Research article Special Issues

Fusing photovoltaic data for improved confidence intervals

  • Received: 14 October 2016 Accepted: 20 December 2016 Published: 17 January 2017
  • Characterizing and testing photovoltaic modules requires carefully made measurements on important variables such as the power output under standard conditions. When additional data is available, which has been collected using a different measurement system and therefore may be of different accuracy, the question arises how one can combine the information present in both data sets. In some cases one even has prior knowledge about the ordering of the variances of the measurement errors, which is not fully taken into account by commonly known estimators. We discuss several statistical estimators to combine the sample means of independent series of measurements, both under the assumption of heterogeneous variances and ordered variances. The critical issue is then to assess the estimator’s variance and to construct confidence intervals. We propose and discuss the application of a new jackknife variance estimator devised by [1] to such photovoltaic data, in order to assess the variability of common mean estimation under heterogeneous and ordered variances in a reliable and nonparametric way. When serial correlations are present, which usually a ect the marginal variances, it is proposed to construct a thinned data set by downsampling the series in such a way that autocorrelations are removed or dampened. We propose a data adaptive procedure which downsamples a series at irregularly spaced time points in such a way that the autocorrelations are minimized. The procedures are illustrated by applying them to real photovoltaic power output measurements from two different sun light flashers. In addition, focusing on simulations governed by real photovoltaic data, we investigate the accuracy of the jackknife approach and compare it with other approaches. Among those is a variance estimator based on Nair’s formula for Gaussian data and, as a parametric alternative, two Bayesian models. We investigate the statistical accuracy of the resulting confidence resp. credible intervals used in practice to assess the uncertainty present in the data.

    Citation: Ansgar Steland. Fusing photovoltaic data for improved confidence intervals[J]. AIMS Energy, 2017, 5(1): 125-148. doi: 10.3934/energy.2017.1.125

    Related Papers:

    [1] Dirk Helbing, Jan Siegmeier, Stefan Lämmer . Self-organized network flows. Networks and Heterogeneous Media, 2007, 2(2): 193-210. doi: 10.3934/nhm.2007.2.193
    [2] Mohamed Benyahia, Massimiliano D. Rosini . A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks and Heterogeneous Media, 2017, 12(2): 297-317. doi: 10.3934/nhm.2017013
    [3] Tibye Saumtally, Jean-Patrick Lebacque, Habib Haj-Salem . A dynamical two-dimensional traffic model in an anisotropic network. Networks and Heterogeneous Media, 2013, 8(3): 663-684. doi: 10.3934/nhm.2013.8.663
    [4] Alexandre M. Bayen, Hélène Frankowska, Jean-Patrick Lebacque, Benedetto Piccoli, H. Michael Zhang . Special issue on Mathematics of Traffic Flow Modeling, Estimation and Control. Networks and Heterogeneous Media, 2013, 8(3): i-ii. doi: 10.3934/nhm.2013.8.3i
    [5] Fabio Della Rossa, Carlo D’Angelo, Alfio Quarteroni . A distributed model of traffic flows on extended regions. Networks and Heterogeneous Media, 2010, 5(3): 525-544. doi: 10.3934/nhm.2010.5.525
    [6] Caterina Balzotti, Maya Briani, Benedetto Piccoli . Emissions minimization on road networks via Generic Second Order Models. Networks and Heterogeneous Media, 2023, 18(2): 694-722. doi: 10.3934/nhm.2023030
    [7] Edward S. Canepa, Alexandre M. Bayen, Christian G. Claudel . Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming. Networks and Heterogeneous Media, 2013, 8(3): 783-802. doi: 10.3934/nhm.2013.8.783
    [8] Alberto Bressan, Anders Nordli . The Riemann solver for traffic flow at an intersection with buffer of vanishing size. Networks and Heterogeneous Media, 2017, 12(2): 173-189. doi: 10.3934/nhm.2017007
    [9] F. A. Chiarello, J. Friedrich, S. Göttlich . A non-local traffic flow model for 1-to-1 junctions with buffer. Networks and Heterogeneous Media, 2024, 19(1): 405-429. doi: 10.3934/nhm.2024018
    [10] Paola Goatin, Chiara Daini, Maria Laura Delle Monache, Antonella Ferrara . Interacting moving bottlenecks in traffic flow. Networks and Heterogeneous Media, 2023, 18(2): 930-945. doi: 10.3934/nhm.2023040
  • Characterizing and testing photovoltaic modules requires carefully made measurements on important variables such as the power output under standard conditions. When additional data is available, which has been collected using a different measurement system and therefore may be of different accuracy, the question arises how one can combine the information present in both data sets. In some cases one even has prior knowledge about the ordering of the variances of the measurement errors, which is not fully taken into account by commonly known estimators. We discuss several statistical estimators to combine the sample means of independent series of measurements, both under the assumption of heterogeneous variances and ordered variances. The critical issue is then to assess the estimator’s variance and to construct confidence intervals. We propose and discuss the application of a new jackknife variance estimator devised by [1] to such photovoltaic data, in order to assess the variability of common mean estimation under heterogeneous and ordered variances in a reliable and nonparametric way. When serial correlations are present, which usually a ect the marginal variances, it is proposed to construct a thinned data set by downsampling the series in such a way that autocorrelations are removed or dampened. We propose a data adaptive procedure which downsamples a series at irregularly spaced time points in such a way that the autocorrelations are minimized. The procedures are illustrated by applying them to real photovoltaic power output measurements from two different sun light flashers. In addition, focusing on simulations governed by real photovoltaic data, we investigate the accuracy of the jackknife approach and compare it with other approaches. Among those is a variance estimator based on Nair’s formula for Gaussian data and, as a parametric alternative, two Bayesian models. We investigate the statistical accuracy of the resulting confidence resp. credible intervals used in practice to assess the uncertainty present in the data.


    [1] Chang YT, Steland A (2016) Jackknife variance estimation for common mean estimators under ordered variances and general two-sample statistics. [preprint]
    [2] Nair K (1980) Variance and distribution of the Graybill-Deal estimator of the common mean of two normal populations. Ann Stat 8: 212-216. doi: 10.1214/aos/1176344904
    [3] Tukey JW (1958) Bias and confidence in quite large samples. Ann Math Stat 29: 614. doi: 10.1214/aoms/1177706647
    [4] Shao J, Wu CF (1998) A general theory for jackknife variance estimation. Ann Stat 17: 1176-1197.
    [5] Newman RM, Martin FB (1983) Estimation of fish production rates and associated variances. Can J Fish Aquat Sci 40: 1729-1736. doi: 10.1139/f83-200
    [6] Graybill FA, Deal RB (1959) Combining unbiased estimators. Biometrics 15: 543-550. doi: 10.2307/2527652
    [7] Parr WC (1985) Jackknifing di erentiable statistical functionals, J Roy Stat Soc B 47: 56-66.
    [8] Shao J, Tu D (1995) The Jackknife and Bootstrap. Springer-Verlag, New York.
    [9] Steland A, Rafajłowicz E (2014). Decoupling change-point detection based on characteristic functions: Methodology, asymptotics, subsampling and application, J Stat Plan Infer 145: 49-73.
    [10] Gregurich MA, Broemeling LD (1989) A Bayesian analysis for estimating the common mean of independent normal populations. Commun Stat- Simul C
    [11] Roberts CP (2007) The Bayesian Choice: A Decision-Theoretic Motivation. Springer Texts in Statistics, Springer, New York.
    [12] Berger JO, Bernardo JM, Sun D (2015) Overall objective priors. Bayesian Anal 10: 189-221. doi: 10.1214/14-BA915
    [13] Ghosal Y (1996) A review of consistency and convergence rates of posterior distribution. Proceedings of Varanashi Symposium in Bayesian Inference, Banaras Hindu University, 26: 35-51.
    [14] Herrmann W, Althaus J, Steland A, et al. (2006) Statistical and experimental methods for assessing the power output specification of PV modules. Proceedings of the 21st European Photovoltaic Solar Energy Conference 2416-2420.
    [15] Herrmann W, Steland A, Herff W (2010) Sampling Procedures for the Validation of PV Module Output Specifcation. Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg 3540-3547.
    [16] Herrmann W, Steland A (2010) Evaluation of Photovoltaic Modules Based on Sampling Inspection Using Smoothed Empirical Quantiles. Prog Photovoltaics 18: 1-9. doi: 10.1002/pip.926
    [17] Pepelyshev A, Steland A, Avellan-Hampe A (2014) Acceptance sampling plans for photovoltaic modules with two-sided specification limits. Prog Photovoltaics 22: 603-611. doi: 10.1002/pip.2306
  • This article has been cited by:

    1. Giulia Ajmone Marsan, Nicola Bellomo, Andrea Tosin, 2013, Chapter 5, 978-1-4614-7241-4, 69, 10.1007/978-1-4614-7242-1_5
    2. RINALDO M. COLOMBO, PAOLA GOATIN, BENEDETTO PICCOLI, ROAD NETWORKS WITH PHASE TRANSITIONS, 2010, 07, 0219-8916, 85, 10.1142/S0219891610002025
    3. Max-Olivier Hongler, Olivier Gallay, Michael Hülsmann, Philip Cordes, Richard Colmorn, Centralized versus decentralized control—A solvable stylized model in transportation, 2010, 389, 03784371, 4162, 10.1016/j.physa.2010.05.047
    4. S. Lämmer, R. Donner, D. Helbing, Anticipative control of switched queueing systems, 2008, 63, 1434-6028, 341, 10.1140/epjb/e2007-00346-5
    5. Dirk Helbing, Amin Mazloumian, 2013, Chapter 7, 978-3-642-32159-7, 357, 10.1007/978-3-642-32160-3_7
    6. Dirk Helbing, 2021, Chapter 7, 978-3-030-62329-6, 131, 10.1007/978-3-030-62330-2_7
    7. Mauro Garavello, Benedetto Piccoli, Conservation laws on complex networks, 2009, 26, 0294-1449, 1925, 10.1016/j.anihpc.2009.04.001
    8. Daniele De Martino, Luca Dall’Asta, Ginestra Bianconi, Matteo Marsili, A minimal model for congestion phenomena on complex networks, 2009, 2009, 1742-5468, P08023, 10.1088/1742-5468/2009/08/P08023
    9. Giulia Ajmone Marsan, Nicola Bellomo, Andrea Tosin, 2013, Chapter 2, 978-1-4614-7241-4, 11, 10.1007/978-1-4614-7242-1_2
    10. Martin Pilat, 2018, Evolving Ensembles of Traffic Lights Controllers, 978-1-5386-7449-9, 958, 10.1109/ICTAI.2018.00148
    11. R. Donner, Multivariate analysis of spatially heterogeneous phase synchronisation in complex systems: application to self-organised control of material flows in networks, 2008, 63, 1434-6028, 349, 10.1140/epjb/e2008-00151-8
    12. Reik Donner, 2009, Chapter 8, 978-3-642-04226-3, 237, 10.1007/978-3-642-04227-0_8
    13. Giulia Ajmone Marsan, Nicola Bellomo, Andrea Tosin, 2013, Chapter 4, 978-1-4614-7241-4, 51, 10.1007/978-1-4614-7242-1_4
    14. Gui-Jun Pan, Xiao-Qing Yan, Zhong-Bing Huang, Wei-Chuan Ma, Gradient networks on uncorrelated random scale-free networks, 2011, 83, 0031-8949, 035803, 10.1088/0031-8949/83/03/035803
    15. Luigi Rarità, Ciro D'Apice, Benedetto Piccoli, Dirk Helbing, Sensitivity analysis of permeability parameters for flows on Barcelona networks, 2010, 249, 00220396, 3110, 10.1016/j.jde.2010.09.006
    16. Massimiliano Daniele Rosini, 2013, Chapter 15, 978-3-319-00154-8, 193, 10.1007/978-3-319-00155-5_15
    17. D. Helbing, Derivation of a fundamental diagram for urban traffic flow, 2009, 70, 1434-6028, 229, 10.1140/epjb/e2009-00093-7
    18. Mauro Garavello, Benedetto Piccoli, 2013, Chapter 6, 978-1-4614-6242-2, 143, 10.1007/978-1-4614-6243-9_6
    19. Carlos Gershenson, Guiding the Self-Organization of Cyber-Physical Systems, 2020, 7, 2296-9144, 10.3389/frobt.2020.00041
    20. Qian Wan, Guoqing Peng, Zhibin Li, Felipe Hiroshi Tahira Inomata, Spatiotemporal trajectory characteristic analysis for traffic state transition prediction near expressway merge bottleneck, 2020, 117, 0968090X, 102682, 10.1016/j.trc.2020.102682
    21. S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes, Critical phenomena in complex networks, 2008, 80, 0034-6861, 1275, 10.1103/RevModPhys.80.1275
    22. D. Helbing, A. Mazloumian, Operation regimes and slower-is-faster effect in the controlof traffic intersections, 2009, 70, 1434-6028, 257, 10.1140/epjb/e2009-00213-5
    23. S. Havlin, D. Y. Kenett, E. Ben-Jacob, A. Bunde, R. Cohen, H. Hermann, J. W. Kantelhardt, J. Kertész, S. Kirkpatrick, J. Kurths, J. Portugali, S. Solomon, Challenges in network science: Applications to infrastructures, climate, social systems and economics, 2012, 214, 1951-6355, 273, 10.1140/epjst/e2012-01695-x
    24. Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2012, How can macroscopic models reveal self-organization in traffic flow?, 978-1-4673-2066-5, 6989, 10.1109/CDC.2012.6426549
    25. Giulia Ajmone Marsan, Nicola Bellomo, Andrea Tosin, 2013, Chapter 1, 978-1-4614-7241-4, 1, 10.1007/978-1-4614-7242-1_1
    26. S. Blandin, G. Bretti, A. Cutolo, B. Piccoli, Numerical simulations of traffic data via fluid dynamic approach, 2009, 210, 00963003, 441, 10.1016/j.amc.2009.01.057
    27. Lele Zhang, Jan de Gier, Timothy M. Garoni, Traffic disruption and recovery in road networks, 2014, 401, 03784371, 82, 10.1016/j.physa.2014.01.034
    28. Gabriella Bretti, Benedetto Piccoli, A Tracking Algorithm for Car Paths on Road Networks, 2008, 7, 1536-0040, 510, 10.1137/070697768
    29. Jan de Gier, Timothy M Garoni, Omar Rojas, Traffic flow on realistic road networks with adaptive traffic lights, 2011, 2011, 1742-5468, P04008, 10.1088/1742-5468/2011/04/P04008
    30. Jorge E. Macías‐Díaz, Nauman Ahmed, Muhammad Jawaz, Muhammad Rafiq, Muhammad Aziz ur Rehman, Design and analysis of a discrete method for a time‐delayed reaction–diffusion epidemic model, 2021, 44, 0170-4214, 5110, 10.1002/mma.7096
    31. Amin Mazloumian, Nikolas Geroliminis, Dirk Helbing, The spatial variability of vehicle densities as determinant of urban network capacity, 2010, 368, 1364-503X, 4627, 10.1098/rsta.2010.0099
    32. Amin Mazloumian, Nikolas Geroliminis, Dirk Helbing, The Spatial Variability of Vehicle Densities as Determinant of Urban Network Capacity, 2009, 1556-5068, 10.2139/ssrn.1596042
    33. Kai Lu, Jianwei Hu, Jianghui Huang, Deliang Tian, Chao Zhang, Optimisation model for network progression coordinated control under the signal design mode of split phasing, 2017, 11, 1751-9578, 459, 10.1049/iet-its.2016.0326
    34. Dirk Helbing, The Automation of Society is Next: How to Survive the Digital Revolution, 2015, 1556-5068, 10.2139/ssrn.2694312
    35. Gabor Karsai, Xenofon Koutsoukos, Himanshu Neema, Peter Volgyesi, Janos Sztipanovits, 2019, Chapter 18, 978-3-319-77491-6, 425, 10.1007/978-3-319-77492-3_18
    36. Alessia Marigo, Benedetto Piccoli, A Fluid Dynamic Model for T-Junctions, 2008, 39, 0036-1410, 2016, 10.1137/060673060
    37. Stefan Lämmer, Dirk Helbing, Self-control of traffic lights and vehicle flows in urban road networks, 2008, 2008, 1742-5468, P04019, 10.1088/1742-5468/2008/04/P04019
    38. Xenofon Koutsoukos, Gabor Karsai, Aron Laszka, Himanshu Neema, Bradley Potteiger, Peter Volgyesi, Yevgeniy Vorobeychik, Janos Sztipanovits, SURE: A Modeling and Simulation Integration Platform for Evaluation of Secure and Resilient Cyber–Physical Systems, 2018, 106, 0018-9219, 93, 10.1109/JPROC.2017.2731741
    39. Ding-wei Huang, Persistent oscillations in a traffic model with decision-making, 2020, 2, 2523-3963, 10.1007/s42452-019-1893-2
    40. A. Cascone, R. Manzo, B. Piccoli, L. Rarità, Optimization versus randomness for car traffic regulation, 2008, 78, 1539-3755, 10.1103/PhysRevE.78.026113
    41. Gui-Jun Pan, Sheng-Hong Liu, Mei Li, Jamming in the weighted gradient networks, 2011, 390, 03784371, 3178, 10.1016/j.physa.2011.03.018
    42. CIRO D'APICE, BENEDETTO PICCOLI, VERTEX FLOW MODELS FOR VEHICULAR TRAFFIC ON NETWORKS, 2008, 18, 0218-2025, 1299, 10.1142/S0218202508003042
    43. Martin Schönhof, Dirk Helbing, Criticism of three-phase traffic theory, 2009, 43, 01912615, 784, 10.1016/j.trb.2009.02.004
    44. Massimiliano Caramia, Ciro D’Apice, Benedetto Piccoli, Antonino Sgalambro, Fluidsim: A Car Traffic Simulation Prototype Based on FluidDynamic, 2010, 3, 1999-4893, 294, 10.3390/a3030294
    45. Hossein Zangoulechi, Shahram Babaie, An adaptive traffic engineering approach based on retransmission timeout adjustment for software-defined networks, 2024, 15, 1868-5137, 739, 10.1007/s12652-023-04732-4
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5625) PDF downloads(1040) Cited by(5)

Article outline

Figures and Tables

Figures(8)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog