Research article Topical Sections

Low-complexity energy disaggregation using appliance load modelling

  • Received: 26 October 2015 Accepted: 23 December 2015 Published: 05 January 2016
  • Large-scale smart metering deployments and energy saving targets across the world have ignited renewed interest in residential non-intrusive appliance load monitoring (NALM), that is, disaggregating total household’s energy consumption down to individual appliances, using purely analytical tools. Despite increased research efforts, NALM techniques that can disaggregate power loads at low sampling rates are still not accurate and/or practical enough, requiring substantial customer input and long training periods. In this paper, we address these challenges via a practical low-complexity lowrate NALM, by proposing two approaches based on a combination of the following machine learning techniques: k-means clustering and Support Vector Machine, exploiting their strengths and addressing their individual weaknesses. The first proposed supervised approach is a low-complexity method that requires very short training period and is fairly accurate even in the presence of labelling errors. The second approach relies on a database of appliance signatures that we designed using publicly available datasets. The database compactly represents over 200 appliances using statistical modelling of measured active power. Experimental results on three datasets from US, Italy, Austria and UK, demonstrate the reliability and practicality.

    Citation: Hana Altrabalsi, Vladimir Stankovic, Jing Liao, Lina Stankovic. Low-complexity energy disaggregation using appliance load modelling[J]. AIMS Energy, 2016, 4(1): 1-21. doi: 10.3934/energy.2016.1.1

    Related Papers:

    [1] Michael Herty, Lorenzo Pareschi, Sonja Steffensen . Mean--field control and Riccati equations. Networks and Heterogeneous Media, 2015, 10(3): 699-715. doi: 10.3934/nhm.2015.10.699
    [2] Nastassia Pouradier Duteil . Mean-field limit of collective dynamics with time-varying weights. Networks and Heterogeneous Media, 2022, 17(2): 129-161. doi: 10.3934/nhm.2022001
    [3] Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang . Uniform stability and mean-field limit for the augmented Kuramoto model. Networks and Heterogeneous Media, 2018, 13(2): 297-322. doi: 10.3934/nhm.2018013
    [4] Martino Bardi . Explicit solutions of some linear-quadratic mean field games. Networks and Heterogeneous Media, 2012, 7(2): 243-261. doi: 10.3934/nhm.2012.7.243
    [5] András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon . Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks and Heterogeneous Media, 2012, 7(1): 43-58. doi: 10.3934/nhm.2012.7.43
    [6] Fabio Camilli, Italo Capuzzo Dolcetta, Maurizio Falcone . Preface. Networks and Heterogeneous Media, 2012, 7(2): i-ii. doi: 10.3934/nhm.2012.7.2i
    [7] Olivier Guéant . New numerical methods for mean field games with quadratic costs. Networks and Heterogeneous Media, 2012, 7(2): 315-336. doi: 10.3934/nhm.2012.7.315
    [8] Michele Gianfelice, Enza Orlandi . Dynamics and kinetic limit for a system of noiseless $d$-dimensional Vicsek-type particles. Networks and Heterogeneous Media, 2014, 9(2): 269-297. doi: 10.3934/nhm.2014.9.269
    [9] Mattia Bongini, Massimo Fornasier, Oliver Junge, Benjamin Scharf . Sparse control of alignment models in high dimension. Networks and Heterogeneous Media, 2015, 10(3): 647-697. doi: 10.3934/nhm.2015.10.647
    [10] Maria Teresa Chiri, Xiaoqian Gong, Benedetto Piccoli . Mean-field limit of a hybrid system for multi-lane car-truck traffic. Networks and Heterogeneous Media, 2023, 18(2): 723-752. doi: 10.3934/nhm.2023031
  • Large-scale smart metering deployments and energy saving targets across the world have ignited renewed interest in residential non-intrusive appliance load monitoring (NALM), that is, disaggregating total household’s energy consumption down to individual appliances, using purely analytical tools. Despite increased research efforts, NALM techniques that can disaggregate power loads at low sampling rates are still not accurate and/or practical enough, requiring substantial customer input and long training periods. In this paper, we address these challenges via a practical low-complexity lowrate NALM, by proposing two approaches based on a combination of the following machine learning techniques: k-means clustering and Support Vector Machine, exploiting their strengths and addressing their individual weaknesses. The first proposed supervised approach is a low-complexity method that requires very short training period and is fairly accurate even in the presence of labelling errors. The second approach relies on a database of appliance signatures that we designed using publicly available datasets. The database compactly represents over 200 appliances using statistical modelling of measured active power. Experimental results on three datasets from US, Italy, Austria and UK, demonstrate the reliability and practicality.


