Citation: Hana Altrabalsi, Vladimir Stankovic, Jing Liao, Lina Stankovic. Low-complexity energy disaggregation using appliance load modelling[J]. AIMS Energy, 2016, 4(1): 1-21. doi: 10.3934/energy.2016.1.1
[1] | Michael Herty, Lorenzo Pareschi, Sonja Steffensen . Mean--field control and Riccati equations. Networks and Heterogeneous Media, 2015, 10(3): 699-715. doi: 10.3934/nhm.2015.10.699 |
[2] | Nastassia Pouradier Duteil . Mean-field limit of collective dynamics with time-varying weights. Networks and Heterogeneous Media, 2022, 17(2): 129-161. doi: 10.3934/nhm.2022001 |
[3] | Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang . Uniform stability and mean-field limit for the augmented Kuramoto model. Networks and Heterogeneous Media, 2018, 13(2): 297-322. doi: 10.3934/nhm.2018013 |
[4] | Martino Bardi . Explicit solutions of some linear-quadratic mean field games. Networks and Heterogeneous Media, 2012, 7(2): 243-261. doi: 10.3934/nhm.2012.7.243 |
[5] | András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon . Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks and Heterogeneous Media, 2012, 7(1): 43-58. doi: 10.3934/nhm.2012.7.43 |
[6] | Fabio Camilli, Italo Capuzzo Dolcetta, Maurizio Falcone . Preface. Networks and Heterogeneous Media, 2012, 7(2): i-ii. doi: 10.3934/nhm.2012.7.2i |
[7] | Olivier Guéant . New numerical methods for mean field games with quadratic costs. Networks and Heterogeneous Media, 2012, 7(2): 315-336. doi: 10.3934/nhm.2012.7.315 |
[8] | Michele Gianfelice, Enza Orlandi . Dynamics and kinetic limit for a system of noiseless $d$-dimensional Vicsek-type particles. Networks and Heterogeneous Media, 2014, 9(2): 269-297. doi: 10.3934/nhm.2014.9.269 |
[9] | Mattia Bongini, Massimo Fornasier, Oliver Junge, Benjamin Scharf . Sparse control of alignment models in high dimension. Networks and Heterogeneous Media, 2015, 10(3): 647-697. doi: 10.3934/nhm.2015.10.647 |
[10] | Maria Teresa Chiri, Xiaoqian Gong, Benedetto Piccoli . Mean-field limit of a hybrid system for multi-lane car-truck traffic. Networks and Heterogeneous Media, 2023, 18(2): 723-752. doi: 10.3934/nhm.2023031 |
[1] | Smart metering equipment technical specifications: Second version: Part 2. Department of Energy & Climate Change UK, Dec. 2013. |
[2] |
Armel KC, Gupta A, Shrimali G, et al. (2013) Is disaggregation the holy grail of energy efficiency? The case of electricity. Energy Policy 52: 213–234. doi: 10.1016/j.enpol.2012.08.062
![]() |
[3] | Hart G, Nonintrusive Appliance Load Data Acquisition Method, MIT Energy Laboratory Technical Report, Sept. 1984. |
[4] |
Zeifman M, Roth K (2011) Nonintrusive appliance load monitoring: Review and outlook. IEEE Trans Consumer Electronics 57: 76–84. doi: 10.1109/TCE.2011.5735484
![]() |
[5] |
Zoha A, Gluhak A, Imran MA, et al. (2012) Non-intrusive load monitoring approaches for disaggregated energy sensing: A survey. Sensors 12: 16838–16866. doi: 10.3390/s121216838
![]() |
[6] | Perez KX, Cole WJ, Baldea M, et al. (2014) Meters to models: Using smart meter data to predict home energy use. in Process. ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA. |
[7] | Murray D, Liao J, Stankovic L, et al., A data management platform for personalised real-time energy feedback. in Proc EEDAL-2015 8th Int Conf Energy Efficiency in Domestic Appliances and Lighting, Lucerne-Horw, Switzerland, Aug. 2015. |
[8] | Liao J, Elafoudi G, Stankovic L, et al. Power disaggregation for low-sampling rate data. 2nd Int. Non-intrusive Appliance Load Monitoring Workshop, Austin, TX, June 2014. |
[9] | Marchiori A, Hakkarinen D, Han Q, et al. (2011) Circuit-level load monitoring for household energy management, IEEE Pervas Comput 10: 40-48. |
[10] |
Berges M, Goldman E, Matthews HS, et al. (2011) User-centered non-intrusive electricity load monitoring for residential buildings. J Comput Civil Eng 25: 471-480. doi: 10.1061/(ASCE)CP.1943-5487.0000108
![]() |
[11] | Kim H, Marwah M, Arlitt M, et al., Unsupervised disaggregation of low frequency power measurements, in Proc 11th SIAM Int Conf Data Mining, Mesa, AZ, April 2011. |
[12] | Parson O, Ghosh S, Weal M, et al. (2012) Non-intrusive load monitoring using prior models of general appliance types. in Proc. the 26th Conf. Artificial Intelligence (AAAI-12), Toronto, CA, pp. 356–362. |
[13] | Kolter J, Jaakkola T (2012) Approximate inference in additive factorial HMMs with application to energy disaggregation. in J Machine Learning 22: 1472–1482. |
[14] | Johnson MJ, Willsky AS (2013) Bayesian nonparametric Hidden Semi-Markov Models. J Machine Learning Research 14: 673–701. |
[15] | Kolter J, Batra S, Ng AY, Energy Disaggregation via Discriminative Sparse Coding. in Proc Advances in Neural Inform Processing Sys 23 (NIPS 2010). |
[16] | Shao H, Marwah M, Ramakrishnan NA, Temporal motif mining approach to unsupervised energy disaggregation. in Proc. the 1st Int Workshop Non-Intrusive Load Monitoring, Pittsburgh, PA, May 2012. |
[17] | Elafoudi G, Stankovic L, Stankovic V, Power disaggregation of domestic smart meter readings using Dynamic Time Warping. ISCCSP-2014 IEEE Intl Symp Communications, Control, and Signal Processing, Athens, Greece, May 2014. |
[18] | Altrabalsi H, Liao J, Stankovic L, et al., A low-complexity energy disaggregation method: Performance and robustness. SSCI-2014 IEEE Symp Comput Intelligence Applications in Smart Grid, Orlando, FL, Dec. 2014. |
[19] | Xia XL, Lyu MR, Lok LM,et al., Methods of decreasing the number of support vectors via k-mean clustering. in Proc ICIC 2005, LNCS 3644, pp. 717–726, Spinger-Verlag Berlin Heidelberg, 2005. |
[20] | Wang j, Wu x, Zhang C (2005) Support vector machines based on K-means clustering for realtime business intelligence systems. Int J Business Intelligence and Data Mining 1: 54–64. |
[21] | Yao Y, Liu Y, Yu Y, et al. (2013) K-SVM: An effective SVM algorithm based on k-means clustering. J Computers 8: 2632–2639. |
[22] | Gu Q, Jan J, Clustered Support Vector Machines. in Proc AISTATS-2013 16th Int Conf Artificial Intelligence and Statistics, Scottsdale, AZ, 2013. |
[23] | Kolter J, Johnson M. REDD: A public data set for energy disaggregation research. in Workshop on Data Mining Applications in Sustainability (SIGKDD), San Diego, CA, 2011. |
[24] | Monacchi A, Egarter D, Elmenreich W, et al. GREEND: An Energy Consumption Dataset of Households in Italy and Austria. in Proc IEEE SmartGridComm, Venice, Italy, Nov. 2014. |
[25] | Gao J, Giri S, Kara EC, et al. ( 2014) PLAID: a public dataset of high-resolution electrical appliance measurements for load identification research: demo abstract. in Proc the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings, 198-199. |
[26] | Ruzzelli AG, Nicolas C, Schoofs A, et al. (2010) Real-time recognition and profiling of appliances through a single electricity sensor. in Proc IEEE SECON-2010 7th Annual Conf Sensor Mesh and Ad Hoc Communications and Networks, 1–9. |
[27] | Laughman C, Lee K,Cox R, et al. (2003) Power signature analysis. IEEE Power and Energy Magazine 1: 56–63. |
[28] | Liang J, Ng SKK, Kendall G, et al. (2010) Load signature study part I: Basic concept, structure, and methodology. IEEE Trans Power Delivery 25: 551–560. |
[29] | Berges M, Goldman E, Matthews HS, et al., Learning systems for electric consumption of buildings. in Proc 2009 ASCE Int Workshop Computing in Civil Engineering, Austin, TX, 2009. |
[30] | Barker s, Kalra s, Irwin D, et al., NILM redux: The case for emphasizing applications over accuracy. NILM-2014 Workshop, Austin, TX, June 2014. |
[31] | Markonin S, Bajic IV, Popowich F, Efficient sparse metric processing for nonintrusive load monitoring. 2nd Int Non-intrusive Appliance Load Monitoring Workshop, Austin, TX, June 2014. |
[32] |
Al-Harbi SH, Rayward-Smith VJ (2006) Adapting k-means for supervised clustering. Appl Intell 24: 219–226. doi: 10.1007/s10489-006-8513-8
![]() |
1. | Michael Herty, Dante Kalise, 2018, Suboptimal nonlinear feedback control laws for collective dynamics, 978-1-5386-6089-8, 556, 10.1109/ICCA.2018.8444303 | |
2. | Melanie Harms, Simone Bamberger, Eva Zerz, Michael Herty, On d-Collision-Free Dynamical Systems, 2022, 55, 24058963, 25, 10.1016/j.ifacol.2022.11.303 | |
3. | Fuguo Xu, Qiaobin Fu, Tielong Shen, PMP-based numerical solution for mean field game problem of general nonlinear system, 2022, 146, 00051098, 110655, 10.1016/j.automatica.2022.110655 | |
4. | M. K. Banda, M. Herty, T. Trimborn, 2020, Chapter 7, 978-3-030-50449-6, 133, 10.1007/978-3-030-50450-2_7 | |
5. | Michael Herty, Anna Thunen, 2021, Consistent Control of a Stackelberg Game with Infinitely many Followers, 978-1-6654-3659-5, 918, 10.1109/CDC45484.2021.9682798 | |
6. | Michael Herty, Hui Yu, 2016, Boundary stabilization of hyperbolic conservation laws using conservative finite volume schemes, 978-1-5090-1837-6, 5577, 10.1109/CDC.2016.7799126 | |
7. | Giacomo Albi, Michael Herty, Dante Kalise, Chiara Segala, Moment-Driven Predictive Control of Mean-Field Collective Dynamics, 2022, 60, 0363-0129, 814, 10.1137/21M1391559 | |
8. | Giacomo Albi, Emiliano Cristiani, Lorenzo Pareschi, Daniele Peri, 2020, Chapter 8, 978-3-030-50449-6, 159, 10.1007/978-3-030-50450-2_8 | |
9. | Michael Herty, Sonja Steffensen, Anna Thünen, Multiscale control of Stackelberg games, 2022, 200, 03784754, 468, 10.1016/j.matcom.2022.04.028 | |
10. | Marco Caponigro, Benedetto Piccoli, Francesco Rossi, Emmanuel Trélat, Mean-field sparse Jurdjevic–Quinn control, 2017, 27, 0218-2025, 1223, 10.1142/S0218202517400140 | |
11. | Bertram Düring, Lorenzo Pareschi, Giuseppe Toscani, Kinetic models for optimal control of wealth inequalities, 2018, 91, 1434-6028, 10.1140/epjb/e2018-90138-1 | |
12. | Yan Ma, Minyi Huang, Linear quadratic mean field games with a major player: The multi-scale approach, 2020, 113, 00051098, 108774, 10.1016/j.automatica.2019.108774 | |
13. | Michael Herty, Mattia Zanella, Performance bounds for the mean-field limit of constrained dynamics, 2017, 37, 1553-5231, 2023, 10.3934/dcds.2017086 | |
14. | Aylin Aydoğdu, Marco Caponigro, Sean McQuade, Benedetto Piccoli, Nastassia Pouradier Duteil, Francesco Rossi, Emmanuel Trélat, 2017, Chapter 3, 978-3-319-49994-9, 99, 10.1007/978-3-319-49996-3_3 | |
15. | Giacomo Albi, Lorenzo Pareschi, Mattia Zanella, Boltzmann Games in Heterogeneous Consensus Dynamics, 2019, 175, 0022-4715, 97, 10.1007/s10955-019-02246-y | |
16. | Michael Herty, Lorenzo Pareschi, Sonja Steffensen, 2019, Chapter 5, 978-3-030-20296-5, 149, 10.1007/978-3-030-20297-2_5 | |
17. | A. Medaglia, G. Colelli, L. Farina, A. Bacila, P. Bini, E. Marchioni, S. Figini, A. Pichiecchio, M. Zanella, Uncertainty quantification and control of kinetic models of tumour growth under clinical uncertainties, 2022, 141, 00207462, 103933, 10.1016/j.ijnonlinmec.2022.103933 | |
18. | Giacomo Albi, Federica Ferrarese, Chiara Segala, 2021, Chapter 5, 978-3-030-91645-9, 97, 10.1007/978-3-030-91646-6_5 | |
19. | Minyi Huang, Mengjie Zhou, Linear Quadratic Mean Field Games: Asymptotic Solvability and Relation to the Fixed Point Approach, 2020, 65, 0018-9286, 1397, 10.1109/TAC.2019.2919111 | |
20. | Eva Zerz, Michael Herty, Collision-Free Dynamical Systems , 2019, 52, 24058963, 72, 10.1016/j.ifacol.2019.11.029 | |
21. | Giacomo Albi, Michael Herty, Chiara Segala, Robust Feedback Stabilization of Interacting Multi-agent Systems Under Uncertainty, 2024, 89, 0095-4616, 10.1007/s00245-023-10078-2 | |
22. | Xiaoqian Gong, Michael Herty, Benedetto Piccoli, Giuseppe Visconti, Crowd Dynamics: Modeling and Control of Multiagent Systems, 2023, 6, 2573-5144, 261, 10.1146/annurev-control-060822-123629 | |
23. | Christian Fiedler, Michael Herty, Sebastian Trimpe, Mean-Field Limits for Discrete-Time Dynamical Systems via Kernel Mean Embeddings, 2023, 7, 2475-1456, 3914, 10.1109/LCSYS.2023.3341280 | |
24. | Martin Gugat, Michael Herty, Jiehong Liu, Chiara Segala, The turnpike property for high‐dimensional interacting agent systems in discrete time, 2024, 45, 0143-2087, 2557, 10.1002/oca.3172 | |
25. | Michael Herty, Yizhou Zhou, Exponential turnpike property for particle systems and mean-field limit, 2025, 0956-7925, 1, 10.1017/S0956792524000871 | |
26. | Giacomo Albi, Sara Bicego, Michael Herty, Yuyang Huang, Dante Kalise, Chiara Segala, 2025, Chapter 2, 978-3-031-85255-8, 29, 10.1007/978-3-031-85256-5_2 | |
27. | Giacomo Albi, Sara Bicego, Dante Kalise, Control of high-dimensional collective dynamics by deep neural feedback laws and kinetic modelling, 2025, 539, 00219991, 114229, 10.1016/j.jcp.2025.114229 |