Loading [MathJax]/jax/output/SVG/jax.js
Research article

Ethanol production at high temperature from cassava pulp by a newly isolated Kluyveromyces marxianus strain, TISTR 5925

  • Received: 25 July 2013 Accepted: 09 October 2013 Published: 31 October 2013
  • Kluyveromyces marxianus TISTR 5925, isolated from rotten fruit in Thailand, can ferment at pH 3 at temperatures between 42 and 45 ℃. Bioethanol production from cassava pulp using the simultaneous saccharification and fermentation (SSF) process was evaluated and compared with the separated hydrolysis and fermentation (SHF) process using K. marxianus TISTR 5925. The ethanol concentrations obtained from the SSF process were higher than those from the SHF process. The optimum conditions for ethanol production were investigated by response surface methodology (RSM) based on a five level central composite design involving the following variables: enzyme dilution (times), temperature (℃) and fermentation time (h). Cassava pulp was pretreated by boiling for 10 min, treated with a mixture of enzymes (cellulase, pectinase, α-amylase and glucoamylase), then fermented by K. marxianus TISTR 5925. Data obtained from the RSM were subjected to analysis of variance and fit to a second order polynomial equation. At optimum enzyme dilution (0.1 times), temperature (41 ℃) and fermentation time (27 h), the maximum obtained concentration of ethanol was 5.0% (w/v), which is very close to the predicted ethanol concentration of 5.3% (w/v).

    Citation: Waraporn Apiwatanapiwat, Prapassorn Rugthaworn, Pilanee Vaithanomsat, Warunee Thanapase, Akihiko Kosugi, Takamitsu Arai, Yutaka Mori, Yoshinori Murata. Ethanol production at high temperature from cassava pulp by a newly isolated Kluyveromyces marxianus strain, TISTR 5925[J]. AIMS Energy, 2013, 1(1): 3-16. doi: 10.3934/energy.2013.1.3

    Related Papers:

    [1] Mahmoud S. Mehany, Faizah D. Alanazi . An $ \eta $-Hermitian solution to a two-sided matrix equation and a system of matrix equations over the skew-field of quaternions. AIMS Mathematics, 2025, 10(4): 7684-7705. doi: 10.3934/math.2025352
    [2] Abdur Rehman, Muhammad Zia Ur Rahman, Asim Ghaffar, Carlos Martin-Barreiro, Cecilia Castro, Víctor Leiva, Xavier Cabezas . Systems of quaternionic linear matrix equations: solution, computation, algorithm, and applications. AIMS Mathematics, 2024, 9(10): 26371-26402. doi: 10.3934/math.20241284
    [3] Vladislav N. Kovalnogov, Ruslan V. Fedorov, Denis A. Demidov, Malyoshina A. Malyoshina, Theodore E. Simos, Spyridon D. Mourtas, Vasilios N. Katsikis . Computing quaternion matrix pseudoinverse with zeroing neural networks. AIMS Mathematics, 2023, 8(10): 22875-22895. doi: 10.3934/math.20231164
    [4] Wenxv Ding, Ying Li, Anli Wei, Zhihong Liu . Solving reduced biquaternion matrices equation $ \sum\limits_{i = 1}^{k}A_iXB_i = C $ with special structure based on semi-tensor product of matrices. AIMS Mathematics, 2022, 7(3): 3258-3276. doi: 10.3934/math.2022181
    [5] Abdur Rehman, Cecilia Castro, Víctor Leiva, Muhammad Zia Ur Rahman, Carlos Martin-Barreiro . Solving two-sided Sylvester quaternionic matrix equations: Theoretical insights, computational implementation, and practical applications. AIMS Mathematics, 2025, 10(7): 15663-15697. doi: 10.3934/math.2025702
    [6] Yang Chen, Kezheng Zuo, Zhimei Fu . New characterizations of the generalized Moore-Penrose inverse of matrices. AIMS Mathematics, 2022, 7(3): 4359-4375. doi: 10.3934/math.2022242
    [7] Abdur Rehman, Ivan Kyrchei, Muhammad Zia Ur Rahman, Víctor Leiva, Cecilia Castro . Solvability and algorithm for Sylvester-type quaternion matrix equations with potential applications. AIMS Mathematics, 2024, 9(8): 19967-19996. doi: 10.3934/math.2024974
    [8] Anli Wei, Ying Li, Wenxv Ding, Jianli Zhao . Three special kinds of least squares solutions for the quaternion generalized Sylvester matrix equation. AIMS Mathematics, 2022, 7(4): 5029-5048. doi: 10.3934/math.2022280
    [9] Dong Wang, Ying Li, Wenxv Ding . The least squares Bisymmetric solution of quaternion matrix equation $ AXB = C $. AIMS Mathematics, 2021, 6(12): 13247-13257. doi: 10.3934/math.2021766
    [10] Qi Xiao, Jin Zhong . Characterizations and properties of hyper-dual Moore-Penrose generalized inverse. AIMS Mathematics, 2024, 9(12): 35125-35150. doi: 10.3934/math.20241670
  • Kluyveromyces marxianus TISTR 5925, isolated from rotten fruit in Thailand, can ferment at pH 3 at temperatures between 42 and 45 ℃. Bioethanol production from cassava pulp using the simultaneous saccharification and fermentation (SSF) process was evaluated and compared with the separated hydrolysis and fermentation (SHF) process using K. marxianus TISTR 5925. The ethanol concentrations obtained from the SSF process were higher than those from the SHF process. The optimum conditions for ethanol production were investigated by response surface methodology (RSM) based on a five level central composite design involving the following variables: enzyme dilution (times), temperature (℃) and fermentation time (h). Cassava pulp was pretreated by boiling for 10 min, treated with a mixture of enzymes (cellulase, pectinase, α-amylase and glucoamylase), then fermented by K. marxianus TISTR 5925. Data obtained from the RSM were subjected to analysis of variance and fit to a second order polynomial equation. At optimum enzyme dilution (0.1 times), temperature (41 ℃) and fermentation time (27 h), the maximum obtained concentration of ethanol was 5.0% (w/v), which is very close to the predicted ethanol concentration of 5.3% (w/v).


    In this paper, we establish the following four symmetric quaternion matrix systems:

    $ {A11X1=B11,C11X1D11=E11,X2A22=B22,C22X2D22=E22,F11X1H11+X2F22=G11, $ (1.1)
    $ {A11X1=B11,C11X1D11=E11,X2A22=B22,C22X2D22=E22,F11X1+H11X2F22=G11, $ (1.2)
    $ {A11X1=B11,C11X1D11=E11,A22X2=B22,C22X2D22=E22,F11X1+H11X2F22=G11, $ (1.3)
    $ {A11X1=B11,C11X1D11=E11,A22X2=B22,C22X2D22=E22,F11X1+X2F22=G11, $ (1.4)

    where $ A_{ii}, \ B_{ii}, \ C_{ii}, \ D_{ii}, \ E_{ii}, \ F_{ii}(i = \overline{1, 2}) $, $ H_{11} $, and $ G_{11} $ are known matrices, while $ X_i (i = \overline{1, 2}) $ are unknown.

    In this paper, $ \mathbb{R} $ and $ \mathbb{H}^{m\times n} $ denote the real number field and the set of all quaternion matrices of order $ m\times n $, respectively.

    $ H={v0+v1i+v2j+v3k|i2=j2=k2=ijk=1,v0,v1,v2,v3R}. $

    Moreover, $ r(A) $, $ 0 $ and $ I $ represent the rank of matrix $ A $, the zero matrix of suitable size, and the identity matrix of suitable size, respectively. The conjugate transpose of $ A $ is $ A^{\ast} $. For any matrix $ A $, if there exists a unique solution $ X $ such that

    $ AXA=A,XAX=X,(AX)=AX,(XA)=XA, $

    then $ X $ is called the Moore-Penrose ($ M-P $) inverse. It should be noted that $ A^{\dagger} $ is used to represent the $ M-P $ inverse of $ A $. Additionally, $ L_{A} = I-A^{\dagger}A $ and $ R_{A} = I-AA^{\dagger} $ denote two projectors toward $ A $.

    $ \mathbb{H} $ is known to be an associative noncommutative division algebra over $ \mathbb{R} $ with extensive applications in computer science, orbital mechanics, signal and color image processing, control theory, and so on (see [1,2,3,4]).

    Matrix equations, significant in the domains of descriptor systems control theory [5], nerve networks [6], back feed [7], and graph theory [8], are one of the key research topics in mathematics.

    The study of matrix equations in $ \mathbb{H} $ has garnered the attention of various researchers; consequently they have been analyzed by many studies (see, e.g., [9,10,11,12]). Among these the system of symmetric matrix equations is a crucial research object. For instance, Mahmoud and Wang [13] established some necessary and sufficient conditions for the three symmetric matrix systems in terms of $ M-P $ inverses and rank equalities:

    $ {A1V=C1, VB1=C2,A3X+YB3=C3,A2Y+ZB2+A5VB5=C5,A4W+ZB4=C4,{A1V=C1, VB1=C2,A3X+YB3=C3,A2Z+YB2+A5VB5=C5,A4Z+WB4=C4,{A1V=C1, VB1=C2,A3X+YB3=C3,A2Y+ZB2+A5VB5=C5,A4Z+WB4=C4. $ (1.5)

    Wang and He [14] established the sufficient and necessary conditions for the existence of solutions to the following three symmetric coupled matrix equations and the expressions for their general solutions:

    $ {A1X+YB1=C1,A2Y+ZB2=C2,A3W+ZB3=C3,{A1X+YB1=C1,A2Z+YB2=C2,A3Z+WB3=C3,{A1X+YB1=C1,A2Y+ZB2=C2,A3Z+WB3=C3. $ (1.6)

    It is noteworthy that the following matrix equation plays an important role in the analysis of the solvability conditions of systems (1.1)–(1.4):

    $ A1U+VB1+A2XB2+A3YB3+A4ZB4=B. $ (1.7)

    Liu et al. [15] derived some necessary and sufficient conditions to solve the quaternion matrix equation (1.7) using the ranks of coefficient matrices and $ M-P $ inverses. Wang et al. [16] derived the following quaternion equations after obtaining some solvability conditions for the quaternion equation presented in Eq (1.8) in terms of $ M-P $ inverses:

    $ {A11X1=B11,C11X1D11=E11,X2A22=B22,C22X2D22=E22,F11X1+X2F22=G11. $ (1.8)

    To our knowledge, so far, there has been little information on the solvability conditions and an expression of the general solution to systems (1.1)–(1.4).

    In mathematical research and applications, the concept of $ \eta $-Hermitian matrices has gained significant attention [17]. An $ \eta $-Hermitian matrix, for $ \eta \in \{\mathbf{i}, \mathbf{j}, \mathbf{k}\} $, is defined as a matrix $ A $ such that $ A = A^{\eta^{*}} $, where $ A^{\eta^{*}} = -\eta A^{*}\eta $. These matrices have found applications in various fields including linear modeling and the statistics of random signals [1,17]. As an application of (1.1), this paper establishes some necessary and sufficient conditions for the following matrix equation:

    $ {A11X1=B11,C11X1Cη11=E11,F11X1Fη11+(F22X1)η=G11 $ (1.9)

    to be solvable.

    Motivated by the study of Systems (1.8), symmetric matrix equations, $ \eta $-Hermitian matrices, and the widespread use of matrix equations and quaternions as well as the need for their theoretical advancements, we examine the solvability conditions of the quaternion systems presented in systems (1.1)–(1.4) by utilizing the rank equalities and the $ M-P $ inverses of coefficient matrices. We then obtain the general solutions for the solvable quaternion equations in systems (1.1)–(1.4). As an application of (1.1), we utilize the $ M-P $ inverse and the rank equality of matrices to investigate the necessary and sufficient conditions for the solvability of quaternion matrix equations involving $ \eta $-Hermicity matrices. It is evident that System (1.8) is a specific instance of System (1.1).

    The remainder of this article is structured as follows. Section 2 outlines the basics. Section 3 examines some solvability conditions of the quaternion equation presented in System (1.1) using the $ M-P $ inverses and rank equalities of the matrices, and derives the solution of System (1.1). Section 4 establishes some solvability conditions for matrix systems (1.2)–(1.4) to be solvable. Section 5 investigates some necessary and sufficient conditions for matrix equation (1.9) to have common solutions. Section 6 concludes the paper.

    Marsaglia and Styan [18] presented the following rank equality lemma over the complex field, which can be generalized to $ \mathbb{H} $.

    Lemma 2.1. [18] Let $ A \in \mathbb{H}^{m\times n} $, $ B \in \mathbb{H}^{m\times k} $, $ C \in \mathbb{H}^{l\times n} $, $ D \in \mathbb{H}^{j\times k}, $ and $ E \in \mathbb{H}^{l\times i} $ be given. Then, the following rank equality holds:

    $ \ r(ABLDREC0) = r(AB0C0E0D0)-r(D)-r(E). $

    Lemma 2.2. [19] Let $ A \in \mathbb{H}^{m\times n} $ be given. Then,

    $ (1)(Aη)=(A)η,(Aη)=(A)η;(2)r(A)=r(Aη)=r(Aη);(3)(LA)η=η(LA)η=(LA)η=LAη=RAη,(4)(RA)η=η(RA)η=(RA)η=RAη=LAη;(5)(AA)η=(A)ηAη=(AA)η=Aη(A)η;(6)(AA)η=Aη(A)η=(AA)η=(A)ηAη. $

    Lemma 2.3. [20] Let $ A_{1} $ and $ A_{2} $ be given quaternion matrices with adequate shapes. Then, the equation $ A_{1}X = A_{2} $ is solvable if, and only if, $ A_{2} = A_{1}A_{1}^{\dagger}A_{2} $. In this case, the general solution to this equation can be expressed as

    $ X = A_{1}^{\dagger}A_{2}+L_{A_{1}}U_{1}, $

    where $ U_{1} $ is any matrix with appropriate size.

    Lemma 2.4. [20] Let $ A_{1} $ and $ A_{2} $ be given quaternion matrices with adequate shapes. Then, the equation $ XA_{1} = A_{2} $ is solvable if, and only if, $ A_{2} = A_{2}A_{1}^{\dagger}A_{1} $. In this case, the general solution to this equation can be expressed as

    $ X = A_{2}A_{1}^{\dagger}+U_{1}R_{A_{1}}, $

    where $ U_{1} $ is any matrix with appropriate size.

    Lemma 2.5. [21] Let $ A, B, $ and $ C $ be known quaternion matrices with appropriate sizes. Then, the matrix equation

    $ AXB=C $

    is consistent if, and only if,

    $ RAC=0,CLB=0. $

    In this case, the general solution to this equation can be expressed as

    $ X=ACB+LAU+VRB, $

    where $ U $ and $ V $ are any quaternion matrices with appropriate sizes.

    Lemma 2.6. [15] Let $ C_{i}, D_{i} $, and $ Z \; (i = \overline{1, 4}) $ be known quaternion matrices with appropriate sizes.

    $ C1X1+X2D1+C2Y1D2+C3Y2D3+C4Y3D4=Z. $ (2.1)

    Denote

    $ RC1C2=C12,RC1C3=C13,RC1C4=C14,D2LD1=D21,D31LD21=N32,D3LD1=D31,D4LD1=D41,RC12C13=M23,S12=C13LM23,RC1ZLD1=T1,C32=RM23RC12,A1=C32C14,A2=RC12C14,A3=RC13C14,A4=C14,D13=LD21LN32,B1=D41,B2=D41LD31,B3=D41LD21,B4=D41D13,E1=C32T1,E2=RC12T1LD31,E3=RC13T1LD21,E4=T1D13,A24=(LA2,LA4),B13=(RB1RB3),A11=LA1,B22=RB2,A33=LA3,B44=RB4,E11=RA24A11,E22=RA24A33,E33=B22LB13,E44=B44LB13,N=RE11E22,M=E44LE33,K=K2K1,E=RA24KLB13,S=E22LN,K11=A2LA1,G1=E2A2A1E1B1B2,K22=A4LA3,G2=E4A4A3E3B3B4,K1=A1E1B1+LA1A2E2B2,K2=A3E3B3+LA3A4E4B4. $

    Then, the following statements are equivalent:

    $ \mathrm{(1)} $ Equation (2.1) is consistent.

    $ \mathrm{(2)} $

    $ RAiEi=0,EiLBi=0(i=¯1,4),RE11ELE44=0. $

    $ \mathrm{(3)} $

    $ r(ZC2C3C4C1D10000)=r(D1)+r(C2,C3,C4,C1),r(ZC2C4C1D3000D1000)=r(C2,C4,C1)+r(D3D1),r(ZC3C4C1D2000D1000)=r(C3,C4,C1)+r(D2D1),r(ZC4C1D200D300D100)=r(D2D3D1)+r(C4,C1),r(ZC2C3C1D4000D1000)=r(C2,C3,C1)+r(D4D1),r(ZC2C1D300D400D100)=r(D3D4D1)+r(C2,C1),r(ZC3C1D200D400D100)=r(D2D4D1)+r(C3,C1),r(ZC1D20D30D40D10)=r(D2D3D4D1)+r(C1),r(ZC2C1000C4D3000000D1000000000ZC3C1C4000D2000000D1000D400D4000)=r(D30D100D20D1D4D4)+r(C2C100C400C3C1C4). $

    Under these conditions, the general solution to the matrix equation (2.1) is

    $ X1=C1(ZC2Y1D2C3Y2D3C4Y3D4)C1U1D1+LC1U2,X2=RC1(ZC2Y1D2C3Y2D3C4Y3D4)D1+C1C1U1+U3RD1,Y1=C12TD21C12C13M23TD21C12S12C13TN32D31D21C12S12U4RN32D31D21+LC12U5+U6RD21,Y2=M23TD31+S12S12C13TN32+LM23LS12U7+U8RD31+LM23U4RN32,Y3=K1+LA2V1+V2RB1+LA1V3RB2, or Y3=K2LA4W1W2RB3LA3W3RB4, $

    where $ T = T_{1}-C_{4}Y_{3}D_{4}, U_{i}(i = \overline{1, 8}) $ are arbitrary matrices with appropriate sizes over $ \mathbb{H} $,

    $ V1=(Im,0)[A24(KA11V3B22A33W3B44)A24U11B13+LA24U12],W1=(0,Im)[A24(KA11V3B22A33W3B44)A24U11B13+LA24U12],W2=[RA24(KA11V3B22A33W3B44)B13+A24A24U11+U21RB13](0In),V2=[RA24(KA11V3B22A33W3B44)B13+A24A24U11+U21RB13](In0),V3=E11KE33E11E22NKE33E11SE22KME44E33E11SU31RME44E33+LE11U32+U33RE33,W3=NKE44+SSE22KM+LNLSU41+LNU31RMU42RE44, $

    $ U_{11}, U_{12}, U_{21}, U_{31}, U_{32}, U_{33}, U_{41}, $ and $ U_{42} $ are arbitrary quaternion matrices with appropriate sizes, and $ m $ and $ n $ denote the column number of $ C_{4} $ and the row number of $ D_{4} $, respectively.

    Some necessary and sufficient conditions for System (1.1) to be solvable will be established in this section. The general solution of System (1.1) will also be derived in this section. Moreover, we provide an example to illustrate our main results.

    Theorem 3.1. Let $ A_{ii}, B_{ii}, C_{ii}, D_{ii}, E_{ii}, F_{ii}, H_{11}, $ and $ G_{11} $ (i = 1, 2) be given quaternion matrices. Put

    $ {A1=C11LA11,P1=E11C11A11B11D11,B2=RA22D22,P2=E22C22B22A22D22,^B1=RB2RA22F22,^A2=F11LA11LA1,^A3=F11LA11,^B3=RD11H11,^A4=LC22,^B4=RA22F22,H11L^B1=^B11,P=G11F11A11B11H11F11LA11A1P1D11H11B22A22F22C22P2B2RA22F22, $ (3.1)
    $ {^B22L^B11=N1,^B3L^B1=^B22,^B4L^B1=^B33,R^A2^A3=^M1,S1=^A3L^M1,T1=PL^B1,C=R^M1R^A2,C1=C^A4,C2=R^A2^A4,C3=R^A3^A4,C4=^A4,D=L^B11LN1,D1=^B33,D2=^B33L^B22,D4=^B33D,E1=CT1,E2=R^A2T1L^B22,E3=R^A3T1L^B11,E4=T1D,^C11=(LC2,LC4),D3=^B33L^B11,^D11=(RD1RD3),^C22=LC1,^D22=RD2,^C33=LC3,^D33=RD4,^E11=R^C11^C22,^E22=R^C11^C22,^E33=^D22L^D11,^E44=^D33L^D11,M=R^E11^E22,N=^E44L^E33,F=F2F1,E=R^C11FL^D11,S=^E22LM,^F11=C2LC1,G1=E2C2C1E1D1D2,^F22=C4LC3,G2=E4C4C3E3D3D4,F1=C1E1D1+LC1C2E2D2,F2=C3E3D3+LC3C4E4D4. $ (3.2)

    Then, the following statements are equivalent:

    $ \mathrm{(1)} $ System (1.1) is solvable.

    $ \mathrm{(2)} $

    $ RA11B11=0,RA1P1=0,P1LD11=0,B22LA22=0,RC22P2=0,P2LB2=0,RCiEi=0,EiLDi=0(i=¯1,4),R^E11EL^E44=0. $

    $ \mathrm{(3)} $

    $ r(B11,A11)=r(A11),r(E11C11B11D11A11)=r(C11A11), $ (3.3)
    $ r(E11D11)=r(D11),r(B22A22)=r(A22), $ (3.4)
    $ r(E22,C22)=r(C22),r(E22C22B22D22A22)=r(D22,A22), $ (3.5)
    $ r(F220D22A22B11H11A1100C22G11C22F11E22C22B22)=r(F22,D22,A22)+r(A11C22F11), $ (3.6)
    $ r(H110D1100F2200D22A220C11E11000A11B11D1100C22G11C22F110E22C22B22)=r(C11A11C22F11)+r(H11D1100F220D22A22), $ (3.7)
    $ r(H11000F220D22A220A1100C22G11C22F11E22C22B22)=r(H1100F22D22A22)+r(A11C22F11), $ (3.8)
    $ r(H1100F22D22A22C22G11E22C22B22)=r(H1100F22D22A22), $ (3.9)
    $ r(G11F11B22F220A22B11H11A110)=r(F11A11)+r(F22,A22), $ (3.10)
    $ r(G11F110B22H110D110F2200A220C11E1100A11B11D110)=r(H11D110F220A22)+r(F11C11A11), $ (3.11)
    $ r(G11F11B22H1100F220A220A110)=r(H110F22A22)+r(F11A11), $ (3.12)
    $ r(G11B22H110F22A22)=r(H110F22A22), $ (3.13)
    $ r(H11000000D110F220000D22A220000H1100000000F22D22A220000F220F2200000A220C1100000E1100A1100000B11D110C22G11C22F11000E22C22B2200)=r(H1100000D110F22000D22A22000H110000000F22D22A220000F22F2200000A22)+r(C11A11C22F11). $ (3.14)

    Proof. $ (1)\Leftrightarrow (2) $: The System (1.1) can be written as follows.

    $ A11X1=B11, X2A22=B22, $ (3.15)
    $ C11X1D11=E11, C22X2D22=E22, $ (3.16)

    and

    $ F11X1H11+X2F22=G11. $ (3.17)

    Next, the solvability conditions and the expression for the general solutions of Eq (3.15) to Eq (3.17) are given by the following steps:

    Step 1: According to Lemma 2.3 and Lemma 2.4, the system (3.15) is solvable if, and only if,

    $ RA11B11=0, B22LA22=0. $ (3.18)

    When condition (3.18) holds, the general solution of System (3.15) is

    $ X1=A11B11+LA11U1, X2=B22A22+U2RA22. $ (3.19)

    Step 2: Substituting (3.19) into (3.16) yields,

    $ A1U1D11=P1, C22U2B2=P2, $ (3.20)

    where $ A_{1}, P_1, B_{2}, P_{2} $ are defined by (3.1). By Lemma 2.5, the system (3.20) is consistent if, and only if,

    $ RA1P1=0, P1LD11=0, RC22P2=0, P2LB2=0. $ (3.21)

    When (3.21) holds, the general solution to System (3.20) is

    $ U1=A1P1D11+LA1W1+W2RD11,U2=C22P2B2+LC22W3+W4RB2. $ (3.22)

    Comparing (3.22) and (3.19), hence,

    $ X1=A11B11+LA11A1P1D11+LA11LA1W1+LA11W2RD11,X2=B22A22+C22P2B2RA22+LC22W3RA22+W4RB2RA22. $ (3.23)

    Step 3: Substituting (3.23) into (3.17) yields

    $ W4^B1+^A2W1H11+^A3W2^B3+^A4W3^B4=P, $ (3.24)

    where $ \hat{B_{i}}, \hat{A_{j}}(i = \overline{1, 4}, j = \overline{2, 4}) $ are defined by (3.1). It follows from Lemma 2.6 that Eq (3.24) is solvable if, and only if,

    $ RCiEi=0,EiLDi=0(i=¯1,4),R^E11EL^E44=0. $ (3.25)

    When (3.25) holds, the general solution to matrix equation (3.24) is

    $ W1=^A2T^B11^A2^A3^M1T^B11^A2S1^A3TN1^B22^B11^A2S1V4RN1^B22^B11+L^A2V5+V6R^B11,W2=^M1T^B22+S1S1^A3TN1+L^M1LS1V7+V8R^B22+L^M1V4RN1,W3=F1+LC2^V1+^V2RD1+LC1^V3RD2, or W3=F2LC4V1V2RD3LC3V3RD4,W4=(P^A2W1H11^A3W2^B3^A4W3^B4)^B1+V3R^B1, $

    where $ C_{i}, E_{i}, D_{i}(i = \overline{1, 4}), \hat{E_{11}}, \hat{E_{44}} $ are defined as (3.2), $ T = T_{1}-\hat{A_{4}}W_{3}\hat{B_{4}}, V_{i}(i = \overline{1, 8}) $ are arbitrary matrices with appropriate sizes over $ \mathbb{H} $,

    $ ^V1=(Im,0)[^C11(F^C22V3^D22^C33^V3^D33)^C11U11^D11+L^C11U12],V1=(0,Im)[^C11(F^C22V3^D22^C33^V3^D33)^C11U11^D11+L^C11U12],V2=[R^C11(F^C22V3^D22^C33^V3^D33)^D11+^C11^C11U11+U21R^D11](0In),^V2=[R^C11(F^C22V3^D22^C33^V3^D33)^D11+^C11^C11U11+U21R^D11](In0),^V3=^E11F^E33^E11^E22MF^E33^E11S^E22FN^E44^E33^E11SU31RN^E44^E33+L^E11U32+U33R^E33,V3=MF^E44+SS^E22FN+LMLSU41+LMU31RNU42R^E44, $

    $ U_{11}, U_{12}, U_{21}, U_{31}, U_{32}, U_{33}, U_{41}, $ and $ U_{42} $ are any quaternion matrices with appropriate sizes, and $ m $ and $ n $ denote the column number of $ C_{22} $ and the row number of $ A_{22} $, respectively. We summarize that System (1.1) has a solution if, and only if, (3.18), (3.21), and (3.25) hold, i.e., the System (1.1) has a solution if, and only if, (2) holds.

    $ (2)\Leftrightarrow (3) $: We prove the equivalence in two parts. In the first part, we want to show that (3.18) and (3.21) are equivalent to (3.3) to (3.5), respectively. In the second part, we want to show that (3.25) is equivalent to (3.6) to (3.14). It is easy to know that there exist $ X_{1}^{0}, X_{2}^{0}, U_{1}^{0}, $ and $ U_{2}^{0} $ such that

    $ A11X01=B11, X02A22=B22,A1U01D11=P1, C22U02B2=P2 $

    holds, where

    $ X01=A11B11,U01=A1P1D11,X02=B22A22,U02=C22P2B2, $

    $ P_{1} = E_{11}-C_{11}X_{1}^{0}D_{11}, P_{2} = E_{22}-C_{22}X_{2}^{0}D_{22}, $ and $ P = G_{11}-F_{11}X_{1}^{0}H_{11}-F_{11}L_{A_{11}}U_{1}^{0}H_{11}-X_{2}^{0}F_{22}-U_{2}^{0}R_{A_{22}}F_{22}. $

    Part 1: We want to show that (3.18) and (3.21) are equivalent to (3.3) to (3.5), respectively. It follows from Lemma 2.1 and elementary transformations that

    $ (3.18)r(RA11B11)=0r(B11,A11)=r(A11)(3.3),(3.21)r(RA1P1)=0r(P1,A1)=r(A1)r(E11C11A11B11D11,C11LA11)=r(C11LA11)r(E11C11B11D11A11)=r(C11A11)(3.3),(3.21)r(P1LD11)=0r(P1D11)=r(D11)r(E11C11A11B11D11D11)=r(D11)r(E11D11)=r(D11)(3.4),(3.18)r(B22LA22)=0r(B22A22)=r(A22)(3.4). $

    Similarly, we can show that (3.21) is equivalent to (3.5). Hence, (3.18) and (3.21) are equivalent to (3.3) and (3.5), respectively.

    Part 2: In this part, we want to show that (3.25) is equivalent to (3.6) and (3.14). According to Lemma 2.6, we have that (3.25) is equivalent to the following:

    $ r(P^A2^A3^A4^B1000)=r(^B1)+r(^A2,^A3,^A4), $ (3.26)
    $ r(P^A2^A4^B300^B100)=r(^A2,^A4)+r(^B3^B1), $ (3.27)
    $ r(P^A3^A4H1100^B100)=r(^A3,^A4)+r(H11^B1), $ (3.28)
    $ r(P^A4H110^B30^B10)=r(H11^B3^B1)+r(^A4), $ (3.29)
    $ r(P^A2^A3^B400^B100)=r(^A2,^A3)+r(^B4^B1), $ (3.30)
    $ r(P^A2^B30^B40^B10)=r(^B3^B4^B1)+r(^A2), $ (3.31)
    $ r(P^A3H110^B40^B10)=r(H11^B4^B1)+r(^A3), $ (3.32)
    $ r(PH11^B3^B4^B1)=r(H11^B3^B4^B1), $ (3.33)
    $ r(P^A200^A4^B30000^B1000000P^A3^A400H110000^B100^B40^B400)=r(^B30^B100H110^B1^B4^B4)+r(^A20^A40^A3^A4), $ (3.34)

    respectively. Hence, we only prove that (3.26)–(3.34) are equivalent to (3.6)–(3.14) when we prove that (3.25) is equivalent to (3.6)–(3.14). Now, we prove that (3.26)–(3.34) are equivalent to (3.6)–(3.14). In fact, we only prove that (3.26), (3.30), and (3.34) are equivalent to (3.6), (3.10), and (3.14); the remaining part can be proved similarly. According to Lemma 2.1 and elementary transformations, we have that

    $ (3.26)=r(P^A2^A3^A4^B1000)=r(^B1)+r(^A2,^A3,^A4)r(G11F11X01H11F11LA11U01H11X02F22U02RA22F22F11LA11LA1F11LA11LC22RB2RA22F22000)=r(RB2RA22F22)+r(F11LA11LA1,F11LA11,LC22)r(G11F11X01H11X02F22U02RA22F22F11I0RA22F2200B20A110000C220)=r(RA22F22,B2)+r(F11IA1100C22)r(G11F11IU02B20F2200B2A22B11H11A11000C22X02F220C2200)=r(F22,D22,A22)+r(F11IA1100C22)r(F220D22A22B11H11A1100C22G11C22F11E22C22B22)=r(F22,D22,A22)+r(A11F11C22)(3.6). $

    Similarly, we have that $ (3.27) \Leftrightarrow (3.7), (3.28) \Leftrightarrow (3.8), (3.29) \Leftrightarrow (3.9) $.

    $ (3.30)=r(P^A2^A3^B400^B100)=r(^A2,^A3)+r(^B4^B1)r(G11F11X01H11F11LA11U01H11X02F22U02RA22F22F11LA11LA1F11LA1RA22F2200RB2RA22F2200)=r(F11LA11LA1,F11LA11)+r(RA22F22RB2RA22F22)r(G11F11X01H11F11B22F220A220A110)=r(F11A11)+r(F22,A22)r(G11F11B22F220A22B11H11A110)=r(F11A11)+r(F22,A22)(3.10). $

    Similarly, we have that $ (3.31) \Leftrightarrow (3.11), (3.32) \Leftrightarrow (3.12), (3.33) \Leftrightarrow (3.13). $

    $ (3.34)=r(P^A200^A4^B30000^B1000000P^A3^A400H110000^B100^B40^B400)=r(^B30^B100H110^B1^B4^B4)+r(^A20^A40^A3^A4)r(PF11LA11LA100LC22RD11H110000RB2RA22F22000000PF11LA11LC2200H110000RB2RA22F2200RA22F220RA22F2200)=r(RD11H110RB2RA22F2200H110RB2RA22F22RA22F22RA22F22)+r(F11LA11LA10LC220F11LA11LC22)r(PF11LA1100LC22000H110000D1100RA22F2200000B2000G11+X02F22+U02RA22F22F11LA11LC2200000H110000000RA22F220000B2RA22F220RA22F22000000A1000000)=r(H110D1100RA2200B200H110000RA22F2200B2RA22F22RA22F22000)+r(F11LA110LC220F11LA11LC22A100)r(H11000000D110F220000D22A220000H1100000000F22D22A220000F220F2200000A220C1100000E1100A1100000B11D110C22G11C22F11000E22C22B2200)=r(H1100000D110F22000D22A22000H110000000F22D22A220000F22F2200000A22)+r(C11A11C22F11)(3.14). $

    Theorem 3.2. Let System (1.1) be solvable. Then, the general solution of System (1.1) is

    $ X1=A11B11+LA11A1P1D11+LA11LA1W1+LA11W2RD11,X2=B22A22+C22P2B2RA22+LC22W3RA22+W4RB2RA22, $

    where

    $ W1=^A2T^B11^A2^A3^M1T^B11^A2S1^A3TN1^B22^B11^A2S1V4RN1^B22^B11+L^A2V5+V6R^B11,W2=^M1T^B22+S1S1^A3TN1+L^M1LS1V7+V8R^B22+L^M1V4RN1,W3=F1+LC2^V1+^V2RD1+LC1^V3RD2, or W3=F2LC4V1V2RD3LC3V3RD4,W4=(P^A2W1H11^A3W2^B3^A4W3^B4)^B1+V3R^B1,^V1=(Im,0)[^C11(F^C22V3^D22^C33^V3^D33)^C11U11^D11+L^C11U12],V1=(0,Im)[^C11(F^C22V3^D22^C33^V3^D33)^C11U11^D11+L^C11U12],V2=[R^C11(F^C22V3^D22^C33^V3^D33)^D11+^C11^C11U11+U21R^D11](0In),^V2=[R^C11(F^C22V3^D22^C33^V3^D33)^D11+^C11^C11U11+U21R^D11](In0),^V3=^E11F^E33^E11^E22MF^E33^E11S^E22FN^E44^E33^E11SU31RN^E44^E33+L^E11U32+U33R^E33,V3=MF^E44+SS^E22FN+LMLSU41+LMU31RNU42R^E44, $

    $ T = T_{1}-\hat{A_{4}}W_{3}\hat{B_{4}}, \; V_{i}(i = \overline{4, 8}) $ are arbitrary matrices with appropriate sizes over $ \mathbb{H} $, $ U_{11}, U_{12}, U_{21} $, $ U_{31}, U_{32}, U_{33}, U_{41} $, and $ U_{42} $ are any quaternion matrices with appropriate sizes, and $ m $ and $ n $ denote the column number of $ C_{22} $ and the row number of $ A_{22} $, respectively.

    Next, we consider a special case of the System (1.1).

    Corollary 3.3. [16] Let $ A_{ii}, B_{ii}, C_{ii}, D_{ii}, E_{ii}, F_{ii}(i = 1, 2), $ and $ G_{11} $ be given matrices with appropriate dimensions over $ \mathbb{H} $. Denote

    $ T=C11LA11,K=RA22D22, B1=RKRA22F22,A1=F11LA11LT,C3=F11LA11,D3=RD11,C4=LC22,D4=RA22F22,Aα=RA1C3,Bβ=D3LB1,Cc=RAαC4,Dd=D4LB1,E=RA1E1LB1,A=A11B11+LA11T(E11C11A11B11D11)D,B=B22A22+C22(E22C22B22A22D22)KRA22,E1=G11F11ABF22,M=RAαCc,N=DdLBβ,S=CcLM. $

    Then, the following statements are equivalent:

    $ \mathrm{(1)} $ Equation (1.8) is consistent.

    $ \mathrm{(2)} $

    $ RA11B11=0,B22LA22=0,RC22E22=0,E11LD11=0,RT(E11C11A11B11D11)=0,(E22C22B22A22D22)LK=0,RMRAαE=0,ELBβLN=0,RAαELDd=0,RCcELBβ=0. $

    $ \mathrm{(3)} $

    $ r(B11,A11)=r(A11),r(E11C11B11D11A11)=r(C11A11),r(E11D11)=r(D11),r(B22A22)=r(A22),r(E22,C22)=r(C22),r(E22C22B22D22A22)=r(D22,A22),r(F220D22A22B11A1100C22G11C22F11E22C22B22)=r(F22,D22,A22)+r(A11C22F11),r(0F22D11D22A22C11E1100A11B11D1100C22F11C22G11D11E22C22B22)=r(C11A11C22F11)+r(F22D11,D22,A22),r(G11F11B22F220A22B11A110)=r(F11A11)+r(F22,A22),r(F11G11D11B220F22D11A22C11E110A11B11D110)=r(F22D11,A22)+r(F11C11A11). $

    Finally, we provide an example to illustrate the main results of this paper.

    Example 3.4. Conside the matrix equation (1.1)

    $ A11=(a111a121),B11=(b111b112b121b122),C11=(c111c121),D11=(d111d121),E11=(e111e121),A22=(a211a212),B22=(b211b212b221b222),C22=(c211c212c221c222),D22=(d211),E22=(e211e221),F11=(f111f121),H11=(h111h112h121h122),F22=(f211f212),G11=(g111g112g121g122), $

    where

    $ a111=0.9787+0.5005i+0.0596j+0.0424k,a121=0.7127+0.4711i+0.6820j+0.0714k,b111=0.5216+0.8181i+0.7224j+0.6596k,b112=0.9730+0.8003i+0.4324j+0.0835k,b121=0.0967+0.8175i+0.1499j+0.5186k,b122=0.6490+0.4538i0.8253j+0.1332k,c111=0.1734+0.8314i+0.0605j+0.5269k,c121=0.3909+0.8034i+0.3993j+0.4168k,d111=0.6569+0.2920i+0.0159j+0.1671k,d121=0.6280+0.4317i+0.9841j+0.1062k,e111=0.3724+0.4897i+0.9516j+0.0527k,e121=0.1981+0.3395i+0.9203j+0.7379k,a211=0.2691+0.4228i+0.5479j+0.9427k,a212=0.4177+0.9831i+0.3015j+0.7011k,b211=0.6663+0.6981i+0.1781j+0.9991k,b212=0.0326+0.8819i+0.1904j+0.4607k,b221=0.5391+0.6665i+0.1280j+0.1711k,b222=0.5612+0.6692i+0.3689j+0.9816k,c211=0.1564+0.6448i+0.1909j+0.4820k,c212=0.5895+0.3846i+0.2518j+0.6171k,c221=0.8555+0.3763i+0.4283j+0.1206k,c222=0.2262+0.5830i+0.2904j+0.2653k,d211=0.8244+0.9827i+0.7302j+0.3439k,e211=0.5847+0.9063i+0.8178j+0.5944k,e221=0.1078+0.8797i+0.2607j+0.0225k,f111=0.4253+0.1615i+0.4229j+0.5985k,f121=0.3127+0.1788i+0.0942j+0.4709k,h111=0.6959+0.6385i+0.0688j+0.5309k,h112=0.4076+0.7184i+0.5313j+0.1056k,h121=0.6999+0.0336i+0.3196j+0.6544k,h122=0.8200+0.9686i+0.3251j+0.6110k,f211=0.7788+0.4235i+0.0908j+0.2665k,f212=0.1537+0.2810i+0.4401j+0.5271k,g111=0.4574+0.5181i+0.6377j+0.2407k,g112=0.2891+0.6951i+0.2548j+0.6678k,g121=0.8754+0.9436i+0.9577j+0.6761k,g122=0.6718+0.0680i+0.2240j+0.8444k. $

    Computing directly yields the following:

    $ r(B11A11)=r(A11)=2,r(E11C11B11D11A11)=r(C11A11)=2,r(E11D11)=r(D11)=1,r(B22A22)=r(A22)=2,r(E22C22)=r(C22)=2,r(E22C22B22D22A22)=r(D22A22)=3,r(F220D22A22B11H11A1100C22G11C22F11E22C22B22)=r(F22D22A22)+r(A11C22F11)=5,r(H110D1100F2200D22A220C11E11000A11B11D1100C22G11C22F110E22C22B22)=r(C11A11C22F11)+r(H11D1100F220D22A22)=7,r(H11000F220D22A220A1100C22G11C22F11E22C22B22)=r(H1100F22D22A22)+r(A11C22F11)=6,r(H1100F22D22A22C22G11E22C22B22)=r(H1100F22D22A22)=5,r(G11F11B22F220A22B11H11A110)=r(F11A11)+r(F22,A22)=5,r(G11F110B22H110D110F2200A220C11E1100A11B11D110)=r(H11D110F220A22)+r(F11C11A11)=6,r(G11F11B22H1100F220A220A110)=r(H110F22A22)+r(F11A11)=5, r(G11B22H110F22A22)=r(H110F22A22)=4,r(H11000000D110F220000D22A220000H1100000000F22D22A220000F220F2200000A220C1100000E1100A1100000B11D110C22G11C22F11000E22C22B2200)=r(H1100000D110F22000D22A22000H110000000F22D22A220000F22F2200000A22)+r(C11A11C22F11)=11. $

    All rank equations in (3.3) to (3.14) hold. So, according to Theorem 3.1, the system of matrix equation (1.1) has a solution. By Theorem 3.2, the solution of System (1.1) can be expressed as

    $ X1=(0.4946+0.1700i0.1182j0.3692k0.40510.0631i0.2403j0.1875k),X2=(0.0122+0.2540i0.3398j0.3918k0.70020.3481i0.2169j+0.0079k). $

    In this section, we use the same method and technique as in Theorem 3.1 to study the three systems of Eqs (1.2)–(1.4). We only present their results and omit their proof.

    Theorem 4.1. Consider the matrix equation (1.2) over $ \mathbb{H} $, where $ A_{ii}, B_{ii}, C_{ii}, D_{ii}, E_{ii}, F_{ii}, G_{11} $, and $ H_{11} (i = \overline{1, 2}) $ are given. Put

    $ A1=C11LA11,P1=E11C11A11B11D11,B2=RA22D22,P2=E22C22B22A22D22,^A1=F11LA11LA1,^A2=F11LA1,^B2=RD11,^A3=H11LC22,^B3=RA22F22,^B4=RB2RA22F22,B=G11F11A11B11F11LA11A1P1D11H11B22A22F22H11C22P2B2RA22F22,R^A1^A2=A12,R^A1^A3=A13,R^A1H11=A14,^B3L^B2=N1,RA12A13=M1,S1=A13LM1,R^A1B=T1,C=RM1RA12,^C1=CA14,^C2=RA12A14,^C3=RA13A14,^C4=A14,D=L^B2LN1,^D1=^B4,^D2=^B4L^B3,^D3=^B4L^B2,^D4=^B4D,^E1=CT1,^E2=RA12T1L^B3,^E3=RA13T1L^B2,^E4=T1D,C24=(L^C2,L^C4),D13=(R^D1R^D3),C12=L^C1,D12=R^D2,C33=L^C3,D33=R^D4,E24=RC24C12,E13=RC24C33,E33=D12LD13,E44=D33LD13,M=RE24E13,N=E44LE33,F=F2F1,E=RC24FLD13,S=E13LM,^F11=^C2L^C1,^G1=^E2^C2^C1^E1^D1^D2,F33=^C4L^C3,^G2=^E4^C4^C3^E3^D3^D4,F1=^C1^E1^D1+L^C1^C2^E2^D2,F2=^C3^E3^D3+L^C3^C4^E4^D4. $

    Then, the following statements are equivalent:

    $ \mathrm{(1)} $ System (1.2) is consistent.

    $ \mathrm{(2)} $

    $ RA11B11=0,RA1P1=0,P1LD11=0,B22LA22=0,RC22P2=0,P2LB2=0,R^Ci^Ei=0,^EiL^Di=0(i=¯1,4),RE24ELE44=0. $

    $ \mathrm{(3)} $

    $ r(B11,A11)=r(A11),r(E11C11B11D11A11)=r(C11A11),r(E11D11)=r(D11),r(B22,A22)=r(A22),r(E22,C22)=r(C22),r(E22C22B22D22A22)=r(D22,A22),r(G11D11F11H11E11C110B11D11A110)=r(F11H11C110A110),r(G11D11F11H110F22D1100A22E11C1100B11D11A1100)=r(F22,A22)+r(F11H11C110A110),r(H11F11G11D110C11E110A11B11D11)=r(H11F110C110A11),r(H11F110G11D1100A22F22D110C110E110A110B11D11)=r(F22D11,A22)+r(H11F110C110A11),r(G11D11F11H1100F22D1100D22A22E11C1100000C22E22C22B22B11D11A11000)=r(F11H11C1100C22A110)+r(F22,D22,A22),r(G11D11F11H11B22F22D110A22E11C110B11D11A110)=r(F11C11A11)+r(F22,A22),r(H11F1100G11D1100D22A22F22D110C1100E110A1100B11D11C220E22C22B220)=r(H11F110C110A11C220)+r(D22,A22,F22D11),r(F11H11B22G11D110A22F22D11C110E11A110B11D11)=r(F11C11A11)+r(A22,F22D11),r(G11F1100H1100H5B220F22000000A22000H11F11H110H11B220G11D1100000D22A220F22D1100C2200E22000000C110000E11000A110000B11D11B11A110000000)=r(F2200A2200D22A220F22D11)+r(F1100H110H11F11H110C220000C11000A110A11000). $

    Under these conditions, the general solution of System (1.2) is

    $ X1=A11B11+LA11A1P1D11+LA11LA1W1+LA11W2RD11,X2=B22A22+C22P2B2RA22+LC22W3RA22+W4RB2RA22, $

    where

    $ W1=^A1(B^A2W1^B2^A3W3^B3H11W4^B4)+L^A1U1,W2=A12T^B2A12A13M1T^B2A12S1A13TN1^B3^B2A12S1U2RN1^B3^B2+LA12U3+U4R^B2,W3=M1T^B3+S1S1A13TN1+LM1LS1U5+U6R^B3+LM1U2RN1,W4=F1+L^C2V1+V2R^D1+L^C1V3R^D2, or W4=F2L^C4^V1^V2R^D3L^C3^V3R^D4, $

    where $ T = T_{1}-H_{11}W_{4}\hat{B_{4}}, U_{i}(i = \overline{1, 6}) $ are arbitrary matrices with appropriate sizes over $ \mathbb{H} $,

    $ V1=(Im,0)[C24(FC12V3D12C33^V3D33)C24U11D13+LC24U12],^V1=(0,Im)[C24(FC12V3D12C33^V3D33)C24U11D13+LC24U12],^V2=[RC24(FC12V3D12C33^V3D33)D13+C24C24U11+U21RD13](0In),V2=[RC24(FC12V3D12C33^V3D33)D13+C24C24U11+U21RD13](In0),V3=E24FE33E24E13MFE33E24SE13FNE44E33E24SU31RNE44E33+LE24U32+U33RE33,^V3=MFE44+SSE13FN+LMLSU41+LMU31RNU42RE44, $

    $ U_{11}, U_{12}, U_{21}, U_{31}, U_{32}, U_{33}, U_{41}, $ and $ U_{42} $ are any quaternion matrices with appropriate sizes, and $ m $ and $ n $ denote the column number of $ H_{11} $ and the row number of $ A_{22} $, respectively.

    Theorem 4.2. Consider the matrix equation (1.3) over $ \mathbb{H} $, where $ A_{ii}, B_{ii}, C_{ii}, D_{ii}, E_{ii}, F_{ii}, G_{11} \; H_{11} (i = \overline{1, 2}) $ are given. Put

    $ A1=C11LA11,P1=E11C11A11B11D11,A2=C22LA22,P2=E22C22A22B22D22,^A1=F11LA11LA1,^A2=F11LA11,^B2=RD11,^A11=H11LA22LA2,^A22=H11LA22,^B4=RD22F22,B=G11F11A11B11F11LA11A1P1D11H11A22B22F22H11LA22A2P2D22F22,R^A1^A2=A12,R^A1^A11=A13,R^A1^A22=A33,F22L^B2=N1,RA12A13=M1,S1=A13LM1,R^A1B=T1,C=RM1RA12,^C1=CA33,^C2=RA12A33,^C11=RA13A33,^C22=A33,D=L^B2LN1,^D1=^B4,^D2=^B4LF22,^D11=^B4L^B2,^D22=^B4D,^E1=CT1,^E2=RA12T1LF22,^E11=RA13T1L^B2,^E4=T1D,C24=(L^C2,L^C22),D13=(R^D1R^D11),C21=L^C1,D12=R^D2,C33=L^C11,D33=R^D22,E11=RC24C21,E22=RC24C33,E33=D12LD13,E44=D33LD13,M=RE11E22,N=E44LE33,F=F2F1,E=RC24FLD13,S=E22LM,^F11=^C2L^C1,^G1=^E2^C2^C1^E1^D1^D2,^F22=^C22L^C11,^G2=^E4^C22^C11^E11^D11^D22,F1=^C1^E1^D1+L^C1^C2^E2^D2,F2=^C11^E11^D11+L^C11^C22^E4^D22. $

    Then, the following statements are equivalent:

    $ \mathrm{(1)} $ System (1.3) is consistent.

    $ \mathrm{(2)} $

    $ RA11B11=0,RA1P1=0,P1LD11=0,RA22B22=0,RA2P2=0,P2LD22=0,R^Ci^Ei=0,R^C11^E11=0,R^C22^E4=0,^EiL^Di=0(i=¯1,2),^E11L^D11=0,^E4L^D22=0,RE11ELE44=0. $

    $ \mathrm{(3)} $

    $ r(B11,A11)=r(A11),r(E11C11B11D11A11)=r(C11A11),r(E11D11)=r(D11),r(B22,A22)=r(A22),r(E22C22B4D22A22)=r(C22A22),r(E22D22)=r(D22),r(G11F11H11B11A110B22F220A22)=r(F11H11A1100A22),r(G11F11H11F2200B11A11000A22)=r(F22)+r(F11H11A1100A22),r(H11F11G11D11A220B22F22D110C11E110A11B11D11)=r(H11F110C110A11A220),r(H11F11G11D1100F22D110C11E110A11B11D11A2200)=r(H11F110C110A11A220)+r(F22D11),r(G11F11H110F2200D22B11A110000C22E2200A22B22D22)=r(F11H11A1100C220A22)+r(F22,D22),r(G11F11F220B11A11)=r(F11A11)+r(F22),r(H11F110G11D1100D22F22D11C220E2200C110E11A2200B22F22D110A110B11D11)=r(H11F11C2200C11A2200A11)+r(D22,F22D11),r(F11G11D110F22D11C11E11A11B11D11)=r(F11C11A11)+r(F22D11),r(G11F11000H110F2200000000G11D11H11F11H11000F22D11000B22B11A1100000000C2200E2200E110C110000B22F22D11A2200000B11D110A110000000A220)=r(F22000D22F22D11)+r(F1100H110H11F11H110C22000A220000C11000A110A11000000A22). $

    Under these conditions, the general solution of System (1.3) is

    $ X1=A11B11+LA11A1P1D11+LA11LA1W1+LA11W2RD11,X2=A22B4+LA22A2P2D22+LA22LA2W3+LA22W4RD22, $

    where

    $ W1=^A1(B^A2W1^B2^A11W3F22^A22W4^B4)+L^A1U1,W2=A12T^B2A12A13M1T^B2A12S1A13TN1F22^B2A12S1U2RN1F22^B2+LA12U3+U4R^B2,W3=M1TF22+S1S1A13TN1+LM1LS1U5+U6RF22+LM1U2RN1,W4=F1+L^C2V1+V2R^D1+L^C1V3R^D2, or W4=F2L^C22^V1^V2R^D11L^C11^V3R^D22, $

    where $ T = T_{1}-\hat{A_{22}}W_{4}\hat{B_{4}}, U_{i}(i = \overline{1, 6}) $ are arbitrary matrices with appropriate sizes over $ \mathbb{H} $,

    $ V1=(Im,0)[C24(FC21V3D12C33^V3D33)C24U11D13+LC24U12],^V1=(0,Im)[C24(FC21V3D12C33^V3D33)C24U11D13+LC24U12],^V2=[RC24(FC21V3D12C33^V3D33)D13+C24C24U11+U21RD13](0In),V2=[RC24(FC21V3D12C33^V3D33)D13+C24C24U11+U21RD13](In0),V3=E11FE33E11E22MFE33E11SE22FNE44E33E11SU31RNE44E33+LE11U32+U33RE33,^V3=MFE44+SSE22FN+LMLSU41+LMU31RNU42RE44, $

    $ U_{11}, U_{12}, U_{21}, U_{31}, U_{32}, U_{33}, U_{41}, $ and $ U_{42} $ are any matrices with appropriate sizes, and $ m $ and $ n $ denote the column number of $ H_{11} $ and the row number of $ D_{22} $, respectively.

    Theorem 4.3. Consider the matrix equation (1.4) over $ \mathbb{H} $, where $ A_{ii}, B_{ii}, C_{ii}, D_{ii}, E_{ii}, F_{ii}(i = \overline{1, 2}), $ and $ G_{11} $ are given. Put

    $ ^A1=C11LA11,P1=E11C11A11B11D11,^A2=C22LA22,P2=E22C22A22B22D22,A5=F11LA1L^A1,A6=F11LA11,A7=LA22L^A2,A8=LA22,B5=RD11,B7=RD22F22,B=G11F11A11B11F11LA1^A1P1D11A22B22F22LA22^A2P2D22F22,RA5A6=A11,RA5A7=A2,RA5A8=A33,F22LB5=N1,RA11A2=M1,S1=A2LM1,RA5B=T1,C=RM1RA11,^C1=CA33,^C2=RA11A33,^C11=RA2A33,^C4=A33,D=LB5LN1,^D1=B7,^D2=B7LF22,^D3=B7LB5,^D4=B7D,^E1=CT1,^E2=RA11T1LF22,^E11=RA2T1LB5,^E4=T1D,C1=(L^C2,L^C4),D13=(R^D1R^D3),D1=L^C1,D2=R^D2,C33=L^C11,D33=R^D4,E11=RC1D1,E2=RC1C33,E33=D2LD13,E44=D33LD13,M=RE11E2,N=E44LE33,F=^F2^F1,E=RC1FLD13,S=E2LM,F11=^C2L^C1,^G1=^E2^C2^C1^E1^D1^D2,F33=^C4L^C11,^G2=^E4^C4^C11^E11^D3^D4,^F1=^C1^E1^D1+L^C1^C2^E2^D2,^F2=^C11^E11^D3+L^C11^C4^E4^D4. $

    Then, the following statements are equivalent:

    $ \mathrm{(1)} $ Equation (1.4) is consistent.

    $ \mathrm{(2)} $

    $ RA11B11=0,R^A1P1=0,P1LD11=0,RA22B22=0,R^A2P2=0,P2LD22=0, R^Ci^Ei=0,^EiL^Di=0(i=¯1,2),R^C11^E11=0,R^C4^E4=0,^E11L^D3=0,^E4L^D4=0,RE11ELE44=0. $

    $ \mathrm{(3)} $

    $ r(B11,A11)=r(A11),r(E11C11B11D11A11)=r(C11A11),r(E11D11)=r(D11), r(B22,A22)=r(A22),r(E22C22B22D22A22)=r(C22A22),r(E22D22)=r(D22),r(B11A11A22G11B22F22A22F11)=r(A11A22F11),r(F220B11A11A22G11A22F11)=r(F22)+r(A11A22F11),r(C11E11A11B11D11A22F11B22F22D11A22G11D11)=r(C11A11A22F11),r(0F22D11C11E11A11B11D11A22F11A22G11D11)=r(C11A11A22F11)+r(F22D11),r(F220D22C22G11C22F11E22B11A110A22G11A22F11B22D22)=r(F22,D22)+r(C22F11A22F11A11),r(G11F11F220B11A11)=r(F11A11)+r(F22),r(0D22F22D11C22F11E22C22G11D11C110E22A22F110A22G11D11B22F22D11A110B11D11)=r(C22F11C11A22F11A11)+r(D22,F22D11),r(F11G11D110F22D11C11E11A11B11D11)=r(F11C11A11)+r(F22D11), $
    $ r(F22000000F22D110B22B11A11000C22G11C22F11C22G11D11C22F11E2200E11C110A22G11A22F11A22G11D11B22F22D11A22F11000B11D11A110A22G11A22F11000)=r(F22000F22D11D22)+r(C22F11C22F11A22F11A22F110C110A11A110A110A22F110). $

    Under these conditions, the general solution of System (1.4) is

    $ X1=A11B11+LA1^A1P1^B1+LA1L^A1W1+LA1W2R^B1,X2=A2B22+LA2^A2P2^B2+LA2L^A2W3+LA3W4R^B2, $

    where

    $ W1=A5(BA6W1B5A7W3F22A8W4B7)+LA5U1,W2=A1TB5A1A2M1TB5A1S1A2TN1F22B5A1S1U2RN1F22B5+LA1U3+U4RB5,W3=M1TF22+S1S1A2TN1+LM1LS1U5+U6RF22+LM1U2RN1,W4=^F1+L^C2V1+V2R^D1+L^C1V3R^D2, or W4=^F2L^C4^V1^V2R^D3L^C11^V3R^D4, $

    where $ T = T_{1}-A_{8}W_{4}B_{7}, U_{i}(i = \overline{1, 6}) $ are arbitrary matrices with appropriate sizes over $ \mathbb{H} $,

    $ V1=(Im,0)[C1(FD1V3D2C33^V3D33)C1U11D1+LC1U12],^V1=(0,Im)[C1(FD1V3D2C33^V3D33)C1U11D1+LC1U12],^V2=[RC1(FD1V3D2C33^V3D33)D1+C1C1U11+U21RD1](0In),V2=[RC1(FC2V3D2C33^V3D33)D1+C1C1U11+U21RD1](In0),V3=E11FE33E11E2MFE33E11SE2FNE44E33E11SU31RNE44E33+LE11U32+U33RE33,^V3=MFE44+SSE2FN+LMLSU41+LMU31RNU42RE44, $

    $ U_{11}, U_{12}, U_{21}, U_{31}, U_{32}, U_{33}, U_{41}, $ and $ U_{42} $ are any quaternion matrices with appropriate sizes, and $ m $ and $ n $ denote the column number of $ A_{22} $ and the row number of $ D_{22} $, respectively.

    In this section, we use the Lemma 2.2 and the Theorem 3.1 to study matrix equation (1.9) involving $ \eta $-Hermicity matrices.

    Theorem 5.1. Let $ A_{11}, B_{11}, C_{11}, E_{11}, F_{11}, F_{22}, $ and $ G_{11}(G_{11} = G_{11}^{\eta^{*}}) $ be given matrices. Put

    $ A1=C11LA11,P1=E11C11A11B11Cη11,B2=Aη1,P2=Pη1,ˆB1=RB2(F22LA11)η,ˆA3=F11LA11,ˆA2=ˆA3LA1,ˆA4=LC11,ˆB3=(F11ˆA4)η,ˆB4=(F22LA11)η,Fη11LˆB1=ˆB11,P=G11F11A11B11Fη11ˆA3A1P1(F11C11)η(F22A11B11)ηC11P2B2ˆB4,ˆB22LB11=N1,ˆB3LˆB1=ˆB22,ˆB4LˆB1=ˆB33,RˆA2ˆA3=ˆM1,S1=ˆA3LM1,T1=PL^B1,C=RM1RˆA2,C1=CˆA4,C2=RˆA2ˆA4,C3=RˆA3ˆA4,C4=ˆA4,D=LˆB11LN1,D1=ˆB33,D2=ˆB33LˆB22,D4=ˆB33D,E1=CT1,E2=RˆA2T1LˆB11,E4=T1D,ˆC11=(LC2,LC4),D3=ˆB33LˆB11,ˆD11=(RD1RD3),ˆC22=LC1,ˆD22=RD2, ˆC33=LC3,ˆD33=RD4,ˆE11=RˆC11ˆC22,ˆE22=RˆC11ˆC33,ˆE33=ˆD22LˆD11,ˆE44=ˆD33LˆD11,M=RˆE11ˆE22,N=ˆE44LˆE33, F=F2F1,E=RˆC11FLˆD11,S=ˆE22LM,^F11=C2LC1,G1=E2C2C1E1D1D2,^F22=C4LC3,G2=E4C4C3E3D3D4,F1=C1E1D1+LC1C2E2D2,F2=C3E3D3+LC3C4E4D4. $

    Then, the following statements are equivalent:

    $ \mathrm{(1)} $ System (1.9) is solvable.

    $ \mathrm{(2)} $

    $ R_{A_{11}} B_{11} = 0, R_{A_{1}} P_{1} = 0, P_{1}\left(R_{C_{11}}\right)^{\eta^{*}} = 0, R_{C_{i}} E_{i} = 0, E_{i} L_{D_{i}} = 0(i = \overline{1,4}), R_{\hat{E}_{11}} E L_{\hat{E}_{44}} = 0 . $

    $ \mathrm{(3)} $

    $ r(B11,A11)=r(A11),r(E11C11B11Cη11A11)=r(C11A11), r(E11Cη11)=r(C11),r(Fη220Cη11Aηη11B11Fη11A1100C11G11C11F11Eη11C11Bη11)=r(Fη22,Cη11,Aη11)+r(A11C11F11),r(Fη110Cη1100Fη2200Cη11Aη110C11E11000A11B11Cη1100C11G11C11F110Eη11C11Bη11)=r(C11A110)+r(Fη11Cη1100Fη220Cη11Aη11),r(Fη11000Fη220Cη11Aη110A1100C11G11C11F11Eη11C11Bη11)=r(Fη1100Fη22Cη11Aη11)+r(A11C11F11),r(Fη1100Fη22Cη11Aη11C11G11Eη11C11Bη11)=r(Fη1100Fη22Cη11Aη11,),r(G11F11Bη11Fη220Aη11B11Fη11A110)=r(F11A11)+r(Fη22,Aη11),r(G11F110Bη11Fη110Cη110Fη2200Aη110C11E1100A11B11Cη110)=r(Fη11Cη110Fη220Aη11)+r(F11C11A11),r(G11F11Bη11Fη1100Fη220Aη110A110)=r(Fη110Fη22Aη11)+r(F11A11),r(G11Bη11Fη110Fη22Aη11)=r(Fη110Fη22Aη11),r(Fη11000000Cη110Fη220000Cη11Aη110000Fη1100000000Fη22Cη11Aη110000Fη220Fη2200000Aη110C1100000E1100A1100000B11Cη110C11G11C11F11000Eη11C11Bη1100)=r(Fη1100000Cη110Fη22000Cη11Aη11000Fη110000000Fη22Cη11Aη110000Fη22Fη2200000Aη11)+r(C11A11C11F11). $

    Proof. Evidently, the system of Eq (1.9) has a solution if and only if the following matrix equation has a solution:

    $ A11^X1=B11,C11^X1Cη11=E11,^X2Aη11=Bη11,C11^X2Cη11=Eη11,F11X1Fη11+^X2ηFη22=G11. $ (5.1)

    If (1.9) has a solution, say, $ X_1 $, then $ (\hat{X_1}, \ \hat{X_2}) : = (X_1, \ X_{1}^{\eta^{*}}) $ is a solution of (5.1). Conversely, if (5.1) has a solution, say $ (\hat{X_1}, \ \hat{X_2}) $, then it is easy to show that (1.5) has a solution

    $ X1:=^X1+Xη22. $

    According to Theorem 3.1, we can deduce that this theorem holds.

    We have established the solvability conditions and the expression of the general solutions to some constrained systems (1.1)–(1.4). As an application, we have investigated some necessary and sufficient conditions for Eq (1.9) to be consistent. It should be noted that the results of this paper are valid for the real number field and the complex number field as special number fields.

    Long-Sheng Liu, Shuo Zhang and Hai-Xia Chang: Conceptualization, formal analysis, investigation, methodology, software, validation, writing an original draft, writing a review, and editing. All authors of this article have contributed equally. All authors have read and approved the final version of the manuscript for publication.

    This work is supported by the National Natural Science Foundation(No. 11601328) and Key scientific research projects of univesities in Anhui province(No. 2023AH050476).

    The authors declare that they have no conflicts of interest.

    [1] Gray, KA.; Zhao, L.; Emptage, M. et al. (2006) Bioethanol: a review. Curr Opin Chem Biol 10: 141-146. doi: 10.1016/j.cbpa.2006.02.035
    [2] El-Sharkawy, MA. Cassava biology and physiology. (2004) Plant Mol Biol 56: 481-501.
    [3] Sorapipatana, C.; Yoosin, S. (2011) Life cycle cost of ethanol production from cassava in Thailand. Renew Sust Energ Rev 15: 1343-1349. doi: 10.1016/j.rser.2010.10.013
    [4] Sriroth, K.; Chollakup, R.; Chotineeranat, S.; Piyachomkwan, K.; Oates, CG. et al. (2000) Processing of cassava waste for improved biomass utilization. Bioresour Technol 71: 63-69. doi: 10.1016/S0960-8524(99)00051-6
    [5] Kosugi, A.; Kondo, A.; Ueda, M.; Murata, Y.; Vaithanomsat, P.; Thanapase, W. et al. (2009) Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamylase. Renew Ener 34: 1354-1358. doi: 10.1016/j.renene.2008.09.002
    [6] Rattanachomsri, U.; Tanapongpipat, S.; Eurwilaichitr, L.; Champreda, V. et al. (2009) Simultaneous non-thermal saccharification of cassava pulp by multi-enzyme activity and ethanol fermentation by Candida tropicalis. J Biosc Bioeng 107: 488-493. doi: 10.1016/j.jbiosc.2008.12.024
    [7] Apiwatanapiwat, W.; Murata, Y.; Kosugi, A.; Yamada, R.; Kondo, A.; Arai, T. et al. (2011) Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase. Appl. Microbiol Biotechnol 90: 377-384. doi: 10.1007/s00253-011-3115-8
    [8] Abdel-Banat, BM.; Hoshida, H.; Ano, A.; Nonklang, S.; Akada, R. et al. (2009) High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl Microbiol Biotechnol 85: 861-867.
    [9] Limtong, S.; Sringiew, C.; Yongmanitchai, W. et al. (2007) Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour Technol 98: 3367-3374. doi: 10.1016/j.biortech.2006.10.044
    [10] Anderson, PJ.; McNeil, K.; Watson, K. et al. (1986) High-efficiency carbohydrate fermentation to ethanol at temperatures above 40℃ by Kluyveromyces marxianus var. marxianus isolated from sugar mills. Appl Environ Microbiol 51: 1314-1320.
    [11] Nonklang, S.; Abdel-Banat, BM.; Cha-aim, K.; Moonjai, N.; Hoshida, H.; Limtong, S. et al. (2008) High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl Environ Microbiol 74: 7514-7521. doi: 10.1128/AEM.01854-08
    [12] Fonseca, GG.; Heinzle, E.; Wittmann, C.; Gombert, AK. et al. (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microb Biotechnol 79: 339-354. doi: 10.1007/s00253-008-1458-6
    [13] Chen, QH.; He, GQ.; Ali, MAM. et al. (2002) Optimization of medium composition for the production of elastase by Bacillus sp. EL31410 with response surface methodology. Enzyme Microb Technol 30: 667-672.
    [14] Altschul, SF.; Gish, W.; Miller, W.; Meyers, EW.; Lipman, DJ. et al. (1990) Basic local 129 alignment search tool. J Mol Biol 215: 403-410. doi: 10.1016/S0022-2836(05)80360-2
    [15] Somogyi, M. (1952) Notes in Sugar Determination. J Biol Chem 195: 19-23.
    [16] Sreekumar, O.; Chand, N.; Basappa, SC. et al. (1999) Optimization and interaction of media components in ethanol production using Zymomonas mobilis by response surface methodology. J Biosci Bioeng 88: 334-338. doi: 10.1016/S1389-1723(00)80021-3
    [17] Manikandan, K.; Viruthagiri, T. (2010) Optimization of C/N ratio of the medium and fermentation conditions of ethanol production from tapioca starch using co-culture of Aspergillus niger and Sacharomyces cerevisiae. International Journal of Chem. Tech Research 2: 947-955.
    [18] Ubalue, AO. (2007) Cassava wastes: treatment options and value addition alternatives: a review. Afri J Biotechnol 6: 2065-2073.
    [19] Srichuwong, S.; Fujiwara, M.; Wang, X.; Seyama, T.; Shiroma, R.; Arakane, M. et al. (2009) Simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash for the production of ethanol. Biomass Bioenerg 33: 890-986. doi: 10.1016/j.biombioe.2009.01.012
    [20] Olofsson, K.; Bertilsson, M.; Lidén, G. et al. (2008) A short review on SSF - an interesting process option for ethanol production from lignocellulosic feedstocks: a review. Biotechnol. Biofuels 1: 1-14. doi: 10.1186/1754-6834-1-1
    [21] Sasikumar, E.; Viruthagiri, T. (2010) Simultaneous saccharification and fermentation (SSF) ofsugarcane bagasse-kinetics and modeling. International Journal of Chemical and Biological Engineering 3: 57-64.
  • This article has been cited by:

    1. Mahmoud S. Mehany, Faizah D. Alanazi, An $ \eta $-Hermitian solution to a two-sided matrix equation and a system of matrix equations over the skew-field of quaternions, 2025, 10, 2473-6988, 7684, 10.3934/math.2025352
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6709) PDF downloads(1321) Cited by(14)

Figures and Tables

Figures(4)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog