2, \tilde{u}_2)\in \mathbf{Y}_0. |
Thus,
In this paper, we study the chemostat-type system (1.1) modeling the interactions of two species competing for "CO2" (dissolved CO2 and carbonic acid), "CARB" (bicarbonate and carbonate ions), and light in a spatially homogeneous water column. Our mathematical model presented in this paper is inspired by the recent works [17,20]. In fact, system (1.1) is a modified version of the model in the Supplementary Information of [20], where the specific growth rate of the competing species
Solutions of both the two-species system (1.1) and its single-species sub-system (2.1) follow mass conservation laws, and are eventually bounded (see Lemma 2.1 and Lemma 3.1). Persistence of a single species depends on the sign of
In Theorem 2.4, we only show that the single-species model (2.1) admits at least one positive equilibrium if the species can persist by using the theory of uniform persistence. The uniqueness and global stability of positive equilibrium for (2.1) are still open if no extra assumptions are imposed. Thus, two semi-trivial steady-state solutions of the two-species system (1.1), corresponds to the presence of one of the species and the absence of the other species, are not necessarily unique. This makes the investigation of coexistence for the two-species system (1.1) more difficult. Inspired by [12,Section 4], we first define two suitable parameters,
Research of F.-B. Wang is supported in part by Ministry of Science and Technology, Taiwan; and National Center for Theoretical Sciences (NCTS), National Taiwan University; and Chang Gung Memorial Hospital (CRRPD3H0011, BMRPD18 and NMRPD5F0543). We would like to express our thanks to Professor Sze-Bi Hsu for the helpful discussions in this paper.
All authors declare no conflicts of interest in this paper.
[1] | Hoogers G (2003) Fuel Cell Technology Handbook. Boca Raton, FL: CRC Press LLC. |
[2] | Vielstich W, Lamm A, Gasteiger HA (2003) Handbook of fuel cells–fundamentals, technology and applications. Chichester: John Wiley & Sons. |
[3] |
Alrwashdeh SS, Manke I, Markötter H, et al. (2017) In operando quantification of three-dimensional water distribution in nanoporous carbon-based layers in polymer electrolyte membrane fuel cells. ACS Nano 11: 5944–5949. doi: 10.1021/acsnano.7b01720
![]() |
[4] |
Alrwashdeh SS, Manke I, Markötter H, et al. (2017) Neutron radiographic in operando investigation of water transport in polymer electrolyte membrane fuel cells with channel barriers. Energ Convers Manage 148: 604–610. doi: 10.1016/j.enconman.2017.06.032
![]() |
[5] |
Alrwashdeh SS, Manke I, Markötter H, et al. (2017) Improved performance of polymer electrolyte membrane fuel cells with modified microporous layer structures. Energy Technol 5: 1612–1618. doi: 10.1002/ente.201700005
![]() |
[6] |
Saad SA, Henning M, Haußmann J, et al. (2017) Investigation of water transport in newly developed micro porous layers for polymer electrolyte membrane fuel cells. Appl Microscopy 47: 101–104. doi: 10.9729/AM.2017.47.3.101
![]() |
[7] |
Mehta V, Cooper JS (2003) Review and analysis of PEM fuel cell design and manufacturing. J Power Sources 114: 32–53. doi: 10.1016/S0378-7753(02)00542-6
![]() |
[8] | Carrette L, Friedrich KA, Stimming U (2000) Fuel cells: principles, types, fuels, and applications: WILEY-VCH Verlag GmbH, Weinheim. |
[9] |
Barelli L, Bidini G, Gallorini F, et al. (2012) Dynamic analysis of PEMFC-based CHP systems for domestic application. Appl Energ 91: 13–28. doi: 10.1016/j.apenergy.2011.09.008
![]() |
[10] |
Gigliucci G, Petruzzi L, Cerelli E, et al. (2004) Demonstration of a residential CHP system based on PEM fuel cells. J Power Sources 131: 62–68. doi: 10.1016/j.jpowsour.2004.01.010
![]() |
[11] |
Krüger P, Markötter H, Haußmann J, et al. (2011) Synchrotron X-ray tomography for investigations of water distribution in polymer electrolyte membrane fuel cells. J Power Sources 196: 5250–5255. doi: 10.1016/j.jpowsour.2010.09.042
![]() |
[12] |
Manke I, Hartnig C, Kardjilov N, et al. (2009) In-situ investigation of the water distribution in PEM fuel cells by neutron radiography and tomography. Mater Test 51: 219–226. doi: 10.3139/120.110015
![]() |
[13] |
Alrwashdeh SS, Markötter H, Haußmann J, et al. (2016) Investigation of water transport dynamics in polymer electrolyte membrane fuel cells based on high porous micro porous layers. Energy 102: 161–165. doi: 10.1016/j.energy.2016.02.075
![]() |
[14] |
Cindrella L, Kannan AM (2009) Membrane electrode assembly with doped polyaniline interlayer for proton exchange membrane fuel cells under low relative humidity conditions. J Power Sources 193: 447–453. doi: 10.1016/j.jpowsour.2009.04.002
![]() |
[15] |
Cindrella L, Kannan AM, Ahmad R, et al. (2009) Surface modification of gas diffusion layers by inorganic nanomaterials for performance enhancement of proton exchange membrane fuel cells at low RH conditions. Int J Hydrogen Energ 34: 6377–6383. doi: 10.1016/j.ijhydene.2009.05.086
![]() |
[16] |
Mohanraju K, Sreejith V, Ananth R, et al. (2015) Enhanced electrocatalytic activity of PANI and CoFe2O4/PANI composite supported on graphene for fuel cell applications. J Power Sources 284: 383–391. doi: 10.1016/j.jpowsour.2015.03.025
![]() |
[17] |
Cindrella L, Kannan AM, Lin JF, et al. (2009) Gas diffusion layer for proton exchange membrane fuel cells-A review. J Power Sources 194: 146–160. doi: 10.1016/j.jpowsour.2009.04.005
![]() |
[18] |
Chevalier S, Ge N, George MG, et al. (2017) Synchrotron X-ray radiography as a highly precise and accurate method for measuring the spatial distribution of liquid water in operating polymer electrolyte membrane fuel cells. J Electrochem Soc 164: F107–F114. doi: 10.1149/2.0041702jes
![]() |
[19] |
Ge N, Chevalier S, Lee J, et al. (2017) Non-isothermal two-phase transport in a polymer electrolyte membrane fuel cell with crack-free microporous layers. Int J Heat Mass Transfer 107: 418–431. doi: 10.1016/j.ijheatmasstransfer.2016.11.045
![]() |
[20] |
Antonacci P, Chevalier S, Lee J, et al. (2015) Feasibility of combining electrochemical impedance spectroscopy and synchrotron X-ray radiography for determining the influence of liquid water on polymer electrolyte membrane fuel cell performance. Int J Hydrogen Energ 40: 16494–1502. doi: 10.1016/j.ijhydene.2015.10.008
![]() |
[21] |
Lee J, Hinebaugh J, Bazylak A (2013) Synchrotron X-ray radiographic investigations of liquid water transport behavior in a PEMFC with MPL-coated GDLs. J Power Sources 227: 123–130. doi: 10.1016/j.jpowsour.2012.11.006
![]() |
[22] |
Arlt T, Grothausmann R, Manke I, et al. (2013) Tomographic methods for fuel cell research. Mater Test 55: 207–213. doi: 10.3139/120.110429
![]() |
[23] |
Eberhardt SH, Marone F, Stampanoni M, et al. (2016) Operando X-ray tomographic microscopy imaging of HT-PEFC: A comparative study of phosphoric acid electrolyte migration. J Electrochem Soc 163: F842–F847. doi: 10.1149/2.0801608jes
![]() |
[24] |
Arlt T, Klages M, Messerschmidt M, et al. (2017) Influence of artificially aged gas diffusion layers on the water management of polymer electrolyte membrane fuel cells analyzed with in-operando synchrotron imaging. Energy 118: 502–511. doi: 10.1016/j.energy.2016.10.061
![]() |
[25] | Chevalier S, Ge N, Lee J, et al. (2017) Novel electrospun gas diffusion layers for polymer electrolyte membrane fuel cells: Part II. In operando synchrotron imaging for microscale liquid water transport characterization. J Power Sources 352: 281–290. |
[26] |
Matsui H, Ishiguro N, Uruga T, et al. (2017) Operando 3D visualization of migration and degradation of a platinum cathode catalyst in a polymer electrolyte fuel cell. Angew Chem Int Ed Engl 56: 9371–9375. doi: 10.1002/anie.201703940
![]() |
[27] |
Kardjilov N, Hilger A, Manke I, et al. (2011) Neutron tomography instrument CONRAD at HZB. Nucl Instrum Meth A 651: 47–52. doi: 10.1016/j.nima.2011.01.067
![]() |
[28] |
Kardjilov N, Manke I, Hilger A, et al. (2011) Neutron imaging in materials science. Mater Today 14: 248–256. doi: 10.1016/S1369-7021(11)70139-0
![]() |
[29] | Kardjilov N, Hilger A, Manke I, et al. (2015) Imaging with cold neutrons at the CONRAD-2 Facility. In: Lehmann EH, Kaestner AP, Mannes D, editors, Proceedings of the 10th World Conference on Neutron Radiography. Amsterdam: Elsevier Science Bv, 60–66. |
[30] |
Kardjilov N, Hilger A, Manke I, et al. (2016) CONRAD-2: the new neutron imaging instrument at the Helmholtz-Zentrum Berlin. J Appl Crystallogr 49: 195–202. doi: 10.1107/S1600576715023353
![]() |
[31] | Williams SH, Hilger A, Kardjilov N, et al. (2012) Detection system for microimaging with neutrons. J Instrum 7: 1–25. |
[32] |
Kardjilov N, Dawson M, Hilger A, et al. (2011) A highly adaptive detector system for high resolution neutron imaging. Nucl Instrum Meth A 651: 95–99. doi: 10.1016/j.nima.2011.02.084
![]() |
[33] |
Totzke C, Manke I, Hilger A, et al. (2011) Large area high resolution neutron imaging detector for fuel cell research. J Power Sources 196: 4631–4637. doi: 10.1016/j.jpowsour.2011.01.049
![]() |
[34] | Banhart J (2008) Advanced tomographic methods in materials research and engineering. Oxford, UK: Oxford University, Press. |
[35] | Manke I, Hartnig C, Kardjilov N, et al. (2008) Characterization of water exchange and two-phase flow in porous gas diffusion materials by hydrogen-deuterium contrast neutron radiography. Appl Phys Lett 92: 337–347. |
[36] |
Cho KT, Mench MM (2012) Investigation of the role of the micro-porous layer in polymer electrolyte fuel cells with hydrogen deuterium contrast neutron radiography. Phys Chem Chem Phys 14: 4296–4302. doi: 10.1039/c2cp23686a
![]() |
[37] |
Haussmann J, Markotter H, Alink R, et al. (2013) Synchrotron radiography and tomography of water transport in perforated gas diffusion media. J Power Sources 239: 611–622. doi: 10.1016/j.jpowsour.2013.02.014
![]() |
[38] |
Weber AZ, Borup RL, Darling RM, et al. (2014) A critical review of modeling transport phenomena in polymer-electrolyte fuel cells. J Electrochem Soc 161: F1254–F1299. doi: 10.1149/2.0751412jes
![]() |
1. | Iriczalli Cruz‐Maya, Vincenzo Guarino, Argelia Almaguer‐Flores, Marco A. Alvarez‐Perez, Alessio Varesano, Claudia Vineis, Highly polydisperse keratin rich nanofibers: Scaffold design and in vitro characterization , 2019, 1549-3296, 10.1002/jbm.a.36699 | |
2. | Vincenzo Guarino, Michele Iafisco, Silvia Spriano, 2020, 9780081025949, 1, 10.1016/B978-0-08-102594-9.00001-2 | |
3. | Irene Bonadies, Francesca Cimino, Vincenzo Guarino, In vitrodegradation of zein nanofibres for propolis release in oral treatments, 2019, 6, 2053-1591, 075407, 10.1088/2053-1591/ab178e | |
4. | Iriczalli Cruz-Maya, Alessio Varesano, Claudia Vineis, Vincenzo Guarino, Comparative Study on Protein-Rich Electrospun Fibers for In Vitro Applications, 2020, 12, 2073-4360, 1671, 10.3390/polym12081671 | |
5. | Iñigo Gaitán-Salvatella, Edgar Oliver López-Villegas, Patricia González-Alva, Fernando Susate-Olmos, Marco Antonio Álvarez-Pérez, Case Report: Formation of 3D Osteoblast Spheroid Under Magnetic Levitation for Bone Tissue Engineering, 2021, 8, 2296-889X, 10.3389/fmolb.2021.672518 | |
6. | Ramona Orlacchio, Simona Zuppolini, Iriczalli Cruz-Maya, Stefania Pragliola, Anna Borriello, Vincenzo Guarino, Rosalba Fittipaldi, Mariateresa Lettieri, Vincenzo Venditto, Polydopamine-Coated Poly-Lactic Acid Aerogels as Scaffolds for Tissue Engineering Applications, 2022, 27, 1420-3049, 2137, 10.3390/molecules27072137 | |
7. | C. Vineis, I. Cruz Maya, S. Mowafi, A. Varesano, D.O. Sánchez Ramírez, M. Abou Taleb, C. Tonetti, V. Guarino, H. El-Sayed, Synergistic effect of sericin and keratin in gelatin based nanofibers for in vitro applications, 2021, 190, 01418130, 375, 10.1016/j.ijbiomac.2021.09.007 | |
8. | Nazirah Hamdan, Alisa Yamin, Shafida Abd Hamid, Wan Khartini Wan Abdul Khodir, Vincenzo Guarino, Functionalized Antimicrobial Nanofibers: Design Criteria and Recent Advances, 2021, 12, 2079-4983, 59, 10.3390/jfb12040059 | |
9. | Iriczalli Cruz-Maya, Vincenzo Guarino, 3D Scaffolds Fabrication via Bicomponent Microgels Assembly: Process Optimization and In Vitro Characterization, 2022, 13, 2072-666X, 1726, 10.3390/mi13101726 |