    [1] Smart metering equipment technical specifications: Second version: Part 2. Department of Energy & Climate Change UK, Dec. 2013.
    [2] Armel KC, Gupta A, Shrimali G, et al. (2013) Is disaggregation the holy grail of energy efficiency? The case of electricity. Energy Policy 52: 213–234. doi: 10.1016/j.enpol.2012.08.062
    [3] Hart G, Nonintrusive Appliance Load Data Acquisition Method, MIT Energy Laboratory Technical Report, Sept. 1984.
    [4] Zeifman M, Roth K (2011) Nonintrusive appliance load monitoring: Review and outlook. IEEE Trans Consumer Electronics 57: 76–84. doi: 10.1109/TCE.2011.5735484
    [5] Zoha A, Gluhak A, Imran MA, et al. (2012) Non-intrusive load monitoring approaches for disaggregated energy sensing: A survey. Sensors 12: 16838–16866. doi: 10.3390/s121216838
    [6] Perez KX, Cole WJ, Baldea M, et al. (2014) Meters to models: Using smart meter data to predict home energy use. in Process. ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA.
    [7] Murray D, Liao J, Stankovic L, et al., A data management platform for personalised real-time energy feedback. in Proc EEDAL-2015 8th Int Conf Energy Efficiency in Domestic Appliances and Lighting, Lucerne-Horw, Switzerland, Aug. 2015.
    [8] Liao J, Elafoudi G, Stankovic L, et al. Power disaggregation for low-sampling rate data. 2nd Int. Non-intrusive Appliance Load Monitoring Workshop, Austin, TX, June 2014.
    [9] Marchiori A, Hakkarinen D, Han Q, et al. (2011) Circuit-level load monitoring for household energy management, IEEE Pervas Comput 10: 40-48.
    [10] Berges M, Goldman E, Matthews HS, et al. (2011) User-centered non-intrusive electricity load monitoring for residential buildings. J Comput Civil Eng 25: 471-480. doi: 10.1061/(ASCE)CP.1943-5487.0000108
    [11] Kim H, Marwah M, Arlitt M, et al., Unsupervised disaggregation of low frequency power measurements, in Proc 11th SIAM Int Conf Data Mining, Mesa, AZ, April 2011.
    [12] Parson O, Ghosh S, Weal M, et al. (2012) Non-intrusive load monitoring using prior models of general appliance types. in Proc. the 26th Conf. Artificial Intelligence (AAAI-12), Toronto, CA, pp. 356–362.
    [13] Kolter J, Jaakkola T (2012) Approximate inference in additive factorial HMMs with application to energy disaggregation. in J Machine Learning 22: 1472–1482.
    [14] Johnson MJ, Willsky AS (2013) Bayesian nonparametric Hidden Semi-Markov Models. J Machine Learning Research 14: 673–701.
    [15] Kolter J, Batra S, Ng AY, Energy Disaggregation via Discriminative Sparse Coding. in Proc Advances in Neural Inform Processing Sys 23 (NIPS 2010).
    [16] Shao H, Marwah M, Ramakrishnan NA, Temporal motif mining approach to unsupervised energy disaggregation. in Proc. the 1st Int Workshop Non-Intrusive Load Monitoring, Pittsburgh, PA, May 2012.
    [17] Elafoudi G, Stankovic L, Stankovic V, Power disaggregation of domestic smart meter readings using Dynamic Time Warping. ISCCSP-2014 IEEE Intl Symp Communications, Control, and Signal Processing, Athens, Greece, May 2014.
    [18] Altrabalsi H, Liao J, Stankovic L, et al., A low-complexity energy disaggregation method: Performance and robustness. SSCI-2014 IEEE Symp Comput Intelligence Applications in Smart Grid, Orlando, FL, Dec. 2014.
    [19] Xia XL, Lyu MR, Lok LM,et al., Methods of decreasing the number of support vectors via k-mean clustering. in Proc ICIC 2005, LNCS 3644, pp. 717–726, Spinger-Verlag Berlin Heidelberg, 2005.
    [20] Wang j, Wu x, Zhang C (2005) Support vector machines based on K-means clustering for realtime business intelligence systems. Int J Business Intelligence and Data Mining 1: 54–64.
    [21] Yao Y, Liu Y, Yu Y, et al. (2013) K-SVM: An effective SVM algorithm based on k-means clustering. J Computers 8: 2632–2639.
    [22] Gu Q, Jan J, Clustered Support Vector Machines. in Proc AISTATS-2013 16th Int Conf Artificial Intelligence and Statistics, Scottsdale, AZ, 2013.
    [23] Kolter J, Johnson M. REDD: A public data set for energy disaggregation research. in Workshop on Data Mining Applications in Sustainability (SIGKDD), San Diego, CA, 2011.
    [24] Monacchi A, Egarter D, Elmenreich W, et al. GREEND: An Energy Consumption Dataset of Households in Italy and Austria. in Proc IEEE SmartGridComm, Venice, Italy, Nov. 2014.
    [25] Gao J, Giri S, Kara EC, et al. ( 2014) PLAID: a public dataset of high-resolution electrical appliance measurements for load identification research: demo abstract. in Proc the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings, 198-199.
    [26] Ruzzelli AG, Nicolas C, Schoofs A, et al. (2010) Real-time recognition and profiling of appliances through a single electricity sensor. in Proc IEEE SECON-2010 7th Annual Conf Sensor Mesh and Ad Hoc Communications and Networks, 1–9.
    [27] Laughman C, Lee K,Cox R, et al. (2003) Power signature analysis. IEEE Power and Energy Magazine 1: 56–63.
    [28] Liang J, Ng SKK, Kendall G, et al. (2010) Load signature study part I: Basic concept, structure, and methodology. IEEE Trans Power Delivery 25: 551–560.
    [29] Berges M, Goldman E, Matthews HS, et al., Learning systems for electric consumption of buildings. in Proc 2009 ASCE Int Workshop Computing in Civil Engineering, Austin, TX, 2009.
    [30] Barker s, Kalra s, Irwin D, et al., NILM redux: The case for emphasizing applications over accuracy. NILM-2014 Workshop, Austin, TX, June 2014.
    [31] Markonin S, Bajic IV, Popowich F, Efficient sparse metric processing for nonintrusive load monitoring. 2nd Int Non-intrusive Appliance Load Monitoring Workshop, Austin, TX, June 2014.
    [32] Al-Harbi SH, Rayward-Smith VJ (2006) Adapting k-means for supervised clustering. Appl Intell 24: 219–226. doi: 10.1007/s10489-006-8513-8
  • This article has been cited by:

    1. Michael Herty, Dante Kalise, 2018, Suboptimal nonlinear feedback control laws for collective dynamics, 978-1-5386-6089-8, 556, 10.1109/ICCA.2018.8444303
    2. Melanie Harms, Simone Bamberger, Eva Zerz, Michael Herty, On d-Collision-Free Dynamical Systems, 2022, 55, 24058963, 25, 10.1016/j.ifacol.2022.11.303
    3. Fuguo Xu, Qiaobin Fu, Tielong Shen, PMP-based numerical solution for mean field game problem of general nonlinear system, 2022, 146, 00051098, 110655, 10.1016/j.automatica.2022.110655
    4. M. K. Banda, M. Herty, T. Trimborn, 2020, Chapter 7, 978-3-030-50449-6, 133, 10.1007/978-3-030-50450-2_7
    5. Michael Herty, Anna Thunen, 2021, Consistent Control of a Stackelberg Game with Infinitely many Followers, 978-1-6654-3659-5, 918, 10.1109/CDC45484.2021.9682798
    6. Michael Herty, Hui Yu, 2016, Boundary stabilization of hyperbolic conservation laws using conservative finite volume schemes, 978-1-5090-1837-6, 5577, 10.1109/CDC.2016.7799126
    7. Giacomo Albi, Michael Herty, Dante Kalise, Chiara Segala, Moment-Driven Predictive Control of Mean-Field Collective Dynamics, 2022, 60, 0363-0129, 814, 10.1137/21M1391559
    8. Giacomo Albi, Emiliano Cristiani, Lorenzo Pareschi, Daniele Peri, 2020, Chapter 8, 978-3-030-50449-6, 159, 10.1007/978-3-030-50450-2_8
    9. Michael Herty, Sonja Steffensen, Anna Thünen, Multiscale control of Stackelberg games, 2022, 200, 03784754, 468, 10.1016/j.matcom.2022.04.028
    10. Marco Caponigro, Benedetto Piccoli, Francesco Rossi, Emmanuel Trélat, Mean-field sparse Jurdjevic–Quinn control, 2017, 27, 0218-2025, 1223, 10.1142/S0218202517400140
    11. Bertram Düring, Lorenzo Pareschi, Giuseppe Toscani, Kinetic models for optimal control of wealth inequalities, 2018, 91, 1434-6028, 10.1140/epjb/e2018-90138-1
    12. Yan Ma, Minyi Huang, Linear quadratic mean field games with a major player: The multi-scale approach, 2020, 113, 00051098, 108774, 10.1016/j.automatica.2019.108774
    13. Michael Herty, Mattia Zanella, Performance bounds for the mean-field limit of constrained dynamics, 2017, 37, 1553-5231, 2023, 10.3934/dcds.2017086
    14. Aylin Aydoğdu, Marco Caponigro, Sean McQuade, Benedetto Piccoli, Nastassia Pouradier Duteil, Francesco Rossi, Emmanuel Trélat, 2017, Chapter 3, 978-3-319-49994-9, 99, 10.1007/978-3-319-49996-3_3
    15. Giacomo Albi, Lorenzo Pareschi, Mattia Zanella, Boltzmann Games in Heterogeneous Consensus Dynamics, 2019, 175, 0022-4715, 97, 10.1007/s10955-019-02246-y
    16. Michael Herty, Lorenzo Pareschi, Sonja Steffensen, 2019, Chapter 5, 978-3-030-20296-5, 149, 10.1007/978-3-030-20297-2_5
    17. A. Medaglia, G. Colelli, L. Farina, A. Bacila, P. Bini, E. Marchioni, S. Figini, A. Pichiecchio, M. Zanella, Uncertainty quantification and control of kinetic models of tumour growth under clinical uncertainties, 2022, 141, 00207462, 103933, 10.1016/j.ijnonlinmec.2022.103933
    18. Giacomo Albi, Federica Ferrarese, Chiara Segala, 2021, Chapter 5, 978-3-030-91645-9, 97, 10.1007/978-3-030-91646-6_5
    19. Minyi Huang, Mengjie Zhou, Linear Quadratic Mean Field Games: Asymptotic Solvability and Relation to the Fixed Point Approach, 2020, 65, 0018-9286, 1397, 10.1109/TAC.2019.2919111
    20. Eva Zerz, Michael Herty, Collision-Free Dynamical Systems , 2019, 52, 24058963, 72, 10.1016/j.ifacol.2019.11.029
    21. Giacomo Albi, Michael Herty, Chiara Segala, Robust Feedback Stabilization of Interacting Multi-agent Systems Under Uncertainty, 2024, 89, 0095-4616, 10.1007/s00245-023-10078-2
    22. Xiaoqian Gong, Michael Herty, Benedetto Piccoli, Giuseppe Visconti, Crowd Dynamics: Modeling and Control of Multiagent Systems, 2023, 6, 2573-5144, 261, 10.1146/annurev-control-060822-123629
    23. Christian Fiedler, Michael Herty, Sebastian Trimpe, Mean-Field Limits for Discrete-Time Dynamical Systems via Kernel Mean Embeddings, 2023, 7, 2475-1456, 3914, 10.1109/LCSYS.2023.3341280
    24. Martin Gugat, Michael Herty, Jiehong Liu, Chiara Segala, The turnpike property for high‐dimensional interacting agent systems in discrete time, 2024, 45, 0143-2087, 2557, 10.1002/oca.3172
    25. Michael Herty, Yizhou Zhou, Exponential turnpike property for particle systems and mean-field limit, 2025, 0956-7925, 1, 10.1017/S0956792524000871
    26. Giacomo Albi, Sara Bicego, Michael Herty, Yuyang Huang, Dante Kalise, Chiara Segala, 2025, Chapter 2, 978-3-031-85255-8, 29, 10.1007/978-3-031-85256-5_2
    27. Giacomo Albi, Sara Bicego, Dante Kalise, Control of high-dimensional collective dynamics by deep neural feedback laws and kinetic modelling, 2025, 539, 00219991, 114229, 10.1016/j.jcp.2025.114229
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(10795) PDF downloads(1478) Cited by(60)

Article outline

Figures and Tables

Figures(8)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog