Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Review

Bioenergy from wastewater-based biomass

  • The U.S. Department of Energy (DOE) has stated that biomass is the only renewable resource that can supplant petroleum-based liquid transportation fuels in the near term. Wastewater is beginning to be viewed as a potential resource that can be exploited for biomass production and conversion to bioenergy. We suggest that using wastewater from municipalities and industries as a resource for cultivating biomass and combining wastewater treatment with the production of biomass for bioenergy would provide benefits to both industries. Two waste-based biomass production systems that currently have large nationwide infrastructures include: (1) wastewater treatment systems that can be used to cultivate algae biomass, and (2) land application/treatment systems for non-food terrestrial biomass. These existing infrastructures could be used in the relatively near future for waste-based biomass production and conversion to bioenergy, thereby reducing capital costs and scalability challenges while making a contribution to energy independence and national security.

    Citation: Ronald C. Sims, Sean K. Bedingfield, Reese Thompson, Judith L. Sims. Bioenergy from wastewater-based biomass[J]. AIMS Bioengineering, 2016, 3(1): 103-124. doi: 10.3934/bioeng.2016.1.103

    Related Papers:

    [1] Yi Dong, Jinjiang Liu, Yihua Lan . A classification method for breast images based on an improved VGG16 network model. Electronic Research Archive, 2023, 31(4): 2358-2373. doi: 10.3934/era.2023120
    [2] Hui-Ching Wu, Yu-Chen Tu, Po-Han Chen, Ming-Hseng Tseng . An interpretable hierarchical semantic convolutional neural network to diagnose melanoma in skin lesions. Electronic Research Archive, 2023, 31(4): 1822-1839. doi: 10.3934/era.2023094
    [3] Dong Wu, Jiechang Li, Weijiang Yang . STD-YOLOv8: A lightweight small target detection algorithm for UAV perspectives. Electronic Research Archive, 2024, 32(7): 4563-4580. doi: 10.3934/era.2024207
    [4] Peng Lu, Xinpeng Hao, Wenhui Li, Congqin Yi, Ru Kong, Teng Wang . ECF-YOLO: An enhanced YOLOv8 algorithm for ship detection in SAR images. Electronic Research Archive, 2025, 33(5): 3394-3409. doi: 10.3934/era.2025150
    [5] Jinjiang Liu, Yuqin Li, Wentao Li, Zhenshuang Li, Yihua Lan . Multiscale lung nodule segmentation based on 3D coordinate attention and edge enhancement. Electronic Research Archive, 2024, 32(5): 3016-3037. doi: 10.3934/era.2024138
    [6] Jianjun Huang, Xuhong Huang, Ronghao Kang, Zhihong Chen, Junhan Peng . Improved insulator location and defect detection method based on GhostNet and YOLOv5s networks. Electronic Research Archive, 2024, 32(9): 5249-5267. doi: 10.3934/era.2024242
    [7] Jianting Gong, Yingwei Zhao, Xiantao Heng, Yongbing Chen, Pingping Sun, Fei He, Zhiqiang Ma, Zilin Ren . Deciphering and identifying pan-cancer RAS pathway activation based on graph autoencoder and ClassifierChain. Electronic Research Archive, 2023, 31(8): 4951-4967. doi: 10.3934/era.2023253
    [8] Chetan Swarup, Kamred Udham Singh, Ankit Kumar, Saroj Kumar Pandey, Neeraj varshney, Teekam Singh . Brain tumor detection using CNN, AlexNet & GoogLeNet ensembling learning approaches. Electronic Research Archive, 2023, 31(5): 2900-2924. doi: 10.3934/era.2023146
    [9] Yunfei Tan, Shuyu Li, Zehua Li . A privacy preserving recommendation and fraud detection method based on graph convolution. Electronic Research Archive, 2023, 31(12): 7559-7577. doi: 10.3934/era.2023382
    [10] Xite Yang, Ankang Zou, Jidi Cao, Yongzeng Lai, Jilin Zhang . Systemic risk prediction based on Savitzky-Golay smoothing and temporal convolutional networks. Electronic Research Archive, 2023, 31(5): 2667-2688. doi: 10.3934/era.2023135
  • The U.S. Department of Energy (DOE) has stated that biomass is the only renewable resource that can supplant petroleum-based liquid transportation fuels in the near term. Wastewater is beginning to be viewed as a potential resource that can be exploited for biomass production and conversion to bioenergy. We suggest that using wastewater from municipalities and industries as a resource for cultivating biomass and combining wastewater treatment with the production of biomass for bioenergy would provide benefits to both industries. Two waste-based biomass production systems that currently have large nationwide infrastructures include: (1) wastewater treatment systems that can be used to cultivate algae biomass, and (2) land application/treatment systems for non-food terrestrial biomass. These existing infrastructures could be used in the relatively near future for waste-based biomass production and conversion to bioenergy, thereby reducing capital costs and scalability challenges while making a contribution to energy independence and national security.


    We consider systems of semilinear elliptic equations

    $ \tag{PDE} -\Delta u(x)+F_{u}(x, u) = 0 $

    where

    ($ F_1 $) $ F\in C^{2}({\mathbb{R}}^{n}\times {\mathbb{R}}^m;{\mathbb{R}}) $ is $ 1 $-periodic sin all its variable, $ n, m\geq 1 $.

    When $ n = 1 $ and $ m\geq 1 $, (PDE) are particular cases of the dynamical systems considered in the Aubry-Mather Theory ([9,23,24]). When $ n>1 $ and $ m = 1 $ equations like (PDE) were studied by Moser in [25] (indeed in a much more general setting), and then by Bangert [13] and Rabinowitz and Stredulinsky [31], extending some of the results of the Aubry-Mather Theory for partial differential equations. These studies show the presence of a very rich structure of the set of minimal (or locally minimal) entire solutions of (PDE). In particular, when $ m = 1 $ the set $ \mathcal{M}_{0} $ of minimal periodic solutions of (PDE) is a non empty ordered set and if $ {\mathcal{M}}_0 $ is not a continuum then there exists another ordered family $ \mathcal{M}_{1} $ of minimal entire solutions which are heteroclinic in one space variable to a couple of (extremal) periodic solutions $ u<v $ (a gap pair in $ {\mathcal{M}}_{0} $). If $ \mathcal{M}_{1} $ is not a continuum the argument can be iterated to find more complex ordered classes of minimal heteroclinic type solutions and the process continues if the corresponding set of minimal heteroclinics contains gaps. Variational gluing arguments were then employed by Rabinowitz and Stredulinsky to construct various kinds of homoclinic, heteroclinic or more generally multitransition solutions as local minima of renormalized functionals associated to (PDE), see [31]. Other extensions of Moser's results, including changing slope or higher Morse index solutions, have been developed by Bessi [10,11], Bolotin and Rabinowitz [12], de la Llave and Valdinoci [17,33]. Recently, in a symmetric setting and correspondingly to the presence of a gap pair in $ {\mathcal{M}}_{0} $ symmetric with respect to the origin, entire solutions of saddle type were found by Autuori, Alessio and Montecchiari in [2].

    All the above results are based on the ordered structure of the set of minimal solutions of (PDE) in the case $ m = 1 $ and a key tool in their proofs is the Maximum Principle, which is no longer available when $ m>1 $.

    The study of (PDE) when $ n, m>1 $ was initiated by Rabinowitz in [29,30]. Denoting $ L(u) = \frac 12|\nabla u|^{2} + F (x, u) $ and $ {\mathbb{T}}^{n} = {\mathbb{R}}^{n}/{\mathbb{Z}}^{n} $, periodic solutions to (PDE) were found as minima of the functional $ J_{0}(u) = \int_{{\mathbb{T}}^{n}}L(u) dx $ on $ E_{0} = W^{1, 2}({\mathbb{T}}^{n}, {\mathbb{R}}^{m}) $ showing that

    $ {\mathcal{M}}_{0} = \{u\in E_{0} \mid J_{0}(u) = c_{0}: = \inf\limits_{E_{0}}J_{0}(u)\}\not = \varnothing. $

    Paul H. Rabinowitz studied the case of spatially reversible potentials $ F $ assuming ($ \overline F_2 $) $ F $ is even in $ x_{i} $ for $ 1\leq i\leq n $ and proved in [29] that if $ {\mathcal{M}}_{0} $ is constituted by isolated points then for each $ v_{-}\in {\mathcal{M}}_{0} $ there is a $ v_{+}\in {\mathcal{M}}_{0} \setminus\{v_{-}\} $ and a solution $ u\in C^{2}({\mathbb{R}}\times{\mathbb{T}}^{n-1}, {\mathbb{R}}^{m}) $ of (PDE) that is heteroclinic in $ x_{1} $ from $ v_{-} $ to $ v_{+} $. These solutions were found by variational methods minimizing the renormalized functional

    $ J(u)=pZJp,0(u):=pZ(Tp,0L(u)dxc0), $ (1)

    (where $ T_{p, 0} = [p, p+1]\times[0, 1]^{n-1} $) on the space

    $ \Gamma(v_{-}, v_{+}) = \{u\in W^{1, 2}({\mathbb{R}}\times{\mathbb{T}}^{n-1}, {\mathbb{R}}^{m})\mid \|u -v_{\pm}\|_{L^2(T_{p, 0}, {\mathbb{R}}^{m})} \to 0\hbox{ as } p \to \pm\infty\}. $

    In [30] the existence of minimal double heteroclinics was obtained assuming that the elements of $ {\mathcal{M}}_{0} $ are not degenerate critical points of $ J_{0} $ and that the set $ {\mathcal{M}}_{1}(v_{-}, v_{+}) $ of the minima of $ J $ on $ \Gamma(v_{-}, v_{+}) $ is constituted by isolated points. This research line was continued by Montecchiari and Rabinowitz in [26] where, via variational methods, multitransition solutions of (PDE) were found by glueing different integer phase shifts of minimal heteroclinic connections.

    The proof of these results does not use the ordering property of the solutions and adapts to the study of (PDE) some of the ideas developed to obtain multi-transition solutions for Hamiltonian systems (see e.g. [3], [28] and the references therein). Aim of the present paper is to show how these methods, in particular a refined study of the concentrating properties of the minimal heteroclinic solutions to (PDE), can be used in a symmetric setting to obtain saddle type solutions to (PDE).

    Saddle solutions were first studied by Dang, Fife and Peletier in [16]. In that paper the authors considered Allen-Cahn equations $ -\Delta u+W'(u) = 0 $ on $ {\mathbb{R}}^{2} $ with $ W $ an even double well potential. They proved the existence of a (unique) saddle solution $ v\in C^{2}({\mathbb{R}}^{2}) $ of that equation, i.e., a bounded entire solution having the same sign and symmetry of the product function $ x_{1}x_{2} $ and being asymptotic to the minima of the potential $ W $ along any directions not parallel to the coordinate axes. The saddle solution can be seen as a phase transition with cross interface.

    We refer to [14,15,6,7,27] for the study of saddle solutions in higher dimensions and to [1,20,8] for the case of systems of autonomous Allen-Cahn equations. Saddle solutions can be moreover viewed as particular $ k $-end solutions (see [4,18,22,19]).

    In [5] the existence of saddle type solutions was studied for non autonomous Allen-Cahn type equations and this work motivated the paper [2] where solutions of saddle type for (PDE) were found in the case $ m = 1 $.

    In the present paper we generalize the setting considered in [2] to the case $ m>1 $. Indeed we consider to have potentials $ F $ satisfying ($ F_{1} $) and the symmetry properties

    ($ F_2 $) $ F $ is even in all its variables;

    ($ F_3 $) $ F $ has flip symmetry with respect to the first two variables, i.e.,

    $ F(x_{1}, x_{2}, x_{3}, ..., x_{n}, u) = F(x_{2}, x_{1}, x_{3}, ..., x_{n}, u) \hbox{ on }\, {\mathbb{R}}^{n}\times {\mathbb{R}}^m. $

    By [29] the set $ {\mathcal{M}}_{0} $ of minimal periodic solution of (PDE) is not empty. The symmetry of $ F $ implies that any $ v\in{\mathcal{M}}_{0} $ has components whose sign is constant on $ {\mathbb{R}}^{n} $ and if $ v\in{\mathcal{M}}_{0} $ then $ (\nu_1 v_1, \ldots, \nu_m v_m)\in{\mathcal{M}}_{0} $ for every $ (\nu_1, \ldots, \nu_m)\in\{\pm1\}^m $ (see Lemma 2.2 below). In this sense we can say that $ {\mathcal{M}}_{0} $ is symmetric with respect to the constant function $ v_{0}\equiv0 $.

    As recalled above, in [2], where $ m = 1 $, a saddle solution was found when $ {\mathcal{M}}_{0} $ has a gap pair symmetric with respect to the origin. In the case $ m>1 $ we generalize this gap condition asking that $ 0\notin{\mathcal{M}}_{0} $ and, following [30], we look for saddle solutions of (PDE) when any $ v\in{\mathcal{M}}_{0} $ is not degenerate for $ J_{0} $. We then assume

    ($ N $) $ 0\notin{\mathcal{M}}_{0} $ and there exists $ \alpha_{0}>0 $ such that

    $ J_{0}''(v)h\cdot h = \int_{[0, 1]^n}|\nabla h|^{2}+F_{u, u}(x, v(x))h\cdot h\, dx\geq \alpha_{0}\| h\|_{L^{2}([0, 1]^n, {\mathbb{R}}^{m})}^{2} $

    for every $ h\in W^{1, 2}([0, 1]^n, {\mathbb{R}}^{m}) $ and every $ v\in{\mathcal{M}}_{0} $.

    The assumption ($ N $) and the symmetries of $ F $ allow us to find heteroclinic connections between elements of $ {\mathcal{M}}_{0} $ which are odd in the variable $ x_{1} $. More precisely for $ v\in{\mathcal{M}}_{0} $ these solutions are searched as minima of the functional $ J $ (see (1)) on the space

    $ Γ(v)={uW1,2(R×Tn1,Rm)u is odd in x1,limp+uvL2([p,p+1]×Tn1,Rm)=0}. $

    In §4, setting

    $ c(v) = \inf\limits_{u\in\Gamma(v)}J(u)\hbox{ for }v\in{\mathcal{M}}_{0} $

    we show that

    $ {\mathcal{M}}_{0}^{min} = \{v_0\in{\mathcal{M}}_{0}\mid c(v_0) = \min\limits_{v\in{\mathcal{M}}_{0}}c(v)\}\not = \emptyset $

    and that $ {\mathcal{M}}_{0}^{min} $ is such that if $ v_{0}\in{\mathcal{M}}_{0}^{min} $ then

    $ {\mathcal{M}}(v_{0}) = \{u\in\Gamma(v_{0})\mid J(u) = c(v_{0})\} $

    is not empty and compact with respect to the $ W^{1, 2}({\mathbb{R}}\times{\mathbb{T}}^{n-1}, {\mathbb{R}}^{n}) $ metric. The elements $ u\in{\mathcal{M}}(v_{0}) $ are classical solutions to (PDE), odd in $ x_{1} $, even and $ 1 $-periodic in $ x_{2}, ..., x_{n} $ and satisfy the asymptotic condition

    $ \|u-v_{0}\|_{W^{1, 2}([p, p+1]\times {\mathbb{T}}^{n-1}, {\mathbb{R}}^{m})} \to 0\hbox{ as }p\to +\infty. $

    Our main result can now be stated as follows

    Theorem 1.1. Assume $ (F_1) $, $ (F_{2}) $, $ (F_3) $ and $ (N) $. Then, there exists a classical solution $ w $ of (PDE) such that every component $ w_i $ (for $ i = 1\ldots, m $) satisfies

    $ (i) $ $ w_i\geq 0 $ for $ x_{1}x_{2}>0 $;

    $ (ii) $ $ w_i $ is odd in $ x_{1} $ and $ x_{2} $, $ 1 $-periodic in $ x_{3}, ..., x_{n} $;

    $ (iii) $ $ w_i(x_{1}, x_{2}, x_{3}, ..., x_{n}) = w_i(x_{2}, x_{1}, x_{3}, ..., x_{n}) $ in $ {\mathbb{R}}^{n} $.

    Moreover there exists $ v_{0}\in{\mathcal{M}}_{0}^{min} $ such that the solution $ w $ satisfies the asymptotic condition

    $ distW1,2(Rk,Rm)(w,M(v0))0,ask+, $ (2)

    where $ {\mathcal{R}}_k = [-k, k]\times[k, k+1]\times[0, 1]^{n-2} $.

    Note that by $ (i) $ and $ (ii) $ any component of $ w $ has the same sign as the product function $ x_{1}x_{2} $. Moreover by (2), since $ w $ is asymptotic as $ x_{2}\to+\infty $ to the compact set $ {\mathcal{M}}(v_{0}) $ of odd heteroclinic type solutions, the symmetry of $ w $ implies that $ w $ is asymptotic to $ v_{0} $ or $ -v_{0} $ along any direction not parallel to the planes $ x_{1} = 0 $, $ x_{2} = 0 $. In this sense $ w $ is a saddle solution, representing a multiple transition between the pure phases $ v_{0} $ and $ -v_{0} $ with cross interface.

    The proof of Theorem 1.1 uses a variational approach similar to the one already used in previous papers like [5,2]. To adapt this approach to the case $ m>1 $ and so to avoid the use of the Maximum Principle we need a refined analysis of the concentrating properties of the minimizing sequences. For that a series of preliminaries results is given in §2, §3, §4 while the proof of Theorem 1.1 is developed in §5.

    In this section we recall some results obtained by Rabinowitz in [29], on minimal periodic solutions to (PDE). Moreover, following the argument in [2], we study some symmetry properties related to the assumptions ($ F_{2} $) and $ (F_3) $. Here and in the following we will work under the not restrictive assumption

    ($ F_4 $) $ F\geq 0 $ on $ {\mathbb{R}}^{n}\times{\mathbb{R}}^{m} $.

    Let us introduce the set

    $ E_0 = W^{1, 2}({\mathbb{T}}^n, {\mathbb{R}}^m) = \{u\in W^{1, 2}({\mathbb{R}}^n, {\mathbb{R}}^m)\mid u\text{ is $1$-periodic in all its variables}\} $

    with the norm

    $ \|u\|_{W^{1, 2}([0, 1]^n, {\mathbb{R}}^m)} = \left( \sum\limits_{i = 1}^m \int_{[0, 1]^{n}}(|\nabla u_i|^2+|u_i|^2)dx\right)^{\frac12}. $

    We define the functional $ J_0 : E_0 \to {\mathbb{R}} $ as

    $ J0(u)=[0,1]n12|u|2+F(x,u)dx=[0,1]nL(u)dx. $ (3)

    and consider the minimizing set

    $ {\mathcal{M}}_{0} = \{ u\in E_{0}\, |\, J_{0}(u) = c_{0}\}\, \text{ where }\, c_0 = \inf\limits_{u\in E_0} J_0(u) $

    Then in [29], [30] it is shown

    Lemma 2.1. Assume $ (F_1) $, then $ {\mathcal{M}}_{0}\neq \varnothing $. Moreover, setting $ [u] = \int_{[0, 1]^n} u \, dx $, we have that

    1. $ \hat {\mathcal{M}}_0 = \{u\in {\mathcal{M}}_0 \mid [u]\in [0, 1]^m \} $ is a compact set in $ E_0 $;

    2. if $ (u_k)_k \subset E_0 $, with $ [u_k]\in[0, 1]^m $, is a minimizing sequence for $ J_0 $, then there exists $ u\in \hat{\mathcal{M}}_0 $ such that $ u_k\to u $ in $ E_0 $ up to subsequences;

    3. For every $ \rho>0 $ there exists $ \beta(\rho)>0 $ such that if $ u\in E_0 $ is such that

    $ {\rm dist}_{W^{1, 2}([0, 1]^n, {\mathbb{R}}^m)}(u, {\mathcal{M}}_0): = \inf\limits_{v\in{\mathcal{M}}_0} \|u-v\|_{W^{1, 2}([0, 1]^n, {\mathbb{R}}^{m})} > \rho, $

    then $ J_0(u) - c_0 \geq \beta(\rho) $;

    4. If $ (F_2) $ holds, then any $ u\in{\mathcal{M}}_0 $ minimizes also $ I(u) = \int_{[0, \frac{1}{2}]^n} L(u) \, dx $ on $ W^{1, 2}([0, \frac{1}{2}]^n, {\mathbb{R}}^m) $. As a consequence, every $ u\in{\mathcal{M}}_0 $ is symmetric in $ x_i $ about $ x_i = 0 $ and $ x_i = \frac12 $ for every index $ i $ and $ u $ is even in $ x_i $ for every index $ i $;

    5. If $ (F_2) $ holds, there results $ c_0 = \inf_{u\in W^{1, 2}([0, 1]^n, {\mathbb{R}}^m)} J_0(u) $. Furthermore, if $ u\in W^{1, 2}([0, 1]^{n}, {\mathbb{R}}^{m}) $ verifies $ J_{0}(u) = c_{0} $, then for every $ i = 1, 2, ..., n $, $ u $ is symmetric in $ x_i $ about $ x_i = \frac12 $ and hence $ u\in{\mathcal{M}}_0 $.

    Assumption $ (F_2) $, in particular the even parity of $ F $ with respect to the components of $ u $, provides that the elements in $ {\mathcal{M}}_{0} $ have components with definite sign, thanks to the unique extension property (see [29], Proposition 3).

    Lemma 2.2. Assume $ (F_1) $, $ (F_2) $ and $ 0\notin{\mathcal{M}}_0 $. If $ u = (u_1, \ldots, u_m)\in{\mathcal{M}}_{0} $ then, for every $ i = 1, ..., m $, one has either $ u_i\ge 0 $, or $ u_i\le 0 $ on $ [0, 1]^n $ and $ u $ does not vanish on open sets. Moreover, $ (\nu_1 u_1, \ldots, \nu_m u_m)\in{\mathcal{M}}_{0} $ for every $ (\nu_1, \ldots, \nu_m)\in\{\pm1\}^m $.

    Proof. It is sufficient to observe that if $ u = (u_{1}, \ldots, u_{m})\in{\mathcal{M}}_{0} $ then, since $ F $ is even with respect to the components of $ u $, we have

    ⅰ) $ \bar u = (|u_{1}|, \ldots, |u_{m}|)\in{\mathcal{M}}_{0} $ and

    ⅱ) $ (\nu_1 u_1, \ldots, \nu_m u_m)\in{\mathcal{M}}_{0} $ for every $ (\nu_1, \ldots, \nu_m)\in\{\pm1\}^m $.

    Property (ⅱ) gives the second part of the statement while by (i) and the unique extension property proved in [29], we obtain that the components of $ u $ do not change sign. If $ u $ vanishes on an open set, the unique continuation property gives $ u\equiv 0 $, giving a contradiction and concluding the proof.

    On the other hand, assumption $ (F_{3}) $ gives more structure on the set $ {\mathcal{M}}_0 $: its elements have a flip symmetry property. Indeed, setting $ T^+ = \{x\in [0, 1]^n\, | \; x_1\le x_2\} $, for every $ u\in W^{1, 2}(T^+, {\mathbb{R}}^m) $, let us define $ \tilde u\in W^{1, 2}([0, 1]^{n}, {\mathbb{R}}^m) $ as

    $ ˜u(x)={u(x),xT+,u(x2,x1,x3,,xn),x[0,1]nT+. $ (4)

    Then, we have

    Lemma 2.3. If $ u\in{\mathcal{M}}_{0} $ then, $ u\equiv \tilde u $ in $ [0, 1]^{n} $.

    Proof. Given $ u\in {\mathcal{M}}_0 $, without loss of generality, we assume

    $ \int_{T^+}L(u)\, dx\le \int_{[0, 1]^n\setminus T^+}L(u)\, dx\, . $

    Since $ \tilde u \in W^{1, 2}([0, 1]^{n}, {\mathbb{R}}^m) $ by Lemma 2.1-(5) we have $ J_{0}(\tilde u)\geq c_0 $. By the previous inequality we get

    $ c_0 = J_{0}(u) = \int_{T^+} L(u)\, dx+\int_{[0, 1]^n\setminus T^+}L(u)\, dx\ge 2 \int_{T^+}L(u)\, dx = J_{0}(\tilde u)\ge c_0. $

    Hence, again by Lemma 2.1-(5), $ \tilde u\in {\mathcal{M}}_0 $. By the unique extension property of the solutions of (PDE) (cf. [29], Proposition 3), we have $ \tilde u\equiv u $ in $ [0, 1]^n $.

    As an immediate consequence, using Lemma 2.1-(5), we have the following.

    Lemma 2.4. There results

    $ minuW1,2(T+,Rm)T+L(u)dx=c02. $ (5)

    Moreover, if $ u\in W^{1, 2}(T^{+}, {\mathbb{R}}^m) $ verifies $ \int_{T^{+}}L(u)\, dx = \tfrac{c_{0}}2 $, then $ \tilde u\in{\mathcal{M}}_{0} $.

    Remark 1. Lemma 2.3 tells us that the elements of $ {\mathcal{M}}_{0} $ are symmetric with respect to the diagonal iperplane $ \{x\in{\mathbb{R}}^{n}\mid x_{1} = x_{2}\} $ and by Lemma 2.4 they can be found by minimizing $ \int_{T^{+}} L(v)\, dx $ on $ W^{1, 2}(T^+, {\mathbb{R}}^m) $. Analogously, setting $ T^{-} = [0, 1]^{n}\setminus T^{+} $, we can find the elements of $ {\mathcal{M}}_{0} $ by minimizing $ \int_{T^{-}} L(v)\, dx $ on $ W^{1, 2}(T^-, {\mathbb{R}}^m) $ or, by periodicity, by minimizing $ \int_{T} L(v)\, dx $ on $ W^{1, 2}(T, {\mathbb{R}}^m) $ whenever $ T = p+T^{\pm} $ with $ p\in{\mathbb{Z}}^{n} $. For future references it is important to note that this property implies in particular that $ u\in{\mathcal{M}}_{0} $ if and only if $ u $ is a minimizer of the functional $ \int_{\sigma_{0}} L(v)\, dx $ on $ W^{1, 2}(\sigma_{0}, {\mathbb{R}}^m) $ where

    $ \sigma_{0} = \{x\in{\mathbb{R}}\times[0, 1]^{n-1}\, |\, x_{2}-1\le x_{1}\le x_{2}\}. $

    More precisely we have $ c_{0} = \inf_{v\in W^{1, 2}(\sigma_{0}, {\mathbb{R}}^m)}\int_{\sigma_{0}}L(v)\, dx $ and $ u\in{\mathcal{M}}_{0} $ if and only if $ \int_{\sigma_{0}}L(u)\, dx = c_0 $. From Lemma 2.1-(3) we recover an analogous property in $ W^{1, 2}(\sigma_{0}, {\mathbb{R}}^m) $: for any $ r>0 $ there exists $ \beta(r)>0 $ such that if $ u\in W^{1, 2}(\sigma_{0}, {\mathbb{R}}^m) $ verifies $ \int_{\sigma_{0}}L(u)\, dx \leq c_0 + \beta(r) $, then $ {\rm dist}_{W^{1, 2}(\sigma_{0}, {\mathbb{R}}^m)}(u, {\mathcal{M}}_0)\leq r $.

    Note that by Lemma 2.1-(1) and the assumption (N) we plainly derive that ($ N_0 $) $ \hat {\mathcal{M}}_0 $ is a finite set and $ 0\notin \hat {\mathcal{M}}_0 $,

    where we recall that $ \hat{\mathcal{M}}_0 = \{u\in {\mathcal{M}}_0 \mid [u]\in [0, 1]^m \} $ and note that $ {\mathcal{M}}_0 = \hat{\mathcal{M}}_0+{\mathbb{Z}}^m $.

    Note finally that by $ (N_0) $, setting

    $ r0:=min{uvL2(Tn,Rm)u,vM0,u $ (6)

    we have $ r_0>0 $.

    This section is devoted to introduce the variational framework to study solutions of (PDE) which are heteroclinic between minimal periodic solutions. We follow some arguments in [29], [26], introducing the renormalized functional $ J $ and studying some of its basic properties.

    Let us define the set

    $ E = \{u\in W_{loc}^{1, 2}({\mathbb{R}}^n, {\mathbb{R}}^m)\mid u\text{ is $1$-periodic in }x_2, \ldots x_n\}. $

    For any $ u\in E $ we consider the functional

    $ J(u) = \sum\limits_{p\in{\mathbb{Z}}}J_{p, 0}(u), $

    where, denoting $ T_{p, 0} = [p, p+1]\times[0, 1]^{n-1} $,

    $ J_{p, 0}(u) = \int_{T_{p, 0}}L(u)\, dx-c_{0}, \quad \forall p\in{\mathbb{Z}}. $

    Denoting briefly $ u(\cdot+p) $ the shifting of the function $ u $ with respect to the first coordinate (that is, $ u(\cdot+p) = u(\cdot+p\hskip1pt{{\mathit{\boldsymbol{e}}}}_1) $ where $ \hskip1pt{{\mathit{\boldsymbol{e}}}}_1 = (1, 0, ..., 0) $), note that by periodicity we have

    $ J_{p, 0}(u) = \int_{[0, 1]^n}L(u(\cdot+p))\, dx-c_0 = J_0(u(\cdot+p))-c_0, \quad \forall p\in{\mathbb{Z}}. $

    Then, by Lemma 2.1, we have $ J_{p, 0}(u)\geq 0 $ for any $ u\in E $ and $ p\in{\mathbb{Z}} $, from which $ J $ is non-negative on $ E $.

    Lemma 3.1. The functional $ J: E \to {\mathbb{R}} $ is weakly lower semicontinuous.

    Proof. Consider a sequence $ (u_k)_k $ such that $ u_k \to u $ weakly in $ E $. Then, for every $ \ell\in {\mathbb{N}} $, by the weak lower semicontinuity of $ J_0 $, and hence of $ J_{p, 0} $, we have $ \sum_{p = -\ell}^\ell J_{p, 0}(u) \leq \liminf_{k} \sum_{p = -\ell}^\ell J_{p, 0}(u_k) $. If $ J(u) = +\infty $, then we obtain easily $ \liminf_{k} J(u_k) = +\infty $. So, let us assume $ J(u)<+\infty $, then for any $ \varepsilon>0 $ we have that there exists $ \ell\in{\mathbb{N}} $ such that $ \sum_{|p|>\ell} J_{p, 0}(u) <\varepsilon $. We get

    $ \liminf\limits_k J(u_k) \geq \liminf\limits_k \sum\limits_{p = -\ell}^\ell J_{p, 0}(u_k) \geq \sum\limits_{p = -\ell}^\ell J_{p, 0}(u) > J(u) -\varepsilon\, , $

    thus finishing the proof.

    Using the notation introduced above, note that if $ u\in E $ is such that $ J(u)<+\infty $, then $ J_{p, 0}(u)\to 0 $ as $ |p|\to +\infty $, that is, the sequence $ (u(\cdot+p))_{p\in{\mathbb{Z}}} $ is such that $ J_0(u(\cdot+p))\to c_0 $ as $ p\to \pm\infty $. Hence, by Lemma 2.1-(3), there exist $ u_\pm \in {\mathcal{M}}_0 $ such that, up to a subsequence, $ u(\cdot+p) \to u_\pm $ as $ p\to \pm\infty $ in $ E_0 $. Using this remark and the local compactness of $ {\mathcal{M}}_0 $ given by $ (N_0) $, we are going to prove some concentration properties of the minimizing sequence of the functional $ J $.

    First of all, let us consider the functional $ J_{p, 0}+J_{p+1, 0} $ for a certain fixed integer $ p $. Notice that, by Lemma 2.1-(5),

    $ \min\limits_{u\in E} J_{p, 0}(u)+J_{p+1, 0}(u) = 0 $

    and the set of minima coincide with $ {\mathcal{M}}_0 $. We introduce the following distance

    $ {\rm dist}_p(u, A) = \inf \{ \| u-v \|_{W^{1, 2}(T_{p, 0}\cup T_{p+1, 0}, {\mathbb{R}}^m)} \mid v\in A \}\, . $

    Remark 2. Let us fix some constants that will be used in rest of the paper. By Lemma 2.1-(3), we have that for any $ r>0 $ there exists $ \lambda(r)>0 $ such that

    $ \begin{equation} \hbox{if }u\in E\hbox{ satisfies }J_{p, 0}(u)+J_{p+1, 0}(u)\leq \lambda(r)\hbox{ for a }p\in{\mathbb{Z}}, \hbox{ then }{\rm dist}_p(u, {\mathcal{M}}_0)\leq r. \end{equation} $ (7)

    It is not restrictive to assume that the function with $ r\mapsto \lambda(r) $ is non-decreasing.

    On the other hand for every $ \lambda>0 $ if we set

    $ \rho(\lambda) = \sup \left\{{\rm dist}_p(u, {\mathcal{M}}_0) \mid u\in E \text{ with } J_{p, 0}(u)+J_{p+1, 0}(u) \leq \lambda, \, p\in{\mathbb{Z}} \right\}\, $

    we get $ \rho(\lambda)>0 $ and that $ \lambda \mapsto \rho(\lambda) $ is non-decreasing. Moreover, for every $ \varepsilon>0 $, since if $ J_{p, 0}(u)+J_{p+1, 0}(u)\leq \lambda(\varepsilon) $ for a certain $ p\in{\mathbb{Z}} $, then $ {\rm dist}_p(u, {\mathcal{M}}_0)\leq \varepsilon $, we obtain $ \rho(\lambda)\le\rho(\lambda(\varepsilon))\leq\varepsilon $ for every $ \lambda \in (0, \lambda(\varepsilon)] $, so that $ \lim_{\lambda \to 0^+} \rho(\lambda) = 0 $ holds. Hence, recalling the definition of $ r_0 $ in (6), we can fix $ \lambda_0>0 $ satisfying $ \rho(\lambda_0)\leq \frac{r_0}4 $. Finally, we can define

    $ \begin{equation} \Lambda(r) = \sup \left\{J_{p, 0}(u) \mid u\in E \text{ and } p\in{\mathbb{Z}}\text{ are such that } {\rm dist}_p(u, {\mathcal{M}}_0)\leq 2r \right\} \end{equation} $ (8)

    which is non-decreasing and $ \lim_{r\to 0} \Lambda(r) = 0 $. Then we fix $ r_1\in(0, \frac{r_0}4) $ such that $ \Lambda(r) \leq \frac{\lambda_0}8 $ for every $ r\in(0, r_1] $.

    We say that a set $ \mathcal I\subseteq{\mathbb{Z}} $ is a set of consecutive integers if it is of the form $ \{\ell\in{\mathbb{Z}}\, |\, p\le \ell<p+k\} $ or $ \{\ell\in{\mathbb{Z}}\, |\, p-k< \ell\le p\} $ for a $ p \in {\mathbb{Z}} $ and $ k\in {\mathbb{N}} \cup \{+ \infty\} $. If $ u\in E $ is such that $ J_{p, 0} $ is small enough for some consecutive integers $ p\in \mathcal I $, then, using $ (N_0) $, we can prove that, in the corresponding sets $ T_{p, 0} $, $ u $ is ``near'' to an element of $ {\mathcal{M}}_0 $, the same for all $ p\in\mathcal I $. Indeed we have

    Lemma 3.2. Given $ \lambda\in (0, \frac{\lambda_0}2] $, $ u\in E $ and a set of consecutive integers $ \mathcal I $, if $ J_{p, 0}(u) \leq \lambda $ for any $ p\in\mathcal I $, then there exists $ v\in {\mathcal{M}}_0 $ such that $ \|u-v\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \leq \rho(2\lambda) \leq\frac{ r_0}4 $, for every $ p\in \mathcal I $.

    Proof. Let $ p\in\mathcal I $ be such that $ p+1 \in \mathcal I $. Then $ J_{p, 0}(u) +J_{p+1, 0}(u) \leq 2\lambda\leq\lambda_{0} $ and, by Remark 2 and the definition of $ \lambda_0 $, $ {\rm dist}_p(u, {\mathcal{M}}_{0})\leq\rho(2\lambda)\leq\rho(\lambda_{0})\leq \frac{r_{0}}{4} $. Then, by $ (N_0) $ and the choice of $ r_0 $ in (6), we can find $ v_{p}\in{\mathcal{M}}_{0} $ such that

    $ \| u-v_p \|_{W^{1, 2}(T_{p, 0}\cup T_{p+1, 0}, {\mathbb{R}}^m)} \leq \tfrac{r_{0}}{4} $

    from which $ \|u-v_p\|_{W^{1, 2}(T_{k, 0}, {\mathbb{R}}^m)} \leq \frac{r_0}4 $ for $ k = p, p+1 $. If $ p+2\in\mathcal I $, repeating the argument with the couple of indices $ p+1 $ and $ p+2 $ we find $ v_{p+1}\in{\mathcal{M}}_{0} $ such that $ \|u-v_{p+1}\|_{W^{1, 2}(T_{k, 0}, {\mathbb{R}}^m)} \leq \frac{r_0}4 $ for $ k = p+1, p+2 $. By the choice of $ r_0 $ in (6), we conclude that $ v_{p+1} = v_{p} $ and the lemma follows.

    Moreover, using the notations introduced above, we have

    Lemma 3.3. If $ u\in W^{1, 2}(T_{p, 0}\cup T_{p+1, 0}, {\mathbb{R}}^m) $ then

    $ \|u(\cdot+p)-u(\cdot+(p+1))\|_{L^{2}([0, 1]^n, {\mathbb{R}}^m)}^2\le 2(J_{p, 0}(u)+J_{p+1, 0}(u)+2c_{0}). $

    Proof. Setting $ y = (x_{2}, \ldots, x_{n}) $, we have

    $ \|u(\cdot+p)-u(\cdot+(p+1))\|_{L^{2}([0, 1]^n, {\mathbb{R}}^m)}^2 = \int_{p}^{p+1}\int_{[0, 1]^{n-1}} |u(x_{1}+1, y)-u(x_{1}, y)|^{2} dy \, dx_{1} $

    and so there exists $ \bar x_{1}\in(p, p+1) $ such that

    $ \int_{[0, 1]^{n-1}} |u(\bar x_{1}+1, y) -u(\bar x_{1}, y)|^2 dy \geq \|u(\cdot+p)-u(\cdot+(p+1))\|_{L^{2}([0, 1]^n, {\mathbb{R}}^m)}^2. $

    On the other hand, by Hölder inequality,

    $ \begin{align*} 2(J_{p, 0}(u)+J_{p+1, 0}(u)+2c_{0})&\geq\int_{p}^{p+2} \int_{[0, 1]^{n-1}} |\partial_{x_{1}}u(x_{1}, y)|^2 dy \, dx_{1}\\ &\geq \int_{[0, 1]^{n-1}} \int_{ \bar x_{1}}^{\bar x_{1} +1} |\partial_{x_{1}}u(x_{1}, y)|^2 dx_{1} \, dy\\ &\geq \int_{[0, 1]^{n-1}} |u(\bar x_{1}+1, y ) -u(\bar x_{1})|^2 dy\\ &\geq \|u(\cdot+p)-u(\cdot+(p+1))\|_{L^{2}([0, 1]^n, {\mathbb{R}}^m)}^2 \end{align*} $

    completing the proof.

    By the previous lemmas we obtain that the elements in the sublevels of $ J $ satisfy the following boundeness property.

    Lemma 3.4. For every $ \Lambda>0 $ there exists $ {\mathit{R}}>0 $ such that for every $ u\in E $ satisfying $ J(u)\leq \Lambda $ one has $ \|u(\cdot+p)-u(\cdot+q)\|_{L^{2}([0, 1]^n, {\mathbb{R}}^m)} \leq {\mathit{R}} $ for any $ p, q\in{\mathbb{Z}} $.

    Proof. Let $ u \in E $ be such that $ J(u) \leq \Lambda $. We define $ \mathcal J(u) = \{k\in{\mathbb{Z}} \mid J_{k, 0}(u) \geq \frac{\lambda_{0}}{2} \} $ and note that the number $ l(u) $ of elements of $ \mathcal J(u) $ is at most $ [\frac{2\Lambda}{\lambda_{0}}] +1 $, where $ [\cdot] $ denotes the integer part. Then, the set $ {\mathbb{Z}} \setminus \mathcal J(u) $ is constituted by $ \bar l(u) $ sets of consecutive elements of $ {\mathbb{Z}} $, $ \mathcal I_i(u) $, with $ \bar l (u) \leq l(u) +1 $. By the triangular inequality, for any $ p, q \in {\mathbb{Z}} $, we obtain

    $ \begin{align} \|u(\cdot+p)-u(\cdot+q)\|_{L^{2}([0, 1]^n, {\mathbb{R}}^m)} &\leq l(u) \sup\limits_{k \in {\mathcal J}(u)}\|u(\cdot+k)-u(\cdot+k+1)\|_{L^{2}([0, 1]^n, {\mathbb{R}}^m)}\\ &\, \, \, \, \quad + \sum\limits_{i = 1}^{\bar l (u)} \sup\limits_{p, q \in \mathcal I_i(u)}\|u(\cdot+p)-u(\cdot+q)\|_{L^{2}([0, 1]^n, {\mathbb{R}}^m)}\\ &\leq l(u)(2(\Lambda +2c_{0}))^{\frac{1}{2}} + \bar l(u) \tfrac{r_{0}}{2}. \end{align} $ (9)

    where the first term in (9) follows by the application of Lemma 3.3, since

    $ 2(J_{k, 0}(u)+J_{k+1, 0}(u)+2c_{0})\le 2(J(u) +2c_{0})\le 2(\Lambda+2c_0), \quad\forall k\in{\mathbb{Z}}, $

    while the second one follows by the definition of $ {\mathcal I}_i(u) $ and Lemma 3.2.

    Since $ \bar l(u)\le l(u)+1 $ and $ l(u)\le [\frac{2c}{\lambda_{0}}] +1 $, the lemma follows by choosing $ {\mathit{R}} = ( [\frac{2\Lambda}{\lambda_{0}}] +1)(2(\Lambda +2c_{0}))^{\frac{1}{2}} + ( [\frac{2\Lambda}{\lambda_{0}}] +2) \tfrac{r_{0}}{2} $.

    The following lemma states the weak compactness of the sublevels of the functional $ J $.

    Lemma 3.5. Given any $ \Lambda>0 $, let $ (u_k)_k\subset E $ be a sequence such that $ J(u_{k})\leq \Lambda $ for every $ k\in{\mathbb{N}} $ and let $ (p_k)_k $ be a sequence of integers. Assume that there exist $ \bar {\mathit{R}} < + \infty $ and $ v\in{\mathcal{M}}_{0} $ such that $ \|u_{k}-v\|_{W^{1, 2}(T_{p_{k}, 0}, {\mathbb{R}}^m)}\leq \bar {\mathit{R}} $ for all $ k\in{\mathbb{N}} $. Then, there exists $ u\in E $ with $ J(u)\leq \Lambda $ such that, up to a subsequence, $ u_{k}\to u $ weakly in $ E $.

    Proof. First note that, by Lemma 3.4, there exists $ {\mathit{R}}>0 $ such that if $ u\in E $ and $ J(u)\leq \Lambda $ then $ \|u(\cdot+p)-u(\cdot+q)\|_{L^{2}([0, 1]^n, {\mathbb{R}}^m)} \leq {\mathit{R}} $ for any $ p, q\in{\mathbb{Z}} $. If $ \|u-v\|_{W^{1, 2}(T_{\ell, 0}, {\mathbb{R}}^m)}\leq \bar{\mathit{R}} $ for some $ \ell\in{\mathbb{Z}} $ and $ v\in{\mathcal{M}}_0 $, by triangular inequality for any $ p\in{\mathbb{Z}} $ we obtain

    $ \begin{multline*} \|u- v\|_{L^{2}(T_{p, 0}, {\mathbb{R}}^m)} = \|u(\cdot+p)-v\|_{L^2([0, 1]^n, {\mathbb{R}}^{m})}\\ \leq\|u(\cdot+p)-u(\cdot+\ell)\|_{L^2([0, 1]^n, {\mathbb{R}}^{m})}+\|u(\cdot+\ell)-v\|_{L^2([0, 1]^n, {\mathbb{R}}^{m})}\le {\mathit{R}}+\bar{\mathit{R}}. \end{multline*} $

    Consider now a sequence as in the statement, setting $ Q_{L} = [-L, L]\times [0, 1]^{n-1} $ for $ L \in {\mathbb{N}} $, we get

    $ \|u_k -v\|^2_{L^2(Q_{L}, {\mathbb{R}}^m)} + \|\nabla u_k\|^2_{L^2(Q_{L}, {\mathbb{R}}^m)} \leq 2L(\bar{\mathit{R}}+{\mathit{R}})^{2} + 4Lc_{0} +2\Lambda. $

    Hence, $ (u_{k}-v)_k $ is bounded in $ W^{1, 2}(Q_{L}, {\mathbb{R}}^m) $ for any $ L\in{\mathbb{N}} $ and, by a diagonal argument and the weak lower semicontinuity of $ J $, the statement follows.

    By Lemma 3.2 we also deduce the following result concerning the asymptotic behaviour of the functions in the sublevels of $ J $.

    Lemma 3.6. If $ J(u)<+\infty $, there exist $ v^{\pm}\in{\mathcal{M}}_{0} $ such that

    $ \|u-v^\pm\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \to 0\quad\mathit{\text{as}}\quad p\to\pm\infty. $

    Proof. Since $ J(u) < + \infty $, we have $ J_{p, 0}(u) \to 0 $ as $ |p| \to +\infty $ and there exists $ \bar p $ such that $ J_{p, 0}(u) \leq \frac{\lambda_{0}}{2} $ for any $ |p| \geq \bar p $. Thus, by Lemma 3.2, there exists $ v^{\pm} \in {\mathcal{M}}_{0} $ such that $ \|u-v^+\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \leq \frac{r_{0}}{4} $ for $ p \geq \bar p $ and $ \|u-v^-\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \leq \frac{r_{0}}{4} $ for $ p \leq -\bar p $.

    Hence the sequence $ (u(\cdot+p))_{p\in{\mathbb{N}}} $ is such that $ \|u(\cdot+p)-v^+\|_{W^{1, 2}([0, 1]^n, {\mathbb{R}}^{m})}\le \frac{r_0}4 $ for every $ p\ge \bar p $ and $ J_0(u(\cdot +p))-c_0 = J_{p, 0}(u)\to 0 $ as $ p\to +\infty $. Then, by Lemma 2.1, $ \|u-v^+\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} = \|u(\cdot+p)-v^+\|_{W^{1, 2}([0, 1]^n, {\mathbb{R}}^m)}\to 0 $ as $ p\to +\infty $. Analogously we obtain that $ \|u-v^-\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)}\to 0 $ as $ p\to -\infty $

    By Lemma 3.6, if $ u\in E $ satisfies $ J(u)<+\infty $ we can view it as an heteroclinic or homoclinic connection between two periodic solutions $ v^- $ and $ v^+ $ belonging to $ {\mathcal{M}}_0 $. Hence, we can consider elements of $ E $ belonging to the classes

    $ \begin{align*} \Gamma(v^-, v^+) = \big\{ u\in E \mid \|u-v^\pm\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \to 0\, \text{as}\, p\to\pm\infty \big\} \end{align*} $

    where $ v^\pm\in{\mathcal{M}}_0 $.

    We note that by Lemma 3.5, every sequence $ (u_k)_{k\in {\mathbb{N}}}\subset\Gamma(v^-, v^+) $ with $ J(u_k)\leq \Lambda $ for all $ k\in{\mathbb{N}} $, admits a subsequence which converges weakly to some $ u\in E $. Indeed, since $ \|u_k-v^+\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \to 0 $ as $ p\to +\infty $ for every $ k\in{\mathbb{N}} $, fixed $ \bar{\mathit{R}}>0 $ there exists $ p_k\in{\mathbb{N}} $ such that $ \|u_k-v^+\|_{W^{1, 2}(T_{p_k, 0}, {\mathbb{R}}^m)}\le \bar{\mathit{R}} $ and since $ J(u_k)\le \Lambda $, by Lemma 3.5, there exists $ u\in E $ such that, up to a subsequence, $ u_k\to u $ weakly as $ k\to +\infty $.

    In particular, given $ v^\pm\in{\mathcal{M}}_0 $ and setting

    $ c(v^-, v^+) = \inf\limits_{u\in\Gamma(v^-, v^+)}J(u)\, , $

    as in [29], we obtain that for any $ v^-\in{\mathcal{M}}_0 $ there exist $ v^+\in{\mathcal{M}}_0\setminus\{v^-\} $ and $ u\in\Gamma(v^-, v^+) $ such that $ c(v^-, v^+) = J(u) $. Moreover, it can be proved that any $ u\in\Gamma(v^-, v^+) $ such that $ c(v^-, v^+) = J(u) $ is a classical solution of (PDE) (see Theorem 3.3 in [29]).

    Finally, we have that $ \inf_{v^-\not\equiv v^+}c(v^-, v^+)>0 $ as a consequence of the following lemma.

    Lemma 3.7. For every $ v^\pm\in{\mathcal{M}}_{0} $ with $ v^-\not\equiv v^+ $, we have $ c(v^-, v^+)\geq \frac{\lambda_{0}}{2} $. Moreover, $ c(v^-, v^+)\to +\infty $ as $ \|v^+-v^-\|_{W^{1, 2}([0, 1]^n, {\mathbb{R}}^m)}\to+\infty $.

    Proof. Assume that there exists $ u\in \Gamma(v^-, v^+) $ satisfying $ J(u)<\frac{\lambda_0}2 $. Then $ J_{p, 0}(u)<\frac{\lambda_0}2 $ for every $ p\in {\mathbb{Z}} $, so that by Lemma 3.2 there exists $ v\in{\mathcal{M}}_0 $ such that $ \|u- v\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \leq \frac{r_0}4 $ for every $ p\in{\mathbb{Z}} $. Since $ u\in\Gamma(v^-, v^+) $ we know that $ \|u- v^-\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \to 0 $ as $ p\to-\infty $ and $ \|u- v^+\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \to 0 $ as $ p\to+\infty $, so that by (6) we would have $ v^- = v = v^+ $ giving a contradiction.

    In order to prove the second part of the statement, assume the existence of two sequences $ (v^-_k)_k $ and $ (v^+_k)_k $ in $ {\mathcal{M}}_0 $ such that $ (c(v^-_k, v^+_k))_k $ is bounded while $ \|v^+_k-v^-_k\|_{W^{1, 2}({\mathbb{T}}^n, {\mathbb{R}}^m)}\to+\infty $ as $ k\to +\infty $. Since $ (c(v^-_k, v^+_k))_k $ is bounded, we can find $ \Lambda>0 $ and a sequence $ (u_k)_k $, with $ u_k\in \Gamma(v^-_k, v^+_k) $, such that $ J(u_k)\leq \Lambda $, for every index $ k $. Hence, by Lemma 3.4, there exists $ {\mathit{R}}>0 $ such that $ \|u_k(\cdot+p)-u_k(\cdot+q)\|_{L^2([0, 1]^n , {\mathbb{R}}^{m})}\le {\mathit{R}} $ for every $ k\in{\mathbb{N}} $ and $ p, q\in{\mathbb{Z}} $. Moreover, for every $ \varepsilon>0 $ and $ k\in{\mathbb{N}} $, since $ u_k\in \Gamma(v^-_k, v^+_k) $, there exist $ p_k, q_k\in{\mathbb{Z}} $ such that $ \|u_k-v_k^-\|_{W^{1, 2}(T_{ p_k, 0}, {\mathbb{R}}^m)}<\varepsilon $ and $ \|u_k-v_k^+\|_{W^{1, 2}(T_{ q_k, 0}, {\mathbb{R}}^m)}<\varepsilon $ for every $ k\in{\mathbb{N}} $. In particular we get

    $ \begin{align*} \|v^+_k-v^-_k\|_{L^2([0, 1]^n, {\mathbb{R}}^m)} &\leq \|v^-_k-u_k(\cdot+ p_k)\|_{L^2([0, 1]^n, {\mathbb{R}}^m)} \\ &\phantom{\leq}+\|u_k(\cdot+ p_k)-u_k(\cdot+ q_k)\|_{L^2([0, 1]^n, {\mathbb{R}}^m)} \\ &\phantom{\leq}+ \|v^+_k-u_k(\cdot+ q_k)\|_{L^2([0, 1]^n, {\mathbb{R}}^m)} \\ &\leq \varepsilon + {\mathit{R}} +\varepsilon \end{align*} $

    since, by periodicity, $ \|v_k^\pm-u_k(\cdot+p)\|_{L^2([0, 1]^n, {\mathbb{R}}^m)} = \|v_k^\pm-u_k\|_{W^{1, 2}(L^2, {\mathbb{R}}^m)} $ for any $ k\in{\mathbb{N}} $, $ p\in{\mathbb{Z}} $. Finally, since $ \|\nabla v\|^2_{L^2([0, 1]^n, {\mathbb{R}}^m)}\leq 2c_0 $ for every $ v\in{\mathcal{M}}_0 $, we recover $ \| v^+ - v^- \|_{W^{1, 2}([0, 1]^n, {\mathbb{R}}^m)} \leq 2\sqrt{2c_0}+2\varepsilon+R $ in contradiction with $ \|v^+_k-v^-_k\|_{W^{1, 2}({\mathbb{T}}^n, {\mathbb{R}}^m)}\to+\infty $.

    We focalize now in the study of heteroclinic solutions which are odd in the first variable, hence we will consider a subset of $ \Gamma(-v, v) $, $ v\in{\mathcal{M}}_0 $, so let us introduce the set

    $ E^{odd} = \{u\in E \mid \text{$u$ is odd with respect to $x_1$} \}, $

    In what follows, when we will consider functions $ u\in E^{odd} $ we often present their properties for $ x_1\geq 0 $, avoiding to write the corresponding ones for $ x_1< 0 $. In particular, for every $ u\in E^{odd} $ we have $ J(u) = 2J^+(u) $, where

    $ J^+(u) = \sum\limits_{p\geq 0} J_{p, 0}(u)\, . $

    For any $ v\in{\mathcal{M}}_0 $ let

    $ \Gamma(v) = \{ u\in E^{odd} \mid \|u - v\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \to 0 \text{ as } p\to +\infty \} \subseteq \Gamma(-v, v)\, . $

    In this setting we can rewrite Lemma 3.6 as follows.

    Lemma 4.1. For every $ u\in E^{odd} $ for which $ J(u)<+\infty $ there exists $ v\in{\mathcal{M}}_0 $ such that $ \|u - v\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \to 0 $ as $ p\to +\infty $, that is $ u\in\Gamma(v) $.

    We are going to look for minimizer of $ J $ in the set $ \Gamma(v) $. So, for every $ v\in{\mathcal{M}}_0 $ we set

    $ \begin{equation} c(v) = \inf\limits_{u\in \Gamma(v)} J(u)\quad \text{ and }\quad{\mathcal{M}}(v) = \{u\in \Gamma(v) \mid J(u) = c(v)\}\, . \end{equation} $ (10)

    Notice that for any $ v\in{\mathcal{M}}_0 $ we have $ c(-v, v)\leq c(v) <+\infty $ holds and, by Lemma 3.7 since by $ (N_0) $, $ 0\not\in{\mathcal{M}}_0 $, we have the following.

    Lemma 4.2. For any $ v\in{\mathcal{M}}_{0} $, $ c(v)\geq \frac{\lambda_{0}}{2} $, and $ c(v)\to +\infty $ as $ \|v\|_{W^{1, 2}([0, 1]^n, {\mathbb{R}}^m)}\to+\infty $.

    Moreover, note that, by assumption ($ N_0 $), the intersection between $ {\mathcal{M}}_0 $ and a bounded set consists of a finite number of elements. Hence, from the previous lemma, the minimum

    $ \begin{equation} c = \min\limits_{v\in{\mathcal{M}}_0} c(v) \end{equation} $ (11)

    is well defined and the set

    $ \begin{equation} {\mathcal{M}}_0^{min} = \{v \in{\mathcal{M}}_0 \mid c(v) = c \} \end{equation} $ (12)

    is nonempty and consists of a finite number of elements. In particular, we have

    $ \begin{equation} \min\limits_{ v\in {\mathcal{M}}_0\setminus {\mathcal{M}}_0^{min}}c(v) > c\, . \end{equation} $ (13)

    The following lemma provides a concentration property for $ u\in E^{odd} $ such that $ J(u) $ is close to the value $ c $: the elements of the sequence $ (u(\cdot +p))_{p\in {\mathbb{Z}}} $ remain far from $ {\mathcal{M}}_0 $ only for a finite number of indexes $ p $. Moreover, $ (u(\cdot +p))_{p\in {\mathbb{Z}}} $ approaches an element $ v_0\in{\mathcal{M}}_0 $ only once. Indeed, recalling the notation introduced in Remark 2, we have

    Lemma 4.3. For any $ r\in(0, r_{1}] $ there exists $ \ell(r) \in {\mathbb{N}} $, $ \delta(r)\in(0, \frac{r_{0}}4) $ with $ \delta(r)\to 0 $ as $ r\to 0^{+} $ with the following property: if $ u\in E^{odd} $ is such that $ J(u)\leq c+\Lambda(r) $ then

    $ (i) $ if $ {\rm dist}_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)}(u, {\mathcal{M}}_0) \geq r $ for every $ p $ in a set $ \mathcal I $ of consecutive integers, then $ {\rm Card}(\mathcal I) \leq \ell(r) $,

    $ (ii) $ if $ \|u-v_0 \|_{W^{1, 2}(T_{p_0, 0}, {\mathbb{R}}^m)} \leq r $ for some index $ p_0\geq 0 $ and $ v_0\in{\mathcal{M}}_0 $, then $ \|u-v_0 \|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \leq \delta(r) $ for every $ p \geq p_0 $, and $ \sum_{p = p_0}^{+ \infty} J_{p, 0}(u) \leq 2\Lambda(r) $.

    Proof. Note that $ (i) $ plainly follows from Lemma 2.1-(3), setting $ \ell(r) = \left[\frac{c + \Lambda(r)}{\beta(r)}\right]+1 $, where $ [\cdot] $ denotes the integer part.

    To prove $ (ii) $, we consider $ \tilde u \in E^{odd} $ defined for $ x_1\ge 0 $ as

    $ \tilde u(x_{1}, y) = \begin{cases} u(x_{1}, y)&\hbox{if $x_{1}\in[0, p_0]$, }\\ u(x_{1}, y)(p_0+1-x_{1})+v_0(x_{1}, y)(x_{1}-p_0)& \hbox{if $x_{1}\in (p_0, p_0+1)$, }\\ v_0(x_{1}, y) &\hbox{if $x_{1}\in[p_0+1, +\infty)$} \end{cases} $

    Hence, $ \tilde u \in \Gamma(v_0) $ and since $ \tilde u\equiv u $ in $ [-p_0, p_0]\times {\mathbb{R}}^{n-1} $, while $ \tilde u = v_0 $ in $ [p_0+1, +\infty)\times {\mathbb{R}}^{n-1} $, we obtain

    $ \tfrac12 c\le\tfrac12c(v_0)\leq \tfrac12 J(\tilde u) = J^+(\tilde u) = J^+(u) -\sum\limits_{p = p_0}^{+ \infty} J_{p, 0}(u) + J_{p_{0}, 0}(\tilde u). $

    By definition, on $ T_{p_{0}, 0} $ we have $ \tilde u(x_{1}, y) - v_0(x_{1}, y) = (p_0+1-x_{1})(u(x_{1}, y)-v_0(x_{1}, y)) $ and so $ \| \tilde u-v_0\|_{W^{1, 2}(T_{p_0, 0}, {\mathbb{R}}^m)} \leq 2\|u-v_0\|_{W^{1, 2}(T_{p_0, 0}, {\mathbb{R}}^m)} \leq 2r $. Since $ \tilde u = v_0 $ in $ [p_0+1, p_0+2]\times {\mathbb{R}}^{n-1} $, we have $ {\rm dist}_p(\tilde u, {\mathcal{M}}_0) = \| \tilde u-v_0\|_{W^{1, 2}(T_{p_0, 0}, {\mathbb{R}}^m)}\leq 2r $, so that, by Remark 2, we obtain $ J_{p_{0}, 0}(\tilde u) \leq \Lambda(r) \leq \frac{\lambda_{0}}8 $ and therefore

    $ \tfrac 12 c\leq \tfrac12 J(\tilde u) \leq J^+(u) -{\sum}_{p = p_0}^{+ \infty} J_{p, 0}(u) + \Lambda(r) \leq \tfrac 12 c -{\sum}_{p = p_0}^{+ \infty} J_{p, 0}(u) + \tfrac32 \Lambda(r). $

    Then $ {\sum}_{p = p_0}^{+ \infty} J_{p, 0}(u) \leq \frac32 \Lambda(r) $ and in particular $ J_{p, 0}(u) \leq \frac32 \Lambda(r)\leq \frac{\lambda_0}{2} $ for any $ p \geq p_0 $. Hence, by Lemma 3.2, $ \| u-v_0\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \leq \rho(3\Lambda(r))<r_0 $ for any $ p \geq p_0 $. Hence $ (ii) $ follows setting $ \delta(r) = \rho(3\Lambda(r)) $. Indeed, by Remark 2, we have $ \lim_{r\to 0^+} \delta(r) = 0 $ and, since $ \Lambda(r)\le\frac{\lambda_0}8 $ for all $ r\in (0, r_1] $, we get $ \delta(r)\leq\rho(\lambda_0)\le \frac{r_{0}}4 $ for every $ r\in (0, r_1) $.

    By the previous lemma we get

    Lemma 4.4. For any $ r\in(0, r_{1}] $, if $ u\in E^{odd} $ satisfies $ J(u)\leq c+\Lambda(r) $, then there exists $ v_0\in{\mathcal{M}}_0 $ such that $ u\in\Gamma(v_0) $ and

    $ (i) $ if $ \|u-v_0 \|_{W^{1, 2}(T_{p_0, 0}, {\mathbb{R}}^m)} \leq r $ for a certain index $ p_0\geq 0 $, then we have $ \|u-v_0 \|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \leq \delta(r) $ for every $ p \geq p_0 $, and $ \sum_{p = p_0}^{+ \infty} J_{p, 0}(u) \leq 2\Lambda(r) $.

    $ (ii) $ if $ w \in {\mathcal{M}}_{0} \setminus \{ v_{0}\} $, then $ \|u-w \|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} > r_1 $ for every $ p \in{\mathbb{Z}}, \, p\ge 0 $.

    Proof. Note that the existence of $ v_0 $ such that $ u\in\Gamma(v_0) $ is ensured by Lemma 4.1 and $ (i) $ plainly follows from Lemma 4.3-$ (ii) $. To prove $ (ii) $ we argue by contradiction assuming that there exist $ \bar p_{0}\in{\mathbb{Z}} $, $ \bar p_0\ge 0 $ and $ w\in{\mathcal{M}}_{0}\setminus\{v_{0}\} $ such that $ \|u-w \|_{W^{1, 2}(T_{\bar p_0, 0}, {\mathbb{R}}^m)} \leq r_1 $. Again, by Lemma 4.3-$ (ii) $ we get $ \|u-w \|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \leq \delta(r_1) \leq \frac{r_0}{4} $ for every $ p\geq \bar p_0 $ which is in contradiction with $ u\in\Gamma(v_0) $, recalling the definition of $ r_0 $ in (6).

    As a direct consequence of Lemmas 4.3 and 4.4 we obtain the following concentration result.

    Lemma 4.5. For any $ \rho\in (0, {r_{1}}] $ there exists $ \tilde \Lambda(\rho) $, with $ \tilde \Lambda(\rho)\to 0 $ as $ \rho\to 0^+ $, and $ \tilde\ell(\rho)\in{\mathbb{N}} $ such that if $ u\in E^{odd} $ satisfies $ J(u)\leq c+\tilde \Lambda(\rho) $, then there exists $ v_0\in{\mathcal{M}}_0 $ such that $ u\in\Gamma(v_0) $ and

    $ (i) $ $ \| u -v_0\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \leq \rho \mathit{\text{for every}} p\geq \tilde\ell(\rho) $;

    $ (ii) $ $ \sum_{p = \tilde\ell(\rho)}^{+\infty}J_{p, 0}(u) \leq 2\tilde \Lambda(\rho) $;

    $ (iii) $ $ \| u - w \|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \geq r_1 $ for every $ p\in{\mathbb{Z}}, \, p\ge 0 $ and $ w\in {\mathcal{M}}_0\setminus\{v_0\} $.

    Proof. The existence of $ v_0 $ such that $ u\in\Gamma(v_0) $ is again ensured by Lemma 4.1. By Lemma 4.3, given any $ \rho\in (0, {r_{1}}] $, there exists $ r\in(0, \rho) $ such that $ \delta(r)\le\rho $. Then, if $ u\in \Gamma(v_0) $ is such that $ J(u)\leq c+\Lambda(r) $, by Lemma 4.3-$ (i) $, there exists $ p_0\in[0, \ell(r)+1] $ such that $ {\rm dist}_{W^{1, 2}(T_{p_0, 0}, {\mathbb{R}}^m)}(u, {\mathcal{M}}_0) < r $ and hence a $ v\in{\mathcal{M}}_0 $ such that $ \|u-v\|_{W^{1, 2}(T_{p_0, 0}, {\mathbb{R}}^m)} < r. $ Therefore, by Lemma 4.3-$ (ii) $, we obtain $ \|u-v\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} < \delta(r) $ for all $ p\geq p_0 $ and since $ \delta(r)<\rho<r_1<\frac{r_0}4 $, we can conclude that $ v\equiv v_0 $ and hence that $ \|u -v_0\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \leq \rho $ for every $ p\geq p_0 $. Moreover, again by Lemma 4.3-$ (ii) $, we have $ \sum_{p = p_0}^{+ \infty} J_{p, 0}(u) \leq 2\Lambda(r) $. Hence $ (i) $ and $ (ii) $ follows setting $ \tilde\ell(\rho) = \ell(r)+1 $ and $ \tilde \Lambda(\rho) = \Lambda(r) $.

    Finally, $ \| u - w \|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \geq r_1 $ for every $ p\in{\mathbb{Z}}, \, p\ge 0 $, and $ w\in {\mathcal{M}}_0\setminus\{v_0\} $ follows directly by Lemma 4.4 -$ (ii) $.

    We are now able to prove the existence of a minimum of $ J $ in the set $ \Gamma(v) $ for every $ v\in{\mathcal{M}}_0^{min} $, i.e., that $ {\mathcal{M}}(v)\ne\varnothing $ for all $ v\in{\mathcal{M}}_0^{min} $.

    Theorem 4.6. Let $ v\in{\mathcal{M}}_0^{min} $, then there exists $ u\in \Gamma(v) $ such that $ J(u) = c(v) = c $.

    Proof. Let $ (u_{k})_k\subset \Gamma(v) $ be such that $ J (u_{k})\to c(v) $. Without loss of generality we can assume that $ J(u_{k})\leq c+\tilde \Lambda(r_{1}) $ for any $ k\in{\mathbb{N}} $. By Lemma 4.5, we obtain that for any $ k\in{\mathbb{N}} $,

    $ \begin{equation} \|u_k -v\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \leq r_{1} \text{ for every } p\geq \tilde\ell(r_{1}). \end{equation} $ (14)

    By Lemma 3.5, since $ E^{odd} $ is weakly closed, there exists $ u\in E^{odd} $ such that, along a subsequence, $ u_{k}\to u $ weakly in $ E^{odd} $. Finally, by (14) and the weakly lower semicontinuity of the distance we obtain

    $ \begin{equation} \|u -v \|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \leq r_{1} \text{ for every } p\geq \tilde\ell(r_{1}). \end{equation} $ (15)

    Therefore, by Lemma 3.6, we conclude that $ \|u -v \|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)}\to 0 $ as $ p\to +\infty $, so that $ u\in \Gamma(v) $. Finally, by semicontinuity, $ J(u) = c(v) $.

    By Theorem 4.6 we know that for every $ v_0\in{\mathcal{M}}_0^{min} $, $ {\mathcal{M}}(v_0) $ is nonempty. One can prove that $ {\mathcal{M}}(v_0) $ consists of weak solutions of (PDE).

    Lemma 4.7. Given $ \bar u \in {\mathcal{M}}(v_0) $, with $ v_0\in{\mathcal{M}}_0^{min} $, then for any $ \psi\in {\mathcal{C}}_0^\infty({\mathbb{R}}\times{\mathbb{T}}^{n-1}, {\mathbb{R}}^m) $ we have

    $ \int_{{\mathbb{R}}\times[0, 1]^{n-1}} \nabla \bar u \cdot \nabla \psi + F_u(x, \bar u) \psi \, dx = 0\, . $

    The proof can be adapted by the one of Lemma 3.3 of [4] or Lemma 5.2 of [6]. Therefore we get that any $ u\in {\mathcal{M}}(v_{0}) $ is a classical $ {\mathcal{C}}^2({\mathbb{R}}^{n}, {\mathbb{R}}^m) $ solution of (PDE) which is $ 1 $-periodic in the variables $ x_{i} $, $ i\ge 2 $.

    Finally, we now study further compactness properties for the functional $ J $ that will be useful in the next section. They will be obtained as consequences of the nondegeneracy property of the elements of $ {\mathcal{M}}_{0} $ asked in ($ N $). In particular assumption ($ N $) asks that, for every $ v\in{\mathcal{M}}_0 $, the linearized operator about $ v $

    $ L_{v}: W^{2, 2}([0, 1]^n, {\mathbb{R}}^m)\subset L^{2}([0, 1]^n, {\mathbb{R}}^m)\to L^{2}([0, 1]^n, {\mathbb{R}}^m)\, , $
    $ L_{v}h = -\Delta h+F_{u, u}(\cdot, v(\cdot))h $

    has spectrum which does not contain $ 0 $. This is the assumption made in [30] and it is indeed equivalent to require as in $ (N) $ that

    ($ N_{1} $) there exists $ \alpha_{0}>0 $ such that

    $ J_{0}''(v)h\cdot h = \int_{[0, 1]^n}|\nabla h(x)|^{2}+F_{u, u}(x, v(x))|h(x)|^2\, dx\geq \alpha_{0}\| h\|_{L^{2}([0, 1]^n, {\mathbb{R}}^m)}^{2} $

    for every $ h\in W^{1, 2}([0, 1]^n, {\mathbb{R}}^m) $ and every $ v\in{\mathcal{M}}_{0} $.

    As a consequence of $ (N_1) $ we obtain the following (see also Lemma 3.6 in [2]).

    Lemma 4.8. There exist $ r_{2}\!\in \!(0, r_1) $ and $ \omega_1\!>\!\omega_0\!>\!0 $ such that if $ u\in W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m) $, $ p\in{\mathbb{Z}} $, verifies $ \|u-v\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \leq r_{2} $ for some $ v\in{\mathcal{M}}_0 $ then

    $ \begin{equation} \omega_{0}\|u-v\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)}^{2} \leq J_{p, 0}(u) \leq \omega_1\|u-v\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)}^{2}\, . \end{equation} $ (16)

    Proof. Notice that, by ($ N_{1} $), if $ h\in W^{1, 2}([0, 1]^n, {\mathbb{R}}^m) $ and $ v\in{\mathcal{M}}_{0} $ then

    $ \begin{align*} \int_{[0, 1]^n} |\nabla h(x)|^{2}+F_{u, u}(x, v(x))|h(x)|^2\, dx& \geq \alpha_{0}\| h\|_{L^{2}([0, 1]^n, {\mathbb{R}}^m)}^{2}\\&\geq -\alpha_{0}f_{0} \int_{[0, 1]^n}F_{u, u}(x, v(x))|h(x)|^2\, dx, \end{align*} $

    where $ f_{0} = 1/\|F_{uu}\|_{\infty} $, and so

    $ \int_{[0, 1]^n}\frac 1{1+\alpha_{0}f_{0}}|\nabla h(x)|^{2}\, dx+ \int_{[0, 1]^n} F_{u, u}(x, v(x))|h(x)|^2 \, dx \geq 0\, . $

    We conclude that

    $ J_0''(v)h\cdot h = \int_{[0, 1]^n} |\nabla h(x)|^{2}+ F_{u, u}(x, v(x))|h(x)|^2 \, dx \geq \frac{\alpha_{0}f_{0}}{1+\alpha_{0}f_{0}}\|\nabla h\|^{2}_{L^{2}([0, 1]^n, {\mathbb{R}}^m)} $

    and so, using $ (N_{1}) $ and setting $ \omega_{0} = \frac{\alpha_0}6\min\{1, \frac{f_{0}}{1+\alpha_0 f_{0}}\} $, we obtain

    $ \begin{equation*} \label{eq:**bis} J_{0}''(v)h\cdot h\geq 3\omega_{0}\|h\|_{W^{1, 2}([0, 1]^{n}, {\mathbb{R}}^m)}^{2}, \quad\forall\, h\in W^{1, 2}([0, 1]^{n}, {\mathbb{R}}^m). \end{equation*} $

    Since by Taylor's formula we have $ J_{0}(u)-c_{0} = \frac12J_{0}''(v)(u-v)\cdot(u-v)+o(\|u-v\|_{W^{1, 2}([0, 1]^{n}, {\mathbb{R}}^m)}^{2}) $ for all $ v\in{\mathcal{M}}_0 $ and $ u\in W^{1, 2}([0, 1]^{n}, {\mathbb{R}}^m) $, we obtain that there exists $ r_{2}\in (0, \frac{r_{1}}4) $ such that if $ u\in W^{1, 2}([0, 1]^{n}, {\mathbb{R}}^m) $ verifies $ \|u-v\|_{W^{1, 2}([0, 1]^{n}, {\mathbb{R}}^m)}\leq r_{2} $ for some $ v\in{\mathcal{M}}_0 $, then

    $ \begin{equation} J_{0}(u)-c_{0}\geq \omega_{0} \|u-v\|_{W^{1, 2}([0, 1]^{n}, {\mathbb{R}}^m)}^{2}. \end{equation} $ (17)

    On the other hand, again Taylor's expansion gives us

    $ \begin{align*} J_{0}(u)-c_{0}& = \tfrac12J_{0}''(v)(u-v)\cdot(u-v)+o(\|u-v\|_{W^{1, 2}([0, 1]^{n}, {\mathbb{R}}^m)}^{2})\\ & = \tfrac12 \|\nabla(u-v)\|_{L^{2}([0, 1]^{n}, {\mathbb{R}}^m)}^{2}+\tfrac12\int_{[0, 1]^{n}}F_{u, u}(x, v(x))|u(x)-v(x)|^{2}\, dx\\ &\phantom{ = } + o(\|u-v\|_{W^{1, 2}([0, 1]^{n}, {\mathbb{R}}^m)}^{2})\\ &\le \tfrac12 \|\nabla(u-v)\|_{L^{2}([0, 1]^{n}, {\mathbb{R}}^m)}^{2}+\tfrac1{2f_{0}}\|u-v\|_{L^{2}([0, 1]^{n}, {\mathbb{R}}^m)}^{2}\\ &\phantom{\le} +o(\|u-v\|_{W^{1, 2}([0, 1]^{n}, {\mathbb{R}}^m)}^{2}) \end{align*} $

    and we deduce that there exists $ \omega_{1}>\omega_{0} $ such that, taking $ r_{2} $ smaller if necessary, if $ u\in W^{1, 2}([0, 1]^{n}, {\mathbb{R}}^m) $ verifies $ \|u-v\|_{W^{1, 2}([0, 1]^{n})}\leq r_{2} $, $ v\in{\mathcal{M}}_0 $, then

    $ \begin{equation} J_{0}(u)-c_{0}\le\omega_{1}\|u-v\|_{W^{1, 2}([0, 1]^{n}, {\mathbb{R}}^m)}^{2}. \end{equation} $ (18)

    The lemma follows by periodicity from (17) and (18) recalling that $ T_{p, 0} = [p, p+1]\times[0, 1]^{n-1} $ and that $ J_{p, 0}(u) = J_0(u(\cdot+p))-c_0 $ for all $ u\in W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m) $.

    Remark 3. In connection with Remark 1, arguing as in Remark 3.8 of [2], we can prove that (16) holds true also for the functional $ J_{\sigma_0}(u) = \int_{\sigma_{0}}L(u)\, dx-c_{0} $ on $ W^{1, 2}(\sigma_{0}, {\mathbb{R}}^m) $, that is, if $ \|u-v\|_{W^{1, 2}(\sigma_{0}, {\mathbb{R}}^m)}\le r_{1} $ for some $ v\in{\mathcal{M}}_0 $ then

    $ \begin{equation} \omega_{0}\|u-v\|_{W^{1, 2}(\sigma_{0}, {\mathbb{R}}^m)}^{2}\le J_{\sigma_0}(u)\le \omega_{1}\|u-v\|_{W^{1, 2}(\sigma_{0}, {\mathbb{R}}^m)}^{2}. \end{equation} $ (19)

    Hence, recalling the definition (10), plainly adapting the proof of Lemma 3.10 in [2], we obtain

    Lemma 4.9. Let $ v_0\in{\mathcal{M}}_0^{min} $ and $ (u_{k})_k\subset \Gamma(v_0) $ be such that $ J(u_{k})\to c $. Then there exists $ u\in{\mathcal{M}}(v_0) $ such that, up to a subsequence, $ \|u_{k}- u\|_{W^{1, 2}({\mathbb{R}}\times[0, 1]^{n-1}, {\mathbb{R}}^m)}\to 0 $ as $ k\to+\infty $.

    In this section we prove our main theorem. To this aim, following and adapting the argument in [2], we will first prove the existence of a solution of (PDE) on the unbounded triangle

    $ {\mathcal{T}} = \{ x\in {\mathbb{R}}^n \mid x_2 \geq |x_1| \} $

    satisfying Neumann boundary conditions on $ \partial {\mathcal{T}} $, which is odd in the first variable $ x_1 $, asymptotic as $ x_2 \to +\infty $ to a certain heterocline $ v_0\in{\mathcal{M}} $ where

    $ {\mathcal{M}}: = \bigcup\limits_{v\in{\mathcal{M}}_0^{min}}{\mathcal{M}}(v). $

    Then, by recursive reflections with respect to the hyperplanes $ x_2 = \pm x_1 $, we will recover a solution of (PDE) on the whole $ {\mathbb{R}}^n $.

    Let us introduce now some notations. We define the squares

    $ T_{p, k}: = [p, p+1] \times [k, k+1] \times [0, 1]^{n-2}\, , \quad p\in{\mathbb{Z}}, \, k\in{\mathbb{N}} $

    and the horizontal strips

    $ {\mathcal{S}}_k : = {\mathbb{R}} \times [k, k+1] \times [0, 1]^{n-2} = \bigcup\limits_{p\in{\mathbb{Z}}} T_{p, k}\, , \quad k\in{\mathbb{N}} $

    The intersection between the strip $ {\mathcal{S}}_k $ and the triangle $ {\mathcal{T}} $ consists of a bounded strip

    $ {\mathcal{T}}_k : = {\mathcal{S}}_k\cap {\mathcal{T}} = \left(\bigcup\limits_{p = -k}^{k-1} T_{p, k}\right) \cup \tau_k $

    where $ \tau_k = \{x\in T_{k, k} \cup T_{-k-1, k} \mid x_2 \geq |x_1| \} $.

    Figure 1. 

    The decomposition of the triangular set $ {\mathcal{T}} $

    .

    For every $ k\in{\mathbb{N}} $ we define the sets of functions

    $ \begin{align*} E_{k} = \{u\in W^{1, 2}({\mathcal{T}}_k, {\mathbb{R}}^m) \mid u& \text{ is odd in } x_1, \, \text{1-periodic in }x_3, ..., x_n \} \end{align*} $

    and the normalized functionals on the bounded strips $ {\mathcal{T}}_k $ as

    $ J_{k}(u) = \int_{{\mathcal{T}}_{k}} L(u) \, dx -(2k+1)c_0 = \sum\limits_{p = -k}^{k-1} J_{p, k}(u) + \int_{\tau_k} L(u) \, dx-c_0\, , \quad k\in{\mathbb{N}}\, , $

    for every $ u\in E_{k} $, where $ J_{p, k}(u) = \int_{T_{p, k}} L(u) \, dx -c_0 $.

    Remark 4. Notice that $ J_{k}(u)\geq0 $ for every $ u\in E_{k} $, $ k\in{\mathbb{N}} $. Indeed, we can view the restriction $ u|_{T_{p, k}} $ as a traslation of a function in $ W^{1, 2}([0, 1]^n, {\mathbb{R}}^m) $ and the restriction on $ u|_{\tau_k} $ can be treated similarly using Lemma 2.4, the symmetry of $ u $ and Remark 1. Moreover, we note that the functional $ J_{k} $ is lower semicontinuous with respect to the weak $ W^{1, 2}({\mathcal{T}}_k, {\mathbb{R}}^m) $ topology for every $ k\in{\mathbb{N}} $.

    Then, we can set

    $ c_{k} = \inf\limits_{E_{k}} J_{k}(u) \quad\text{ and }\quad {\mathcal{M}}_{k} = \{u\in E_{k} \mid J_{k}(u) = c_{k}\}\, . $

    We plainly obtain that $ {\mathcal{M}}_{k} \neq \varnothing $ and that the sequence $ (c_{k})_k $ is increasing. Moreover, $ c_{k} \leq c $, evaluating $ J_{k} $ on a function $ u\in {\mathcal{M}}(v_0) $ with $ v_0\in{\mathcal{M}}_0^{min} $. Moreover, the non degeneracy assumption ($ N_1 $) permits us to obtain as in [2] (see Lemma 4.2) the following stronger result.

    Lemma 5.1. We have $ \sum_{k = 0}^\infty \left(c-c_{k}\right) < +\infty $, in particular $ c_k \to c $ as $ {k\to+\infty} $.

    We can now introduce on the set

    $ {\mathcal{E}} = \{u\in W^{1, 2}_{loc}({\mathcal{T}}, {\mathbb{R}}^m) \mid u \text{ is odd in } x_1, \, u_i(x)\ge0 \text{ for } x_1\geq 0 \, , \forall i = 1, ..., m \}. $

    the functional

    $ {\mathcal{J}}(u) = \sum\limits_{k = 0}^{+\infty} \left( J_{k}(u) - c_{k}\right)\, . $

    Notice that $ {\mathcal{J}}(u)\geq 0 $ for every $ u\in {\mathcal{E}} $. Indeed, the restriction $ u|_{{\mathcal{T}}_k}\in E_{k} $ and so $ J_{k}(u)\geq c_{k} $ for any $ k\in{\mathbb{N}} $. Moreover, $ {\mathcal{J}} $ is lower semicontinuous in the weak topology of $ W^{1, 2}_{loc}({\mathcal{T}}, {\mathbb{R}}^m) $. By Lemma 5.1 we readily obtain that $ {\mathcal{J}} $ is finite for at least one $ u\in {\mathcal{E}} $.

    Lemma 5.2. If $ u\in{\mathcal{M}}(v_0) $ for some $ v_0\in{\mathcal{M}}_0^{min} $, then $ {\mathcal{J}}(u)<+\infty $.

    We now look for a minimum of the functional $ {\mathcal{J}} $ on $ {\mathcal{E}} $, thus we set

    $ \tilde c = \inf\limits_{{\mathcal{E}}} {\mathcal{J}}(u) \quad \text{and} \quad \widetilde{{\mathcal{M}}} = \{u\in {\mathcal{E}} \mid {\mathcal{J}}(u) = \tilde c \, \}\, . $

    Lemma 5.2, gives that $ \tilde c\in {\mathbb{R}} $ and we can prove the existence of the minimum applying the direct method of the Calculus of Variations (see e.g. the proof of Proposition 4.4 in [2]).

    Proposition 1. We have $ \widetilde{\mathcal{M}}\neq \varnothing $.

    Arguing as in [2,4,6] (see e.g. the argument in Lemma 3.3 of [4] or Lemma 5.2 of [6]), we can prove that if $ u\in\widetilde{\mathcal{M}} $ then it is a weak solution of (PDE) on $ {\mathcal{T}} $ with Neumann boundary condition on $ \partial {\mathcal{T}} $. Then we can conclude that every $ u\in\widetilde{\mathcal{M}} $ is indeed a classical $ {\mathcal{C}}^2 $ solution of (PDE). Finally, using ($ F_3 $), we can recursively reflect $ w $ with respect to the hyperplanes $ x_2 = \pm x_1 $, obtaining an entire solution $ w $ of (PDE) (see e.g. [2]). By construction, it is odd both in $ x_1 $ and $ x_2 $, symmetric with respect to the hyperplanes $ x_1 = \pm x_2 $ and it is 1–periodic in $ x_{3}, ..., x_{n} $. Hence, it satisfies hypotheses $ (ii) $-$ (iii) $ of Theorem 1.1.

    In the next lemma we finally characterise the asymptotic behavior of the solution $ w $.

    Lemma 5.3. Let $ w\in W^{1, 2}_{loc}({\mathbb{R}}^n, {\mathbb{R}}^m) $ be the function obtained by recursive reflection of a given $ w_0 \in\widetilde{\mathcal{M}} $. Then there exists $ \bar v \in {\mathcal{M}}_0^{min} $ such that

    $ \lim\limits_{k\to +\infty} {\rm dist}_{W^{1, 2}({\mathcal{T}}_k, {\mathbb{R}}^m)} (w, {\mathcal{M}}(\bar v)) = 0. $

    Proof. Let $ w $ be as in the statement, we start proving that there exists $ \bar v\in {\mathcal{M}}_0^{min} $ such that

    $ \begin{equation} \lim\limits_{k\to+\infty} \|w-\bar v\|_{W^{1, 2}(T_{k, k}, {\mathbb{R}}^m)} = 0\, . \end{equation} $ (20)

    We have $ {\mathcal{J}}(w) = {\mathcal{J}}(w_0) = \tilde c<+\infty $. Hence, $ J_{k}(w)- c_{k}\to 0 $ as $ k\to +\infty $ so that, by Lemma 5.1, $ J_{k}(w)\to c $ as $ k\to+\infty $. Therefore, we can find a sequence $ (p_k)_{k\in{\mathbb{N}}} $, with $ p_k\in[0, k-1]\cap{\mathbb{N}} $ such that $ J_{p_k, k}(w) \to 0 $ as $ k\to+\infty $, and in particular $ J_{0}(w(\cdot +p_k \hskip1pt{{\mathit{\boldsymbol{e}}}}_1 + k \hskip1pt{{\mathit{\boldsymbol{e}}}}_2 ))\to c_0 $. By Lemma 2.1-(3), we get $ {\rm dist}_{W^{1, 2}(T_{p_k, k}, {\mathbb{R}}^m)}(w, {\mathcal{M}}_0) = {\rm dist}_{W^{1, 2}([0, 1]^n, {\mathbb{R}}^m)}(w(\cdot +p_k \hskip1pt{{\mathit{\boldsymbol{e}}}}_1 + k \hskip1pt{{\mathit{\boldsymbol{e}}}}_2 ), {\mathcal{M}}_0) \to 0 $ as $ k\to +\infty $ thus giving the existence of $ v_k\in{\mathcal{M}}_0 $ such that

    $ \|w-v_k\|_{W^{1, 2}(T_{p_k, k}, {\mathbb{R}}^m)} \to 0\, , \text{ as } k\to +\infty. $

    Now, for every $ k\in{\mathbb{N}} $, we define in the horizontal strip $ {\mathcal{S}}_k $ the following interpolation between $ w $ and $ v_k $:

    $ w_k(x_1, x_2, y) = \begin{cases} w(x_1, x_2, y) & \text{if } 0\leq x_1 \leq p_k\\ w(x_1, x_2, y)(p_k-x_1+1)\\ \phantom{w(x_1, x_2, y)} +v_k(x_1, x_2, y)(x_1-p_k) & \text{if } p_k < x_1 \leq p_k+1\\ v_k(x_1, x_2, y) & \text{if } x_1 > p_k+1\\ \text{odd extended for } x_1 < 0 \end{cases} $

    A computation gives $ \|w_k-v_k\|_{W^{1, 2}(T_{p_k, k}, {\mathbb{R}}^m)} \leq 2 \|w-v_k\|_{W^{1, 2}(T_{p_k, k}, {\mathbb{R}}^m)} \to 0 $ so that

    $ \lim\limits_{k\to+\infty} J_{p_k, k}(w_k) = 0\, . $

    Now, consider $ w_k^{\downarrow}(x) = w_k(x+k\hskip1pt{{\mathit{\boldsymbol{e}}}}_2) $ defined on $ {\mathcal{S}}_0 $. We have $ w_k^{\downarrow}\in\Gamma(v_k) $, therefore

    $ c \leq J(w_k^{\downarrow}) = 2 \sum\limits_{p = 0}^{p_k} J_{p, 0}(w_k^{\downarrow}) = 2 \sum\limits_{p = 0}^{p_k-1} J_{p, k}(w) + 2J_{p_k, k}(w_k) \leq J_{k}(w) + 2J_{p_k, k}(w_k)\, . $

    and hence, since $ J_{k}(w) \to c $ and $ J_{p_k, k}(w_k)\to 0 $, we obtain $ J(w_k^{\downarrow})\to c $ as $ k\to +\infty $. As a consequence, since $ w_k^{\downarrow}\in \Gamma(v_k) $, by (13), we can conclude that $ v_k\in{\mathcal{M}}_0^{min} $. Moreover we have

    $ J_{k}(w) -J_{k}(w_k) = 2 \sum\limits_{p = p_k}^{k-1} J_{p, k}(w) + \int_{\tau_k} L(w) \, dx - c_0 - 2 J_{p_k, k}(w_k) $

    and since $ J_{k}(w) \to c $, $ J_{k}(w_k) = J(w_k^{\downarrow}) \to c $ and $ J_{p_k, k}(w_k) \to 0 $, we obtain

    $ \begin{equation} 2 \sum\limits_{p = p_k}^{k-1} J_{p, k}(w) + \int_{\tau_k} L(w) \, dx - c_0 \to 0\, , \text{ as } k\to +\infty\, . \end{equation} $ (21)

    In particular $ \int_{\tau_k} L(w) \, dx - c_0\to 0 $, so that $ \lim_{k\to+\infty} J_{k, k}(w) = 0 $, by the symmetry of $ w $ with respect to $ x_2 = \pm x_1 $. Summing up, using (21), we get $ \sum_{p = p_k}^{k} J_{p, 0}(w(\cdot + k \hskip1pt{{\mathit{\boldsymbol{e}}}}_2)) = \sum_{p = p_k}^{k} J_{p, k}(w) \to 0 $, so we can apply Lemma 3.2 and conclude that

    $ \begin{equation} \|w-v_k\|_{W^{1, 2}(T_{k, k}, {\mathbb{R}}^m)}\to 0\, . \end{equation} $ (22)

    Let us now consider, for every $ k\in{\mathbb{N}} $, a different interpolation in the horizontal strip $ {\mathcal{S}}_k $ between $ w $ and the periodic solution $ v_k\in{\mathcal{M}}_0^{min} $ previously introduced:

    $ \omega_k(x_1, x_2, y) = \begin{cases} w(x_1, x_2, y) & \text{if } 0\leq x_1 \leq k\\ w(x_1, x_2, y)(k-x_1+1)\\ \phantom{w(x_1, x_2, y)}+v_k(x_1, x_2, y)(x_1-k) & \text{if } k < x_1 \leq k+1\\ v_k(x_1, x_2, y) & \text{if } x_1 > k+1\\ \text{odd extended for } x_1 < 0 \end{cases} $

    Arguing as above $ \|\omega_k-v_k\|_{W^{1, 2}(T_{k, k}, {\mathbb{R}}^m)} \leq 2 \|w-v_k\|_{W^{1, 2}(T_{k, k}, {\mathbb{R}}^m)} $, so that, defining $ \omega_k^{\downarrow}(x) = \omega_k(x+k \hskip1pt{{\mathit{\boldsymbol{e}}}}_2) $ in $ {\mathcal{S}}_0 $ we find $ \|\omega_k^{\downarrow}-v_k\|_{W^{1, 2}(T_{k, 0}, {\mathbb{R}}^m)} \to 0 $ {and hence, } $ J_{k, 0}(\omega_k^{\downarrow}) \to 0 $. Since $ \omega_k^{\downarrow}\in \Gamma(v_k) $ and $ v_k\in{\mathcal{M}}_0^{min} $ we obtain, reasoning as above,

    $ c \leq J(\omega_k^{\downarrow}) \leq J_{k}(w) + 2 J_{k, 0}(\omega_k^{\downarrow}) = c + o(1) \, , $

    thus giving $ J(\omega_k^{\downarrow})\to c $.

    We now prove that the sequence $ (v_k)_k\in{\mathcal{M}}_0^{min} $ is indeed a (definitively) constant sequence, i.e. $ v_k = \bar v $ for every $ k $ sufficiently large. Being $ J(\omega_k^{\downarrow})\to c $, we can assume $ J(\omega_k^{\downarrow}) \leq c + \tilde\Lambda(r_1) $ and since $ \omega_k^{\downarrow}\in \Gamma(v_k) $ and $ v_k\in{\mathcal{M}}_0^{min} $, we can apply Lemma 4.5 obtaining that

    $ (i) $ $ \| \omega_k^{\downarrow} -v_k\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \leq r_1 \text{ for every } p\geq \tilde\ell(r_1) $;

    $ (ii) $ $ \sum_{p = \tilde\ell(\rho)}^{+\infty}J_{p, 0}(\omega_k^{\downarrow}) \leq 2\tilde \Lambda(r_1)< \tfrac{\lambda_0}{4} $;

    As a consequence, by definition of $ \omega_k^{\downarrow} $ and recalling that $ \omega_k = w $ when $ 0\le x_1\leq k $ we obtain $ J_{p, k}(w) < \tfrac{\lambda_0}{4} $ and

    $ \begin{align} &\|w-v_k\|_{W^{1, 2}(T_{p, k}, {\mathbb{R}}^m)} \leq r_1 < \tfrac{r_0}{4} \end{align} $ (23)

    provided that $ p_0\leq p\leq k-1 $ where $ p_0 = \tilde \ell(r_1) $. Consider now the vertical rectangle $ [ p_0, p_0+1]\times[p_0+1, +\infty)\times{[0, 1]^{n-2}} = \cup_{k\geq p_0+1} T_{p_0, k} $. We have $ J_{p_0, k}(w) \leq \tfrac{\lambda_0}{4} $ for any $ k $ in the set of consecutive integers $ \mathcal I = \{k\in{\mathbb{Z}} \mid k\geq p_0+1\} $, so that we can argue as in Lemma 3.2 and conclude that there exists $ \bar v \in {\mathcal{M}}_0 $ such that

    $ \begin{equation} \|w-\bar v\|_{W^{1, 2}(T_{ p_0, k}, {\mathbb{R}}^m)} \leq \tfrac{r_0}{4} \text{ for every } k\geq p_0+1\, . \end{equation} $ (24)

    Finally, recalling (6), since both (23) and (24) holds, we must have $ \bar v = v_k\in{\mathcal{M}}_0^{min} $ for every $ k \geq p_0+1 $. In particular, (22) gives the claim in (20).

    Moreover, we have proved that $ (\omega_k^{\downarrow})_{k\ge p_0+1} \subset \Gamma(\bar v) $ with $ \bar v\in{\mathcal{M}}_0^{min} $ and since $ J(\omega_k^{\downarrow})\to c $, we can apply Lemma 4.9 to get that there exists $ \bar u\in{\mathcal{M}}(\bar v) $ for which, up to a subsequence,

    $ \begin{equation*} \lim\limits_{k\to +\infty} \| \omega_k^{\downarrow} - \bar u \|_{W^{1, 2}({\mathcal{S}}_0, {\mathbb{R}}^m)} = 0\, . \end{equation*} $

    Hence we obtain that

    $ \begin{equation} {\rm dist}_{W^{1, 2}({\mathcal{S}}_0, {\mathbb{R}}^m)}( \omega_k^{\downarrow} , {\mathcal{M}}(\bar v))\to 0\quad\text{as }k\to +\infty. \end{equation} $ (25)

    Finally, for every $ u\in {\mathcal{M}}(\bar v) $ we have

    $ \begin{align*} \|w-u\|_{W^{1, 2}({\mathcal{T}}_k, {\mathbb{R}}^m)}^2 & = 2\|w-u\|_{W^{1, 2}(\cup_{p = 0}^{k-1}T_{p, k}, {\mathbb{R}}^m)}^2 + \|w- u\|_{W^{1, 2}(\tau_k, {\mathbb{R}}^m)}^2\\ & = \|\omega_k^{\downarrow}- u\|_{W^{1, 2}({\mathcal{S}}_0, {\mathbb{R}}^m)}^2 - 2 \|\omega_k^{\downarrow}-u\|_{W^{1, 2}(T_{k, k}, {\mathbb{R}}^m)}^2\\ &\phantom{ = } + \|w- u\|_{W^{1, 2}(\tau_k, {\mathbb{R}}^m)}^2\\ &\leq \|\omega_k^{\downarrow}- u\|_{W^{1, 2}({\mathcal{S}}_0, {\mathbb{R}}^m)}^2 + \|w- u\|_{W^{1, 2}(T_{k, k}, {\mathbb{R}}^m)}^2\, . \end{align*} $

    Notice that since $ u\in\Gamma(\bar v) $ and using (20), we have

    $ \begin{multline*} \|w- u\|_{W^{1, 2}(T_{k, k}, {\mathbb{R}}^m)}^2 \leq \|w-\bar v\|_{W^{1, 2}(T_{k, k}, {\mathbb{R}}^m)}^2 \\ + \| u-\bar v\|_{W^{1, 2}(T_{k, k}, {\mathbb{R}}^m)}^2 \to 0\, , \text{ as } k\to +\infty\, . \end{multline*} $

    Hence, by (25), we conclude

    $ \lim\limits_{k\to +\infty} {\rm dist}_{W^{1, 2}({\mathcal{T}}_k, {\mathbb{R}}^m)} (w, {\mathcal{M}}(\bar v)) = 0 \, . $

    The previous lemma gives the asymptotic estimate in Theorem 1.1 since $ {\mathcal{R}}_k\subset{\mathcal{T}}_k $.

    We can conclude now the proof of Theorem 1.1 proving the sign property $ (i) $. By Lemma 2.2, for any periodic solution $ v = (v_1, \ldots, v_m)\in{\mathcal{M}}_0^{min} $ we can define $ v^a = (|v_1|, \ldots, |v_m|) $ belonging to $ {\mathcal{M}}_0^{min} $ too, being $ J_0(v^a) = J_0(v) = c_0 $ easily verified. Now, by Theorem 4.6, there exists a heteroclinic solution $ u = (u_1, \ldots, u_m)\in{\mathcal{M}}(v) $. We can define the function $ u^a\in E^{odd} $, such that $ u^a = (|u_1|, \ldots, |u_m|) $ when $ x_1\geq 0 $, and verify that $ u^a\in{\mathcal{M}}(v^a) $ being $ J(u^a) = J(u) = c $.

    Finally, for any $ w = (w_1, \ldots, w_m)\in\widetilde{\mathcal{M}} $ we can find $ v\in{\mathcal{M}}_0^{min} $ as in Lemma 5.3. Similarly as above, we can define $ w^a\in{\mathcal{E}} $ such that $ w^a = (|w_1|, \ldots, |w_m|) $ when $ x_1\geq 0 $. Then, we can verify that $ w^a\in \widetilde{\mathcal{M}} $ verifies Lemma 5.3 with the choice $ v^a\in{\mathcal{M}}_0^{min} $. By reflecting $ w^a $ with rispect to the hyperplanes $ x_2 = \pm x_1 $, we obtain the saddle-type solution satisfying $ (i) $ in Theorem 1.1, thus completing the proof.

    [1] Adey WH, Luckett C, Jensen K (1993) Phosphorus removal from natural waters using controlled algal production. Restor Ecol 1: 29–39. doi: 10.1111/j.1526-100X.1993.tb00006.x
    [2] Alvén B, Eriksson L, Persson S, et al. (2003) Salix As A Metal Remediator - An Exciting Challenge (Salix Som Metallsanerare - En Spännande Utmaning). Svenskt Vatten 1/2003, Swedish Water and Wastewater Association (SWWA), Stockholm, Sweden (In Swedish), 32–33.
    [3] Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biot 77(1): 23–35.
    [4] Argun H, Kargi F, Kapdan IK, et al. (2008) Biohydrogen production by dark fermentation of wheat powder solution: effects of C/N and C/P ratio on hydrogen yield and formation rate. Int J Hydrogen Energ 33(7): 1813–1819.
    [5] Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energ Combust 34(5): 551–573.
    [6] Balat M, Kırtay E, Balat H (2009a) Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 2: Gasification systems. Energ Convers Manage 50(12): 3158–3168.
    [7] Balat M, Kırtay E, Balat H (2009b) Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energ Convers Manage 50(12): 3147–3157.
    [8] Börjesson P, Berndes G, Fredriksson F, et al. (2002) Multi.functional bioenergy plantations (Multifunktionella bioenergiodlingar). Report EO-02/4 (In Swedish, English summary), National Swedish Energy Agency, Eskilstuna, Sweden.
    [9] Borjesson P, Goran B (2006) The prospects for willow plantations for wastewater treatment in Sweden. Biomass Bioenerg 30 (5): 428–438.
    [10] Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, and fermenters. Prog Ind Microbiol 35: 313–21. doi: 10.1016/S0079-6352(99)80123-4
    [11] Bridgwater T (2006) Biomass for energy. J Sci Food Agr 86(12): 1755–1768.
    [12] Carvalho A, Meireles L, Malcata F (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Progr 22: 1490–506. doi: 10.1002/bp060065r
    [13] Chatzaki MK, Tzanakakis VA, Mara DD, et al. (2011) Irrigation of castor bean (Ricinus communis L.) and sunflower (Helianthus annus L.) plant species with municipal wastewater effluent: impacts on soil properties and seed yield. Water 3(4): 1112–1127.
    [14] Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25: 294–306. doi: 10.1016/j.biotechadv.2007.02.001
    [15] Christenson L, Sims RC (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29: 686–702. doi: 10.1016/j.biotechadv.2011.05.015
    [16] Claassen PAM, Van Lier JB, Contreras AML, et al. (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biot 52(6): 741–755.
    [17] Del Porto D, Steinfeld C (2008) The green paradigm. Reusing the Resource, Concord: Ecowaters Books.
    [18] Demirbas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energ Convers Manage 49(8): 2106–2116.
    [19] Dürre (2008) Fermentative Butanol Production. Ann NY Acad Sci 1125(1): 353–362.
    [20] EISA (2007) Energy Independence and Security Act of 2007. Washington, DC. H.R. 6 (110th). Last Updated June 1, 2015. Available from: http://www2.epa.gov/laws-regulations/summary-energy-independence-and-security-act.
    [21] Elitzak H (2001) Food marketing costs at a glance. Food Rev 24(3): 47–48.
    [22] Ellis JT, Hengge HH, Sims RC, et al. (2012) Acetone, butanol, and ethanol production from wastewater algae. Bioresource Technol 111: 491–495. doi: 10.1016/j.biortech.2012.02.002
    [23] Friedman AA, Peaks DA, Nichols RL (1977) Algae separation from oxidation pond effluents. J Water Pollut Con F 49: 111–119.
    [24] Goldstein R, Smith W (2002) Water & Sustainability (Volume 4): US Electricity Consumption For Water Supply & Treatment - The Next Half Century. Electric Power Research Institute (EPRI), Palo Alto, CA.
    [25] Gray NF (2004) Biology of Wastewater Treatment 2nd Edition. London: Imperial College Press, 1444.
    [26] Griffiths E (2009) Removal and utilization of wastewater nutrients for algae biomass and biofuels. [MS Thesis], Logan: Utah State University.
    [27] Gu B, Liu D, Wu X, et. al. (2011) Utilization of waste nitrogen for biofuel production in China. Renew Sust Energ Rev 15: 4910–4916. doi: 10.1016/j.rser.2011.07.062
    [28] Gupta RB, Demirbas A (2010) Gasoline, Diesel and Ethanol Biofuels from Grasses and Plants, 1st ed. Cambridge: Cambridge University Press, 246.
    [29] Hartmann H, Strehler A (1995) The role of biomass (Die Stellung der Biomasse). Schriften-reihe ‘Nachwachsende Rohstoffe’, Band 3. Abschluβbericht für das Bundesministerium für Ernähr-ung, Landwirtschaft und Forsten, Landwirtschaftsverlag Gmbh, Münster, Germany (In German).
    [30] Hasselgren, K (2003). Use and Treatment of Municipal Waste Products in Willow Biomass Plantations. Report No. 3242, Dept. of Water Resources Engineering, Lund Institute of Technology, Lund: Lund University, 67.
    [31] Hasselgren K, Larsson S, Ahman I, et al. (2007) Short-rotation willow biomass plantations irrigated and fertilized with wastewaters—results from a four year multi-disciplinary field project in Sweden, France, Northern Ireland, and Greece. SWECO VIAK AB, Malmo, Sweden. Summary Report to the European Commission DG VI, Agriculture, 48.
    [32] Hoffmann JP (1998) Wastewater treatment with suspended and nonsuspended algae. J Phycol 34: 757–63. doi: 10.1046/j.1529-8817.1998.340757.x
    [33] IPCC (2006) Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories. World Health Organization and the United Nations Environment Program. Available from: http://www.ipcc nggip.iges.or.jp/public/2006gl/index.html.
    [34] Kalia VC (2007) Microbial Treatment of Domestic and Industrial Wastes for Bioenergy Production. Applied Microbiology (e-Book) NISCAIR, CSIR, New Delhi. Available from: http://nsdl.niscair.res.in/bitstream/123456789/650/1/DomesticWaste.pdf.
    [35] Klausmeier CA, Litchman E, Daufresne T, et al. (2004) Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429: 171–174. doi: 10.1038/nature02454
    [36] Knud-Hansen CF, McElwee K, Baker J, et al. (1998) Pond fertilization: ecological approach and practical application. Pond Dynamics/Aquaculture Collaborative Research Support Program, Oregon State University, Corvallis, OR.
    [37] Liu SX (2007) Food and Agricultural Wastewater Utilization and Treatment, 1st ed. Hoboken: Wiley-Blackwell, 296.
    [38] Lundquist TJ, Woertz IC, Quinn NWT, et al. (2010) A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute, Berkeley, CA, 178.
    [39] Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14: 217–32. doi: 10.1016/j.rser.2009.07.020
    [40] McGinley S (2007) Sweet sorghum into ethanol. Arizona Agricultural Experiment Station Research Report, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ.
    [41] McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresource Technol, 83(1): 47–54.
    [42] McLaughlin SB, Walsh ME (1998) Evaluating environmental consequences of producing herbaceous crops for bioenergy. Biomass Bioenerg 14: 317–324. doi: 10.1016/S0961-9534(97)10066-6
    [43] Meher Kotay S, Das D (2008) Biohydrogen as a renewable energy resource–Prospects and potentials. Int J Hydrogen Energ, 33(1): 258–263.
    [44] Middlebrooks EJ, Porcella DB, Gearheart RA, et al. (1974) Techniques for algae removal from wastewater stabilization ponds. J Water Pollut Con F: 2676–95.
    [45] Molina Grima E, Belarbi E, Acién Fernández FG, et al. (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20: 491–515. doi: 10.1016/S0734-9750(02)00050-2
    [46] Mondala A, Liang K, Toghiani H, et al. (2009) Biodiesel production by in situ transesterification of municipal primary and secondary sludges. Bioresource Technol, 100(3): 1203–1210.
    [47] Mulbry WW, Wilkie AC (2001) Growth of benthic freshwater algae on dairy manures. J Appl Phycol 13: 301–6. doi: 10.1023/A:1017545116317
    [48] Mulbry W, Westhead EK, Pizarro C, et al. (2005) Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresource Technol.96: 451–8.
    [49] Mulbry W, Kondrad S, Buyer J (2008) Treatment of dairy and swine manure effluents using freshwater algae: fatty acid content and composition of algal biomass at different manure loading rates. J Appl Phycol 20: 1079–85.
    [50] NAS (2009) Liquid transportation fuels from coal and biomass: technological status, costs, and environmental impacts. National Academy of Science, Washington, DC: National Academies Press. Available from: http://sites.nationalacademies.org/xpedio/groups/energysite/documents/webpage/energy_054519.pdf on January 14, 2013.
    [51] Niyogi KK (2003) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Phys 50: 333–345.
    [52] Patwardhan AW (2003) Rotating biological contactors: a review. Ind Eng Chem Res 42: 2035–51. doi: 10.1021/ie0200104
    [53] Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technol 102: 17–25. doi: 10.1016/j.biortech.2010.06.035
    [54] Rawat R, Kumar RT, Mutanda T, et al. (2011) Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energ 88 (10): 3411–3424.
    [55] Razon LF, Tan RR (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis..Appl Energ 88(10): 3507–3514.
    [56] Round FE (1984) The Ecology of Algae. Cambridge: Cambridge University Press, 664.
    [57] Salerno M, Nurdogan Y, Lundquist TJ (2009) Biogas production from algae biomass harvested at wastewater treatment ponds. 2009 Bioenergy Engineering Conference. ASABE conference presentation; Oct. Paper No. Bio098023.
    [58] Sheehan J, Dunahay T, Benemann J, et al. (1998) A look back at the US Department of energy's aquatic species programbiodiesel from algae. Report No. NREL/TP-580-24190, prepared for U.S. Department of Energy's Office of Fuels Development. National Renewable Energy Laboratory (NREL), Golden, CO.
    [59] Shen Y, Yuan W, Pei ZJ, et al. (2009) Microalgae mass production methods. T ASABE 52: 1275–87. doi: 10.13031/2013.27771
    [60] Stumm W, Morgan J (1996) Aquatic chemistry: an introduction emphasizing chemical equilibria. In Natural Waters. 3rd Ed., New York: Wiley-Interscience, 1040.
    [61] Tchobanoglous G, Burto FL, Stensel HD (2015) Wastewater Engineering: Treatment and Reuse, 5th Ed., McGraw-Hill Science/Engineering/Math, Hightstown, NJ, 1848.
    [62] Teixeira MR, Rosa MJ (2006) Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosa: part I: the key operating conditions. Sep Purif Technol 52: 84–94. doi: 10.1016/j.seppur.2006.03.017
    [63] The Raleigh Telegram (2012) Sunflower seeds to partially power Raleigh’s wastewater plant’s biodiesel needs. The Raleigh Telegram, July 11, 2012, Raleigh, NC.
    [64] Torpey WN, Heukelekian H, Kaplovsky AJ, et al. (1971) Rotating disks with biological growths prepare wastewater for disposal or reuse. J Water Pollut Con F 43: 2181–8.
    [65] U.S. CBO (2002) Future investment in drinking water and wastewater infrastructure. Washington D.C: U.S. Congressional Budget Office, Nov 2002. Available from: http://www.cbo.gov/doc.cfm?index=3983.
    [66] U.S. DOE (1985) Review and evaluation of immobilized algae systems for the production of fuels from microalgae. Report No. SERI/STR-231-2798. Solar Energy Research Institute, U.S. Department of Energy, Alexandria, VA.
    [67] U.S. DOE (2011) U.S. Biomass as feedstock for a bioenergy and bioproducts industry: an update to the billion-ton annual supply. Perlack B, Stokes B, et al., USDA/DOE, DOE/GO-102005-2135, U.S. Department of Energy, Washington, DC. Available from: http://www.biomassboard.gov/pdfs/btu_board_june.pdf.
    [68] IRENA (2014) Global bioenergy supply and demand projections. A Working Paper for REmap 2030. International Renewable Energy Agency. Available from: http://www.irena.org/remap/IRENA_REmap_2030_Biomass_paper_2014.pdf.
    [69] U. S. DOE (2014) Bioenergy Technologies Office Multi-Year Program Plan. Energy Efficiency & Renewable Energy. DOE/EE-1108. Available from: http://www.energy.gov/sites/prod/files/2014/07/f17/mypp_july_2014.pdf.
    [70] U.S. EIA (2010) EIA Annual Energy Outlook 2010 with Projections to 2035. DOE/EIA-0383, U.S. Energy Information Administration, Washington, DC.
    [71] U.S. EIA (2011) Annual Energy Review 2011. DOE/EIA-0384. U.S. Energy Information Administration, Washington, DC.
    [72] U.S.EIA (2012a) Annual Energy Outlook 2012. U.S. Energy Information Administration, Washington, DC.
    [73] U.S. EIA (2012b). EIA’s annual energy outlook 2012 - a comprehensive assessment of the U.S. energy picture, by Howard Gruenspecht, Acting Administrator of the U.S. EIA. National Governors Association, May 30, Washington, DC. Available from: http://www.nga.org/files/live/sites/NGA/files/pdf/1206PolicyInstituteGruenspecht.pdf.
    [74] EPA (2013) Emerging technologies for wastewater treatment and in-plant wet weather management. Tetra Tech, Inc. Fairfax, Virginia. EPA 832-R-12-011. Available from: http://water.epa.gov/scitech/wastetech/upload/Emerging-Technologies-Report-2.pdf.
    [75] Fligger K (2011) Clean watersheds needs survey 2012 update. U.S. EPA, Office of Wastewater Management. Available from: http://www.cifanet.org/documents/11work/KarenFligger.pdf.
    [76] EPA (2015) Municipal wastewater treatment facilities. combined heat and power partnership. Last updated on 2/14/2015. Available from: http://www.epa.gov/chp/markets/wastewater.html.
    [77] EPA (2015) Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2013. EPA 430-R-15-004. U.S. Environmental Protection Agency, Washington, DC. Available from: http://www.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2015-Main-Text.pdf.
    [78] USDA (2015) Cattle. National Agricultural Statistics Service, Agricultural Statistics Board, U.S. Department of Agriculture, Washington, DC. Available from: http://usda.mannlib.cornell.edu/usda/current/Catt/Catt-07-24-2015.pdf.
    [79] Wang B, Lan C, Courchesne N, et al. (2010) Microalgae for biofuel production and CO2 sequestration. Nova Science Publishers, Hauppauge, NY.
    [80] Wiesmann U, Choi IS, Dombrowski, EM (2006) Fundamentals of biological wastewater treatment, 1st ed. Wiley-VCH, Weinheim, Germany, 362 pp.
    [81] Wigmosta MS, Coleman AM, Skaggs RJ, et al. (2011) National microalgae biofuel productio.  potential and resource demand. Water Resour Res 47: 13.
    [82] Wilkie AC, Mulbry WW (2002) Recovery of dairy manure nutrients by benthic freshwater algae. Bioresource Technol 84: 81–91. doi: 10.1016/S0960-8524(02)00003-2
    [83] Williams C, Biswas, TK, Black I, et al. (2008) Pathways to prosperity: second generation biomass crops for biofuels using saline lands and wastewater. J Agric Sci 21: 28–34.
    [84] Wuertz S, Bishop PL, Wilderer PA (2003) Biofilms in wastewater treatment: an interdisciplinary approach. London: IWA Publishing, 401.
    [85] Zeevalkink J, Kelderman P, Visser D, et al. (1979) Physical mass transfer in a rotating disc gas-liquid contactor. Water Res 13: 913–9. doi: 10.1016/0043-1354(79)90228-8
    [86] U.S. EIA (2015) Annual energy outlook 2015 with projections to 2040. DOE/EIA-0383, U.S. Energy Information Administration, Washington, DC.
    [87] IEA (2011) Technology roadmaps biofuels for transport, international energy agency. 9 rue de la Fédération 75739 Paris Cedex 15, France. Available from: http://www.iea.org/publications/freepublications/publication/biofuels_roadmap_web.pdf.
    [88] Multi-Year Program Plan (2014) Bioenergy Technologies Office. U. S. Department of Energy, Energy Efficiency & Renewable Energy. Available from: http://www.energy.gov/sites/prod/files/2014/07/f17/mypp_july_2014.pdf.
  • This article has been cited by:

    1. Maaz Bahauddin Naveed, Data Evaluation and Modeling of Billet Characteristics in the Steel Industry, 2025, 2181, 10.38124/ijisrt/25apr652
    2. Renan J. S. Isneri, César E. Torres Ledesma, Saddle Solutions for Allen–Cahn Type Equations Involving the Prescribed Mean Curvature Operator, 2025, 1424-9286, 10.1007/s00032-025-00418-y
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8325) PDF downloads(1588) Cited by(1)

Figures and Tables

Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog