
The decomposition of the triangular set
Citation: Ronald C. Sims, Sean K. Bedingfield, Reese Thompson, Judith L. Sims. Bioenergy from wastewater-based biomass[J]. AIMS Bioengineering, 2016, 3(1): 103-124. doi: 10.3934/bioeng.2016.1.103
[1] | Yi Dong, Jinjiang Liu, Yihua Lan . A classification method for breast images based on an improved VGG16 network model. Electronic Research Archive, 2023, 31(4): 2358-2373. doi: 10.3934/era.2023120 |
[2] | Hui-Ching Wu, Yu-Chen Tu, Po-Han Chen, Ming-Hseng Tseng . An interpretable hierarchical semantic convolutional neural network to diagnose melanoma in skin lesions. Electronic Research Archive, 2023, 31(4): 1822-1839. doi: 10.3934/era.2023094 |
[3] | Dong Wu, Jiechang Li, Weijiang Yang . STD-YOLOv8: A lightweight small target detection algorithm for UAV perspectives. Electronic Research Archive, 2024, 32(7): 4563-4580. doi: 10.3934/era.2024207 |
[4] | Peng Lu, Xinpeng Hao, Wenhui Li, Congqin Yi, Ru Kong, Teng Wang . ECF-YOLO: An enhanced YOLOv8 algorithm for ship detection in SAR images. Electronic Research Archive, 2025, 33(5): 3394-3409. doi: 10.3934/era.2025150 |
[5] | Jinjiang Liu, Yuqin Li, Wentao Li, Zhenshuang Li, Yihua Lan . Multiscale lung nodule segmentation based on 3D coordinate attention and edge enhancement. Electronic Research Archive, 2024, 32(5): 3016-3037. doi: 10.3934/era.2024138 |
[6] | Jianjun Huang, Xuhong Huang, Ronghao Kang, Zhihong Chen, Junhan Peng . Improved insulator location and defect detection method based on GhostNet and YOLOv5s networks. Electronic Research Archive, 2024, 32(9): 5249-5267. doi: 10.3934/era.2024242 |
[7] | Jianting Gong, Yingwei Zhao, Xiantao Heng, Yongbing Chen, Pingping Sun, Fei He, Zhiqiang Ma, Zilin Ren . Deciphering and identifying pan-cancer RAS pathway activation based on graph autoencoder and ClassifierChain. Electronic Research Archive, 2023, 31(8): 4951-4967. doi: 10.3934/era.2023253 |
[8] | Chetan Swarup, Kamred Udham Singh, Ankit Kumar, Saroj Kumar Pandey, Neeraj varshney, Teekam Singh . Brain tumor detection using CNN, AlexNet & GoogLeNet ensembling learning approaches. Electronic Research Archive, 2023, 31(5): 2900-2924. doi: 10.3934/era.2023146 |
[9] | Yunfei Tan, Shuyu Li, Zehua Li . A privacy preserving recommendation and fraud detection method based on graph convolution. Electronic Research Archive, 2023, 31(12): 7559-7577. doi: 10.3934/era.2023382 |
[10] | Xite Yang, Ankang Zou, Jidi Cao, Yongzeng Lai, Jilin Zhang . Systemic risk prediction based on Savitzky-Golay smoothing and temporal convolutional networks. Electronic Research Archive, 2023, 31(5): 2667-2688. doi: 10.3934/era.2023135 |
We consider systems of semilinear elliptic equations
$ \tag{PDE} -\Delta u(x)+F_{u}(x, u) = 0 $ |
where
(
When
All the above results are based on the ordered structure of the set of minimal solutions of (PDE) in the case
The study of (PDE) when
$ {\mathcal{M}}_{0} = \{u\in E_{0} \mid J_{0}(u) = c_{0}: = \inf\limits_{E_{0}}J_{0}(u)\}\not = \varnothing. $ |
Paul H. Rabinowitz studied the case of spatially reversible potentials
$ J(u)=∑p∈ZJp,0(u):=∑p∈Z(∫Tp,0L(u)dx−c0), $ | (1) |
(where
$ \Gamma(v_{-}, v_{+}) = \{u\in W^{1, 2}({\mathbb{R}}\times{\mathbb{T}}^{n-1}, {\mathbb{R}}^{m})\mid \|u -v_{\pm}\|_{L^2(T_{p, 0}, {\mathbb{R}}^{m})} \to 0\hbox{ as } p \to \pm\infty\}. $ |
In [30] the existence of minimal double heteroclinics was obtained assuming that the elements of
The proof of these results does not use the ordering property of the solutions and adapts to the study of (PDE) some of the ideas developed to obtain multi-transition solutions for Hamiltonian systems (see e.g. [3], [28] and the references therein). Aim of the present paper is to show how these methods, in particular a refined study of the concentrating properties of the minimal heteroclinic solutions to (PDE), can be used in a symmetric setting to obtain saddle type solutions to (PDE).
Saddle solutions were first studied by Dang, Fife and Peletier in [16]. In that paper the authors considered Allen-Cahn equations
We refer to [14,15,6,7,27] for the study of saddle solutions in higher dimensions and to [1,20,8] for the case of systems of autonomous Allen-Cahn equations. Saddle solutions can be moreover viewed as particular
In [5] the existence of saddle type solutions was studied for non autonomous Allen-Cahn type equations and this work motivated the paper [2] where solutions of saddle type for (PDE) were found in the case
In the present paper we generalize the setting considered in [2] to the case
(
(
$ F(x_{1}, x_{2}, x_{3}, ..., x_{n}, u) = F(x_{2}, x_{1}, x_{3}, ..., x_{n}, u) \hbox{ on }\, {\mathbb{R}}^{n}\times {\mathbb{R}}^m. $ |
By [29] the set
As recalled above, in [2], where
(
$ J_{0}''(v)h\cdot h = \int_{[0, 1]^n}|\nabla h|^{2}+F_{u, u}(x, v(x))h\cdot h\, dx\geq \alpha_{0}\| h\|_{L^{2}([0, 1]^n, {\mathbb{R}}^{m})}^{2} $ |
for every
The assumption (
$ Γ(v)={u∈W1,2(R×Tn−1,Rm)∣u is odd in x1,limp→+∞‖u−v‖L2([p,p+1]×Tn−1,Rm)=0}. $ |
In §4, setting
$ c(v) = \inf\limits_{u\in\Gamma(v)}J(u)\hbox{ for }v\in{\mathcal{M}}_{0} $ |
we show that
$ {\mathcal{M}}_{0}^{min} = \{v_0\in{\mathcal{M}}_{0}\mid c(v_0) = \min\limits_{v\in{\mathcal{M}}_{0}}c(v)\}\not = \emptyset $ |
and that
$ {\mathcal{M}}(v_{0}) = \{u\in\Gamma(v_{0})\mid J(u) = c(v_{0})\} $ |
is not empty and compact with respect to the
$ \|u-v_{0}\|_{W^{1, 2}([p, p+1]\times {\mathbb{T}}^{n-1}, {\mathbb{R}}^{m})} \to 0\hbox{ as }p\to +\infty. $ |
Our main result can now be stated as follows
Theorem 1.1. Assume
Moreover there exists
$ distW1,2(Rk,Rm)(w,M(v0))→0,ask→+∞, $ | (2) |
where
Note that by
The proof of Theorem 1.1 uses a variational approach similar to the one already used in previous papers like [5,2]. To adapt this approach to the case
In this section we recall some results obtained by Rabinowitz in [29], on minimal periodic solutions to (PDE). Moreover, following the argument in [2], we study some symmetry properties related to the assumptions (
(
Let us introduce the set
$ E_0 = W^{1, 2}({\mathbb{T}}^n, {\mathbb{R}}^m) = \{u\in W^{1, 2}({\mathbb{R}}^n, {\mathbb{R}}^m)\mid u\text{ is $1$-periodic in all its variables}\} $ |
with the norm
$ \|u\|_{W^{1, 2}([0, 1]^n, {\mathbb{R}}^m)} = \left( \sum\limits_{i = 1}^m \int_{[0, 1]^{n}}(|\nabla u_i|^2+|u_i|^2)dx\right)^{\frac12}. $ |
We define the functional
$ J0(u)=∫[0,1]n12|∇u|2+F(x,u)dx=∫[0,1]nL(u)dx. $ | (3) |
and consider the minimizing set
$ {\mathcal{M}}_{0} = \{ u\in E_{0}\, |\, J_{0}(u) = c_{0}\}\, \text{ where }\, c_0 = \inf\limits_{u\in E_0} J_0(u) $ |
Then in [29], [30] it is shown
Lemma 2.1. Assume
1.
2. if
3. For every
$ {\rm dist}_{W^{1, 2}([0, 1]^n, {\mathbb{R}}^m)}(u, {\mathcal{M}}_0): = \inf\limits_{v\in{\mathcal{M}}_0} \|u-v\|_{W^{1, 2}([0, 1]^n, {\mathbb{R}}^{m})} > \rho, $ |
then
4. If
5. If
Assumption
Lemma 2.2. Assume
Proof. It is sufficient to observe that if
ⅰ)
ⅱ)
Property (ⅱ) gives the second part of the statement while by (i) and the unique extension property proved in [29], we obtain that the components of
On the other hand, assumption
$ ˜u(x)={u(x),x∈T+,u(x2,x1,x3,…,xn),x∈[0,1]n∖T+. $ | (4) |
Then, we have
Lemma 2.3. If
Proof. Given
$ \int_{T^+}L(u)\, dx\le \int_{[0, 1]^n\setminus T^+}L(u)\, dx\, . $ |
Since
$ c_0 = J_{0}(u) = \int_{T^+} L(u)\, dx+\int_{[0, 1]^n\setminus T^+}L(u)\, dx\ge 2 \int_{T^+}L(u)\, dx = J_{0}(\tilde u)\ge c_0. $ |
Hence, again by Lemma 2.1-(5),
As an immediate consequence, using Lemma 2.1-(5), we have the following.
Lemma 2.4. There results
$ minu∈W1,2(T+,Rm)∫T+L(u)dx=c02. $ | (5) |
Moreover, if
Remark 1. Lemma 2.3 tells us that the elements of
$ \sigma_{0} = \{x\in{\mathbb{R}}\times[0, 1]^{n-1}\, |\, x_{2}-1\le x_{1}\le x_{2}\}. $ |
More precisely we have
Note that by Lemma 2.1-(1) and the assumption (N) we plainly derive that (
where we recall that
Note finally that by
$ r0:=min{‖u−v‖L2(Tn,Rm)∣u,v∈M0,u≢ $ | (6) |
we have
This section is devoted to introduce the variational framework to study solutions of (PDE) which are heteroclinic between minimal periodic solutions. We follow some arguments in [29], [26], introducing the renormalized functional
Let us define the set
$ E = \{u\in W_{loc}^{1, 2}({\mathbb{R}}^n, {\mathbb{R}}^m)\mid u\text{ is $1$-periodic in }x_2, \ldots x_n\}. $ |
For any
$ J(u) = \sum\limits_{p\in{\mathbb{Z}}}J_{p, 0}(u), $ |
where, denoting
$ J_{p, 0}(u) = \int_{T_{p, 0}}L(u)\, dx-c_{0}, \quad \forall p\in{\mathbb{Z}}. $ |
Denoting briefly
$ J_{p, 0}(u) = \int_{[0, 1]^n}L(u(\cdot+p))\, dx-c_0 = J_0(u(\cdot+p))-c_0, \quad \forall p\in{\mathbb{Z}}. $ |
Then, by Lemma 2.1, we have
Lemma 3.1. The functional
Proof. Consider a sequence
$ \liminf\limits_k J(u_k) \geq \liminf\limits_k \sum\limits_{p = -\ell}^\ell J_{p, 0}(u_k) \geq \sum\limits_{p = -\ell}^\ell J_{p, 0}(u) > J(u) -\varepsilon\, , $ |
thus finishing the proof.
Using the notation introduced above, note that if
First of all, let us consider the functional
$ \min\limits_{u\in E} J_{p, 0}(u)+J_{p+1, 0}(u) = 0 $ |
and the set of minima coincide with
$ {\rm dist}_p(u, A) = \inf \{ \| u-v \|_{W^{1, 2}(T_{p, 0}\cup T_{p+1, 0}, {\mathbb{R}}^m)} \mid v\in A \}\, . $ |
Remark 2. Let us fix some constants that will be used in rest of the paper. By Lemma 2.1-(3), we have that for any
$ \begin{equation} \hbox{if }u\in E\hbox{ satisfies }J_{p, 0}(u)+J_{p+1, 0}(u)\leq \lambda(r)\hbox{ for a }p\in{\mathbb{Z}}, \hbox{ then }{\rm dist}_p(u, {\mathcal{M}}_0)\leq r. \end{equation} $ | (7) |
It is not restrictive to assume that the function with
On the other hand for every
$ \rho(\lambda) = \sup \left\{{\rm dist}_p(u, {\mathcal{M}}_0) \mid u\in E \text{ with } J_{p, 0}(u)+J_{p+1, 0}(u) \leq \lambda, \, p\in{\mathbb{Z}} \right\}\, $ |
we get
$ \begin{equation} \Lambda(r) = \sup \left\{J_{p, 0}(u) \mid u\in E \text{ and } p\in{\mathbb{Z}}\text{ are such that } {\rm dist}_p(u, {\mathcal{M}}_0)\leq 2r \right\} \end{equation} $ | (8) |
which is non-decreasing and
We say that a set
Lemma 3.2. Given
Proof. Let
$ \| u-v_p \|_{W^{1, 2}(T_{p, 0}\cup T_{p+1, 0}, {\mathbb{R}}^m)} \leq \tfrac{r_{0}}{4} $ |
from which
Moreover, using the notations introduced above, we have
Lemma 3.3. If
$ \|u(\cdot+p)-u(\cdot+(p+1))\|_{L^{2}([0, 1]^n, {\mathbb{R}}^m)}^2\le 2(J_{p, 0}(u)+J_{p+1, 0}(u)+2c_{0}). $ |
Proof. Setting
$ \|u(\cdot+p)-u(\cdot+(p+1))\|_{L^{2}([0, 1]^n, {\mathbb{R}}^m)}^2 = \int_{p}^{p+1}\int_{[0, 1]^{n-1}} |u(x_{1}+1, y)-u(x_{1}, y)|^{2} dy \, dx_{1} $ |
and so there exists
$ \int_{[0, 1]^{n-1}} |u(\bar x_{1}+1, y) -u(\bar x_{1}, y)|^2 dy \geq \|u(\cdot+p)-u(\cdot+(p+1))\|_{L^{2}([0, 1]^n, {\mathbb{R}}^m)}^2. $ |
On the other hand, by Hölder inequality,
$ \begin{align*} 2(J_{p, 0}(u)+J_{p+1, 0}(u)+2c_{0})&\geq\int_{p}^{p+2} \int_{[0, 1]^{n-1}} |\partial_{x_{1}}u(x_{1}, y)|^2 dy \, dx_{1}\\ &\geq \int_{[0, 1]^{n-1}} \int_{ \bar x_{1}}^{\bar x_{1} +1} |\partial_{x_{1}}u(x_{1}, y)|^2 dx_{1} \, dy\\ &\geq \int_{[0, 1]^{n-1}} |u(\bar x_{1}+1, y ) -u(\bar x_{1})|^2 dy\\ &\geq \|u(\cdot+p)-u(\cdot+(p+1))\|_{L^{2}([0, 1]^n, {\mathbb{R}}^m)}^2 \end{align*} $ |
completing the proof.
By the previous lemmas we obtain that the elements in the sublevels of
Lemma 3.4. For every
Proof. Let
$ \begin{align} \|u(\cdot+p)-u(\cdot+q)\|_{L^{2}([0, 1]^n, {\mathbb{R}}^m)} &\leq l(u) \sup\limits_{k \in {\mathcal J}(u)}\|u(\cdot+k)-u(\cdot+k+1)\|_{L^{2}([0, 1]^n, {\mathbb{R}}^m)}\\ &\, \, \, \, \quad + \sum\limits_{i = 1}^{\bar l (u)} \sup\limits_{p, q \in \mathcal I_i(u)}\|u(\cdot+p)-u(\cdot+q)\|_{L^{2}([0, 1]^n, {\mathbb{R}}^m)}\\ &\leq l(u)(2(\Lambda +2c_{0}))^{\frac{1}{2}} + \bar l(u) \tfrac{r_{0}}{2}. \end{align} $ | (9) |
where the first term in (9) follows by the application of Lemma 3.3, since
$ 2(J_{k, 0}(u)+J_{k+1, 0}(u)+2c_{0})\le 2(J(u) +2c_{0})\le 2(\Lambda+2c_0), \quad\forall k\in{\mathbb{Z}}, $ |
while the second one follows by the definition of
Since
The following lemma states the weak compactness of the sublevels of the functional
Lemma 3.5. Given any
Proof. First note that, by Lemma 3.4, there exists
$ \begin{multline*} \|u- v\|_{L^{2}(T_{p, 0}, {\mathbb{R}}^m)} = \|u(\cdot+p)-v\|_{L^2([0, 1]^n, {\mathbb{R}}^{m})}\\ \leq\|u(\cdot+p)-u(\cdot+\ell)\|_{L^2([0, 1]^n, {\mathbb{R}}^{m})}+\|u(\cdot+\ell)-v\|_{L^2([0, 1]^n, {\mathbb{R}}^{m})}\le {\mathit{R}}+\bar{\mathit{R}}. \end{multline*} $ |
Consider now a sequence as in the statement, setting
$ \|u_k -v\|^2_{L^2(Q_{L}, {\mathbb{R}}^m)} + \|\nabla u_k\|^2_{L^2(Q_{L}, {\mathbb{R}}^m)} \leq 2L(\bar{\mathit{R}}+{\mathit{R}})^{2} + 4Lc_{0} +2\Lambda. $ |
Hence,
By Lemma 3.2 we also deduce the following result concerning the asymptotic behaviour of the functions in the sublevels of
Lemma 3.6. If
$ \|u-v^\pm\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \to 0\quad\mathit{\text{as}}\quad p\to\pm\infty. $ |
Proof. Since
Hence the sequence
By Lemma 3.6, if
$ \begin{align*} \Gamma(v^-, v^+) = \big\{ u\in E \mid \|u-v^\pm\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \to 0\, \text{as}\, p\to\pm\infty \big\} \end{align*} $ |
where
We note that by Lemma 3.5, every sequence
In particular, given
$ c(v^-, v^+) = \inf\limits_{u\in\Gamma(v^-, v^+)}J(u)\, , $ |
as in [29], we obtain that for any
Finally, we have that
Lemma 3.7. For every
Proof. Assume that there exists
In order to prove the second part of the statement, assume the existence of two sequences
$ \begin{align*} \|v^+_k-v^-_k\|_{L^2([0, 1]^n, {\mathbb{R}}^m)} &\leq \|v^-_k-u_k(\cdot+ p_k)\|_{L^2([0, 1]^n, {\mathbb{R}}^m)} \\ &\phantom{\leq}+\|u_k(\cdot+ p_k)-u_k(\cdot+ q_k)\|_{L^2([0, 1]^n, {\mathbb{R}}^m)} \\ &\phantom{\leq}+ \|v^+_k-u_k(\cdot+ q_k)\|_{L^2([0, 1]^n, {\mathbb{R}}^m)} \\ &\leq \varepsilon + {\mathit{R}} +\varepsilon \end{align*} $ |
since, by periodicity,
We focalize now in the study of heteroclinic solutions which are odd in the first variable, hence we will consider a subset of
$ E^{odd} = \{u\in E \mid \text{$u$ is odd with respect to $x_1$} \}, $ |
In what follows, when we will consider functions
$ J^+(u) = \sum\limits_{p\geq 0} J_{p, 0}(u)\, . $ |
For any
$ \Gamma(v) = \{ u\in E^{odd} \mid \|u - v\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \to 0 \text{ as } p\to +\infty \} \subseteq \Gamma(-v, v)\, . $ |
In this setting we can rewrite Lemma 3.6 as follows.
Lemma 4.1. For every
We are going to look for minimizer of
$ \begin{equation} c(v) = \inf\limits_{u\in \Gamma(v)} J(u)\quad \text{ and }\quad{\mathcal{M}}(v) = \{u\in \Gamma(v) \mid J(u) = c(v)\}\, . \end{equation} $ | (10) |
Notice that for any
Lemma 4.2. For any
Moreover, note that, by assumption (
$ \begin{equation} c = \min\limits_{v\in{\mathcal{M}}_0} c(v) \end{equation} $ | (11) |
is well defined and the set
$ \begin{equation} {\mathcal{M}}_0^{min} = \{v \in{\mathcal{M}}_0 \mid c(v) = c \} \end{equation} $ | (12) |
is nonempty and consists of a finite number of elements. In particular, we have
$ \begin{equation} \min\limits_{ v\in {\mathcal{M}}_0\setminus {\mathcal{M}}_0^{min}}c(v) > c\, . \end{equation} $ | (13) |
The following lemma provides a concentration property for
Lemma 4.3. For any
Proof. Note that
To prove
$ \tilde u(x_{1}, y) = \begin{cases} u(x_{1}, y)&\hbox{if $x_{1}\in[0, p_0]$, }\\ u(x_{1}, y)(p_0+1-x_{1})+v_0(x_{1}, y)(x_{1}-p_0)& \hbox{if $x_{1}\in (p_0, p_0+1)$, }\\ v_0(x_{1}, y) &\hbox{if $x_{1}\in[p_0+1, +\infty)$} \end{cases} $ |
Hence,
$ \tfrac12 c\le\tfrac12c(v_0)\leq \tfrac12 J(\tilde u) = J^+(\tilde u) = J^+(u) -\sum\limits_{p = p_0}^{+ \infty} J_{p, 0}(u) + J_{p_{0}, 0}(\tilde u). $ |
By definition, on
$ \tfrac 12 c\leq \tfrac12 J(\tilde u) \leq J^+(u) -{\sum}_{p = p_0}^{+ \infty} J_{p, 0}(u) + \Lambda(r) \leq \tfrac 12 c -{\sum}_{p = p_0}^{+ \infty} J_{p, 0}(u) + \tfrac32 \Lambda(r). $ |
Then
By the previous lemma we get
Lemma 4.4. For any
Proof. Note that the existence of
As a direct consequence of Lemmas 4.3 and 4.4 we obtain the following concentration result.
Lemma 4.5. For any
Proof. The existence of
Finally,
We are now able to prove the existence of a minimum of
Theorem 4.6. Let
Proof. Let
$ \begin{equation} \|u_k -v\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \leq r_{1} \text{ for every } p\geq \tilde\ell(r_{1}). \end{equation} $ | (14) |
By Lemma 3.5, since
$ \begin{equation} \|u -v \|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)} \leq r_{1} \text{ for every } p\geq \tilde\ell(r_{1}). \end{equation} $ | (15) |
Therefore, by Lemma 3.6, we conclude that
By Theorem 4.6 we know that for every
Lemma 4.7. Given
$ \int_{{\mathbb{R}}\times[0, 1]^{n-1}} \nabla \bar u \cdot \nabla \psi + F_u(x, \bar u) \psi \, dx = 0\, . $ |
The proof can be adapted by the one of Lemma 3.3 of [4] or Lemma 5.2 of [6]. Therefore we get that any
Finally, we now study further compactness properties for the functional
$ L_{v}: W^{2, 2}([0, 1]^n, {\mathbb{R}}^m)\subset L^{2}([0, 1]^n, {\mathbb{R}}^m)\to L^{2}([0, 1]^n, {\mathbb{R}}^m)\, , $ |
$ L_{v}h = -\Delta h+F_{u, u}(\cdot, v(\cdot))h $ |
has spectrum which does not contain
(
$ J_{0}''(v)h\cdot h = \int_{[0, 1]^n}|\nabla h(x)|^{2}+F_{u, u}(x, v(x))|h(x)|^2\, dx\geq \alpha_{0}\| h\|_{L^{2}([0, 1]^n, {\mathbb{R}}^m)}^{2} $ |
for every
As a consequence of
Lemma 4.8. There exist
$ \begin{equation} \omega_{0}\|u-v\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)}^{2} \leq J_{p, 0}(u) \leq \omega_1\|u-v\|_{W^{1, 2}(T_{p, 0}, {\mathbb{R}}^m)}^{2}\, . \end{equation} $ | (16) |
Proof. Notice that, by (
$ \begin{align*} \int_{[0, 1]^n} |\nabla h(x)|^{2}+F_{u, u}(x, v(x))|h(x)|^2\, dx& \geq \alpha_{0}\| h\|_{L^{2}([0, 1]^n, {\mathbb{R}}^m)}^{2}\\&\geq -\alpha_{0}f_{0} \int_{[0, 1]^n}F_{u, u}(x, v(x))|h(x)|^2\, dx, \end{align*} $ |
where
$ \int_{[0, 1]^n}\frac 1{1+\alpha_{0}f_{0}}|\nabla h(x)|^{2}\, dx+ \int_{[0, 1]^n} F_{u, u}(x, v(x))|h(x)|^2 \, dx \geq 0\, . $ |
We conclude that
$ J_0''(v)h\cdot h = \int_{[0, 1]^n} |\nabla h(x)|^{2}+ F_{u, u}(x, v(x))|h(x)|^2 \, dx \geq \frac{\alpha_{0}f_{0}}{1+\alpha_{0}f_{0}}\|\nabla h\|^{2}_{L^{2}([0, 1]^n, {\mathbb{R}}^m)} $ |
and so, using
$ \begin{equation*} \label{eq:**bis} J_{0}''(v)h\cdot h\geq 3\omega_{0}\|h\|_{W^{1, 2}([0, 1]^{n}, {\mathbb{R}}^m)}^{2}, \quad\forall\, h\in W^{1, 2}([0, 1]^{n}, {\mathbb{R}}^m). \end{equation*} $ |
Since by Taylor's formula we have
$ \begin{equation} J_{0}(u)-c_{0}\geq \omega_{0} \|u-v\|_{W^{1, 2}([0, 1]^{n}, {\mathbb{R}}^m)}^{2}. \end{equation} $ | (17) |
On the other hand, again Taylor's expansion gives us
$ \begin{align*} J_{0}(u)-c_{0}& = \tfrac12J_{0}''(v)(u-v)\cdot(u-v)+o(\|u-v\|_{W^{1, 2}([0, 1]^{n}, {\mathbb{R}}^m)}^{2})\\ & = \tfrac12 \|\nabla(u-v)\|_{L^{2}([0, 1]^{n}, {\mathbb{R}}^m)}^{2}+\tfrac12\int_{[0, 1]^{n}}F_{u, u}(x, v(x))|u(x)-v(x)|^{2}\, dx\\ &\phantom{ = } + o(\|u-v\|_{W^{1, 2}([0, 1]^{n}, {\mathbb{R}}^m)}^{2})\\ &\le \tfrac12 \|\nabla(u-v)\|_{L^{2}([0, 1]^{n}, {\mathbb{R}}^m)}^{2}+\tfrac1{2f_{0}}\|u-v\|_{L^{2}([0, 1]^{n}, {\mathbb{R}}^m)}^{2}\\ &\phantom{\le} +o(\|u-v\|_{W^{1, 2}([0, 1]^{n}, {\mathbb{R}}^m)}^{2}) \end{align*} $ |
and we deduce that there exists
$ \begin{equation} J_{0}(u)-c_{0}\le\omega_{1}\|u-v\|_{W^{1, 2}([0, 1]^{n}, {\mathbb{R}}^m)}^{2}. \end{equation} $ | (18) |
The lemma follows by periodicity from (17) and (18) recalling that
Remark 3. In connection with Remark 1, arguing as in Remark 3.8 of [2], we can prove that (16) holds true also for the functional
$ \begin{equation} \omega_{0}\|u-v\|_{W^{1, 2}(\sigma_{0}, {\mathbb{R}}^m)}^{2}\le J_{\sigma_0}(u)\le \omega_{1}\|u-v\|_{W^{1, 2}(\sigma_{0}, {\mathbb{R}}^m)}^{2}. \end{equation} $ | (19) |
Hence, recalling the definition (10), plainly adapting the proof of Lemma 3.10 in [2], we obtain
Lemma 4.9. Let
In this section we prove our main theorem. To this aim, following and adapting the argument in [2], we will first prove the existence of a solution of (PDE) on the unbounded triangle
$ {\mathcal{T}} = \{ x\in {\mathbb{R}}^n \mid x_2 \geq |x_1| \} $ |
satisfying Neumann boundary conditions on
$ {\mathcal{M}}: = \bigcup\limits_{v\in{\mathcal{M}}_0^{min}}{\mathcal{M}}(v). $ |
Then, by recursive reflections with respect to the hyperplanes
Let us introduce now some notations. We define the squares
$ T_{p, k}: = [p, p+1] \times [k, k+1] \times [0, 1]^{n-2}\, , \quad p\in{\mathbb{Z}}, \, k\in{\mathbb{N}} $ |
and the horizontal strips
$ {\mathcal{S}}_k : = {\mathbb{R}} \times [k, k+1] \times [0, 1]^{n-2} = \bigcup\limits_{p\in{\mathbb{Z}}} T_{p, k}\, , \quad k\in{\mathbb{N}} $ |
The intersection between the strip
$ {\mathcal{T}}_k : = {\mathcal{S}}_k\cap {\mathcal{T}} = \left(\bigcup\limits_{p = -k}^{k-1} T_{p, k}\right) \cup \tau_k $ |
where
For every
$ \begin{align*} E_{k} = \{u\in W^{1, 2}({\mathcal{T}}_k, {\mathbb{R}}^m) \mid u& \text{ is odd in } x_1, \, \text{1-periodic in }x_3, ..., x_n \} \end{align*} $ |
and the normalized functionals on the bounded strips
$ J_{k}(u) = \int_{{\mathcal{T}}_{k}} L(u) \, dx -(2k+1)c_0 = \sum\limits_{p = -k}^{k-1} J_{p, k}(u) + \int_{\tau_k} L(u) \, dx-c_0\, , \quad k\in{\mathbb{N}}\, , $ |
for every
Remark 4. Notice that
Then, we can set
$ c_{k} = \inf\limits_{E_{k}} J_{k}(u) \quad\text{ and }\quad {\mathcal{M}}_{k} = \{u\in E_{k} \mid J_{k}(u) = c_{k}\}\, . $ |
We plainly obtain that
Lemma 5.1. We have
We can now introduce on the set
$ {\mathcal{E}} = \{u\in W^{1, 2}_{loc}({\mathcal{T}}, {\mathbb{R}}^m) \mid u \text{ is odd in } x_1, \, u_i(x)\ge0 \text{ for } x_1\geq 0 \, , \forall i = 1, ..., m \}. $ |
the functional
$ {\mathcal{J}}(u) = \sum\limits_{k = 0}^{+\infty} \left( J_{k}(u) - c_{k}\right)\, . $ |
Notice that
Lemma 5.2. If
We now look for a minimum of the functional
$ \tilde c = \inf\limits_{{\mathcal{E}}} {\mathcal{J}}(u) \quad \text{and} \quad \widetilde{{\mathcal{M}}} = \{u\in {\mathcal{E}} \mid {\mathcal{J}}(u) = \tilde c \, \}\, . $ |
Lemma 5.2, gives that
Proposition 1. We have
Arguing as in [2,4,6] (see e.g. the argument in Lemma 3.3 of [4] or Lemma 5.2 of [6]), we can prove that if
In the next lemma we finally characterise the asymptotic behavior of the solution
Lemma 5.3. Let
$ \lim\limits_{k\to +\infty} {\rm dist}_{W^{1, 2}({\mathcal{T}}_k, {\mathbb{R}}^m)} (w, {\mathcal{M}}(\bar v)) = 0. $ |
Proof. Let
$ \begin{equation} \lim\limits_{k\to+\infty} \|w-\bar v\|_{W^{1, 2}(T_{k, k}, {\mathbb{R}}^m)} = 0\, . \end{equation} $ | (20) |
We have
$ \|w-v_k\|_{W^{1, 2}(T_{p_k, k}, {\mathbb{R}}^m)} \to 0\, , \text{ as } k\to +\infty. $ |
Now, for every
$ w_k(x_1, x_2, y) = \begin{cases} w(x_1, x_2, y) & \text{if } 0\leq x_1 \leq p_k\\ w(x_1, x_2, y)(p_k-x_1+1)\\ \phantom{w(x_1, x_2, y)} +v_k(x_1, x_2, y)(x_1-p_k) & \text{if } p_k < x_1 \leq p_k+1\\ v_k(x_1, x_2, y) & \text{if } x_1 > p_k+1\\ \text{odd extended for } x_1 < 0 \end{cases} $ |
A computation gives
$ \lim\limits_{k\to+\infty} J_{p_k, k}(w_k) = 0\, . $ |
Now, consider
$ c \leq J(w_k^{\downarrow}) = 2 \sum\limits_{p = 0}^{p_k} J_{p, 0}(w_k^{\downarrow}) = 2 \sum\limits_{p = 0}^{p_k-1} J_{p, k}(w) + 2J_{p_k, k}(w_k) \leq J_{k}(w) + 2J_{p_k, k}(w_k)\, . $ |
and hence, since
$ J_{k}(w) -J_{k}(w_k) = 2 \sum\limits_{p = p_k}^{k-1} J_{p, k}(w) + \int_{\tau_k} L(w) \, dx - c_0 - 2 J_{p_k, k}(w_k) $ |
and since
$ \begin{equation} 2 \sum\limits_{p = p_k}^{k-1} J_{p, k}(w) + \int_{\tau_k} L(w) \, dx - c_0 \to 0\, , \text{ as } k\to +\infty\, . \end{equation} $ | (21) |
In particular
$ \begin{equation} \|w-v_k\|_{W^{1, 2}(T_{k, k}, {\mathbb{R}}^m)}\to 0\, . \end{equation} $ | (22) |
Let us now consider, for every
$ \omega_k(x_1, x_2, y) = \begin{cases} w(x_1, x_2, y) & \text{if } 0\leq x_1 \leq k\\ w(x_1, x_2, y)(k-x_1+1)\\ \phantom{w(x_1, x_2, y)}+v_k(x_1, x_2, y)(x_1-k) & \text{if } k < x_1 \leq k+1\\ v_k(x_1, x_2, y) & \text{if } x_1 > k+1\\ \text{odd extended for } x_1 < 0 \end{cases} $ |
Arguing as above
$ c \leq J(\omega_k^{\downarrow}) \leq J_{k}(w) + 2 J_{k, 0}(\omega_k^{\downarrow}) = c + o(1) \, , $ |
thus giving
We now prove that the sequence
As a consequence, by definition of
$ \begin{align} &\|w-v_k\|_{W^{1, 2}(T_{p, k}, {\mathbb{R}}^m)} \leq r_1 < \tfrac{r_0}{4} \end{align} $ | (23) |
provided that
$ \begin{equation} \|w-\bar v\|_{W^{1, 2}(T_{ p_0, k}, {\mathbb{R}}^m)} \leq \tfrac{r_0}{4} \text{ for every } k\geq p_0+1\, . \end{equation} $ | (24) |
Finally, recalling (6), since both (23) and (24) holds, we must have
Moreover, we have proved that
$ \begin{equation*} \lim\limits_{k\to +\infty} \| \omega_k^{\downarrow} - \bar u \|_{W^{1, 2}({\mathcal{S}}_0, {\mathbb{R}}^m)} = 0\, . \end{equation*} $ |
Hence we obtain that
$ \begin{equation} {\rm dist}_{W^{1, 2}({\mathcal{S}}_0, {\mathbb{R}}^m)}( \omega_k^{\downarrow} , {\mathcal{M}}(\bar v))\to 0\quad\text{as }k\to +\infty. \end{equation} $ | (25) |
Finally, for every
$ \begin{align*} \|w-u\|_{W^{1, 2}({\mathcal{T}}_k, {\mathbb{R}}^m)}^2 & = 2\|w-u\|_{W^{1, 2}(\cup_{p = 0}^{k-1}T_{p, k}, {\mathbb{R}}^m)}^2 + \|w- u\|_{W^{1, 2}(\tau_k, {\mathbb{R}}^m)}^2\\ & = \|\omega_k^{\downarrow}- u\|_{W^{1, 2}({\mathcal{S}}_0, {\mathbb{R}}^m)}^2 - 2 \|\omega_k^{\downarrow}-u\|_{W^{1, 2}(T_{k, k}, {\mathbb{R}}^m)}^2\\ &\phantom{ = } + \|w- u\|_{W^{1, 2}(\tau_k, {\mathbb{R}}^m)}^2\\ &\leq \|\omega_k^{\downarrow}- u\|_{W^{1, 2}({\mathcal{S}}_0, {\mathbb{R}}^m)}^2 + \|w- u\|_{W^{1, 2}(T_{k, k}, {\mathbb{R}}^m)}^2\, . \end{align*} $ |
Notice that since
$ \begin{multline*} \|w- u\|_{W^{1, 2}(T_{k, k}, {\mathbb{R}}^m)}^2 \leq \|w-\bar v\|_{W^{1, 2}(T_{k, k}, {\mathbb{R}}^m)}^2 \\ + \| u-\bar v\|_{W^{1, 2}(T_{k, k}, {\mathbb{R}}^m)}^2 \to 0\, , \text{ as } k\to +\infty\, . \end{multline*} $ |
Hence, by (25), we conclude
$ \lim\limits_{k\to +\infty} {\rm dist}_{W^{1, 2}({\mathcal{T}}_k, {\mathbb{R}}^m)} (w, {\mathcal{M}}(\bar v)) = 0 \, . $ |
The previous lemma gives the asymptotic estimate in Theorem 1.1 since
We can conclude now the proof of Theorem 1.1 proving the sign property
Finally, for any
[1] |
Adey WH, Luckett C, Jensen K (1993) Phosphorus removal from natural waters using controlled algal production. Restor Ecol 1: 29–39. doi: 10.1111/j.1526-100X.1993.tb00006.x
![]() |
[2] | Alvén B, Eriksson L, Persson S, et al. (2003) Salix As A Metal Remediator - An Exciting Challenge (Salix Som Metallsanerare - En Spännande Utmaning). Svenskt Vatten 1/2003, Swedish Water and Wastewater Association (SWWA), Stockholm, Sweden (In Swedish), 32–33. |
[3] | Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biot 77(1): 23–35. |
[4] | Argun H, Kargi F, Kapdan IK, et al. (2008) Biohydrogen production by dark fermentation of wheat powder solution: effects of C/N and C/P ratio on hydrogen yield and formation rate. Int J Hydrogen Energ 33(7): 1813–1819. |
[5] | Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energ Combust 34(5): 551–573. |
[6] | Balat M, Kırtay E, Balat H (2009a) Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 2: Gasification systems. Energ Convers Manage 50(12): 3158–3168. |
[7] | Balat M, Kırtay E, Balat H (2009b) Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energ Convers Manage 50(12): 3147–3157. |
[8] | Börjesson P, Berndes G, Fredriksson F, et al. (2002) Multi.functional bioenergy plantations (Multifunktionella bioenergiodlingar). Report EO-02/4 (In Swedish, English summary), National Swedish Energy Agency, Eskilstuna, Sweden. |
[9] | Borjesson P, Goran B (2006) The prospects for willow plantations for wastewater treatment in Sweden. Biomass Bioenerg 30 (5): 428–438. |
[10] |
Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, and fermenters. Prog Ind Microbiol 35: 313–21. doi: 10.1016/S0079-6352(99)80123-4
![]() |
[11] | Bridgwater T (2006) Biomass for energy. J Sci Food Agr 86(12): 1755–1768. |
[12] |
Carvalho A, Meireles L, Malcata F (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Progr 22: 1490–506. doi: 10.1002/bp060065r
![]() |
[13] | Chatzaki MK, Tzanakakis VA, Mara DD, et al. (2011) Irrigation of castor bean (Ricinus communis L.) and sunflower (Helianthus annus L.) plant species with municipal wastewater effluent: impacts on soil properties and seed yield. Water 3(4): 1112–1127. |
[14] |
Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25: 294–306. doi: 10.1016/j.biotechadv.2007.02.001
![]() |
[15] |
Christenson L, Sims RC (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29: 686–702. doi: 10.1016/j.biotechadv.2011.05.015
![]() |
[16] | Claassen PAM, Van Lier JB, Contreras AML, et al. (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biot 52(6): 741–755. |
[17] | Del Porto D, Steinfeld C (2008) The green paradigm. Reusing the Resource, Concord: Ecowaters Books. |
[18] | Demirbas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energ Convers Manage 49(8): 2106–2116. |
[19] | Dürre (2008) Fermentative Butanol Production. Ann NY Acad Sci 1125(1): 353–362. |
[20] | EISA (2007) Energy Independence and Security Act of 2007. Washington, DC. H.R. 6 (110th). Last Updated June 1, 2015. Available from: http://www2.epa.gov/laws-regulations/summary-energy-independence-and-security-act. |
[21] | Elitzak H (2001) Food marketing costs at a glance. Food Rev 24(3): 47–48. |
[22] |
Ellis JT, Hengge HH, Sims RC, et al. (2012) Acetone, butanol, and ethanol production from wastewater algae. Bioresource Technol 111: 491–495. doi: 10.1016/j.biortech.2012.02.002
![]() |
[23] | Friedman AA, Peaks DA, Nichols RL (1977) Algae separation from oxidation pond effluents. J Water Pollut Con F 49: 111–119. |
[24] | Goldstein R, Smith W (2002) Water & Sustainability (Volume 4): US Electricity Consumption For Water Supply & Treatment - The Next Half Century. Electric Power Research Institute (EPRI), Palo Alto, CA. |
[25] | Gray NF (2004) Biology of Wastewater Treatment 2nd Edition. London: Imperial College Press, 1444. |
[26] | Griffiths E (2009) Removal and utilization of wastewater nutrients for algae biomass and biofuels. [MS Thesis], Logan: Utah State University. |
[27] |
Gu B, Liu D, Wu X, et. al. (2011) Utilization of waste nitrogen for biofuel production in China. Renew Sust Energ Rev 15: 4910–4916. doi: 10.1016/j.rser.2011.07.062
![]() |
[28] | Gupta RB, Demirbas A (2010) Gasoline, Diesel and Ethanol Biofuels from Grasses and Plants, 1st ed. Cambridge: Cambridge University Press, 246. |
[29] | Hartmann H, Strehler A (1995) The role of biomass (Die Stellung der Biomasse). Schriften-reihe ‘Nachwachsende Rohstoffe’, Band 3. Abschluβbericht für das Bundesministerium für Ernähr-ung, Landwirtschaft und Forsten, Landwirtschaftsverlag Gmbh, Münster, Germany (In German). |
[30] | Hasselgren, K (2003). Use and Treatment of Municipal Waste Products in Willow Biomass Plantations. Report No. 3242, Dept. of Water Resources Engineering, Lund Institute of Technology, Lund: Lund University, 67. |
[31] | Hasselgren K, Larsson S, Ahman I, et al. (2007) Short-rotation willow biomass plantations irrigated and fertilized with wastewaters—results from a four year multi-disciplinary field project in Sweden, France, Northern Ireland, and Greece. SWECO VIAK AB, Malmo, Sweden. Summary Report to the European Commission DG VI, Agriculture, 48. |
[32] |
Hoffmann JP (1998) Wastewater treatment with suspended and nonsuspended algae. J Phycol 34: 757–63. doi: 10.1046/j.1529-8817.1998.340757.x
![]() |
[33] | IPCC (2006) Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories. World Health Organization and the United Nations Environment Program. Available from: http://www.ipcc nggip.iges.or.jp/public/2006gl/index.html. |
[34] | Kalia VC (2007) Microbial Treatment of Domestic and Industrial Wastes for Bioenergy Production. Applied Microbiology (e-Book) NISCAIR, CSIR, New Delhi. Available from: http://nsdl.niscair.res.in/bitstream/123456789/650/1/DomesticWaste.pdf. |
[35] |
Klausmeier CA, Litchman E, Daufresne T, et al. (2004) Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429: 171–174. doi: 10.1038/nature02454
![]() |
[36] | Knud-Hansen CF, McElwee K, Baker J, et al. (1998) Pond fertilization: ecological approach and practical application. Pond Dynamics/Aquaculture Collaborative Research Support Program, Oregon State University, Corvallis, OR. |
[37] | Liu SX (2007) Food and Agricultural Wastewater Utilization and Treatment, 1st ed. Hoboken: Wiley-Blackwell, 296. |
[38] | Lundquist TJ, Woertz IC, Quinn NWT, et al. (2010) A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute, Berkeley, CA, 178. |
[39] |
Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14: 217–32. doi: 10.1016/j.rser.2009.07.020
![]() |
[40] | McGinley S (2007) Sweet sorghum into ethanol. Arizona Agricultural Experiment Station Research Report, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ. |
[41] | McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresource Technol, 83(1): 47–54. |
[42] |
McLaughlin SB, Walsh ME (1998) Evaluating environmental consequences of producing herbaceous crops for bioenergy. Biomass Bioenerg 14: 317–324. doi: 10.1016/S0961-9534(97)10066-6
![]() |
[43] | Meher Kotay S, Das D (2008) Biohydrogen as a renewable energy resource–Prospects and potentials. Int J Hydrogen Energ, 33(1): 258–263. |
[44] | Middlebrooks EJ, Porcella DB, Gearheart RA, et al. (1974) Techniques for algae removal from wastewater stabilization ponds. J Water Pollut Con F: 2676–95. |
[45] |
Molina Grima E, Belarbi E, Acién Fernández FG, et al. (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20: 491–515. doi: 10.1016/S0734-9750(02)00050-2
![]() |
[46] | Mondala A, Liang K, Toghiani H, et al. (2009) Biodiesel production by in situ transesterification of municipal primary and secondary sludges. Bioresource Technol, 100(3): 1203–1210. |
[47] |
Mulbry WW, Wilkie AC (2001) Growth of benthic freshwater algae on dairy manures. J Appl Phycol 13: 301–6. doi: 10.1023/A:1017545116317
![]() |
[48] | Mulbry W, Westhead EK, Pizarro C, et al. (2005) Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresource Technol.96: 451–8. |
[49] | Mulbry W, Kondrad S, Buyer J (2008) Treatment of dairy and swine manure effluents using freshwater algae: fatty acid content and composition of algal biomass at different manure loading rates. J Appl Phycol 20: 1079–85. |
[50] | NAS (2009) Liquid transportation fuels from coal and biomass: technological status, costs, and environmental impacts. National Academy of Science, Washington, DC: National Academies Press. Available from: http://sites.nationalacademies.org/xpedio/groups/energysite/documents/webpage/energy_054519.pdf on January 14, 2013. |
[51] | Niyogi KK (2003) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Phys 50: 333–345. |
[52] |
Patwardhan AW (2003) Rotating biological contactors: a review. Ind Eng Chem Res 42: 2035–51. doi: 10.1021/ie0200104
![]() |
[53] |
Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technol 102: 17–25. doi: 10.1016/j.biortech.2010.06.035
![]() |
[54] | Rawat R, Kumar RT, Mutanda T, et al. (2011) Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energ 88 (10): 3411–3424. |
[55] | Razon LF, Tan RR (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis..Appl Energ 88(10): 3507–3514. |
[56] | Round FE (1984) The Ecology of Algae. Cambridge: Cambridge University Press, 664. |
[57] | Salerno M, Nurdogan Y, Lundquist TJ (2009) Biogas production from algae biomass harvested at wastewater treatment ponds. 2009 Bioenergy Engineering Conference. ASABE conference presentation; Oct. Paper No. Bio098023. |
[58] | Sheehan J, Dunahay T, Benemann J, et al. (1998) A look back at the US Department of energy's aquatic species program—biodiesel from algae. Report No. NREL/TP-580-24190, prepared for U.S. Department of Energy's Office of Fuels Development. National Renewable Energy Laboratory (NREL), Golden, CO. |
[59] |
Shen Y, Yuan W, Pei ZJ, et al. (2009) Microalgae mass production methods. T ASABE 52: 1275–87. doi: 10.13031/2013.27771
![]() |
[60] | Stumm W, Morgan J (1996) Aquatic chemistry: an introduction emphasizing chemical equilibria. In Natural Waters. 3rd Ed., New York: Wiley-Interscience, 1040. |
[61] | Tchobanoglous G, Burto FL, Stensel HD (2015) Wastewater Engineering: Treatment and Reuse, 5th Ed., McGraw-Hill Science/Engineering/Math, Hightstown, NJ, 1848. |
[62] |
Teixeira MR, Rosa MJ (2006) Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosa: part I: the key operating conditions. Sep Purif Technol 52: 84–94. doi: 10.1016/j.seppur.2006.03.017
![]() |
[63] | The Raleigh Telegram (2012) Sunflower seeds to partially power Raleigh’s wastewater plant’s biodiesel needs. The Raleigh Telegram, July 11, 2012, Raleigh, NC. |
[64] | Torpey WN, Heukelekian H, Kaplovsky AJ, et al. (1971) Rotating disks with biological growths prepare wastewater for disposal or reuse. J Water Pollut Con F 43: 2181–8. |
[65] | U.S. CBO (2002) Future investment in drinking water and wastewater infrastructure. Washington D.C: U.S. Congressional Budget Office, Nov 2002. Available from: http://www.cbo.gov/doc.cfm?index=3983. |
[66] | U.S. DOE (1985) Review and evaluation of immobilized algae systems for the production of fuels from microalgae. Report No. SERI/STR-231-2798. Solar Energy Research Institute, U.S. Department of Energy, Alexandria, VA. |
[67] | U.S. DOE (2011) U.S. Biomass as feedstock for a bioenergy and bioproducts industry: an update to the billion-ton annual supply. Perlack B, Stokes B, et al., USDA/DOE, DOE/GO-102005-2135, U.S. Department of Energy, Washington, DC. Available from: http://www.biomassboard.gov/pdfs/btu_board_june.pdf. |
[68] | IRENA (2014) Global bioenergy supply and demand projections. A Working Paper for REmap 2030. International Renewable Energy Agency. Available from: http://www.irena.org/remap/IRENA_REmap_2030_Biomass_paper_2014.pdf. |
[69] | U. S. DOE (2014) Bioenergy Technologies Office Multi-Year Program Plan. Energy Efficiency & Renewable Energy. DOE/EE-1108. Available from: http://www.energy.gov/sites/prod/files/2014/07/f17/mypp_july_2014.pdf. |
[70] | U.S. EIA (2010) EIA Annual Energy Outlook 2010 with Projections to 2035. DOE/EIA-0383, U.S. Energy Information Administration, Washington, DC. |
[71] | U.S. EIA (2011) Annual Energy Review 2011. DOE/EIA-0384. U.S. Energy Information Administration, Washington, DC. |
[72] | U.S.EIA (2012a) Annual Energy Outlook 2012. U.S. Energy Information Administration, Washington, DC. |
[73] | U.S. EIA (2012b). EIA’s annual energy outlook 2012 - a comprehensive assessment of the U.S. energy picture, by Howard Gruenspecht, Acting Administrator of the U.S. EIA. National Governors Association, May 30, Washington, DC. Available from: http://www.nga.org/files/live/sites/NGA/files/pdf/1206PolicyInstituteGruenspecht.pdf. |
[74] | EPA (2013) Emerging technologies for wastewater treatment and in-plant wet weather management. Tetra Tech, Inc. Fairfax, Virginia. EPA 832-R-12-011. Available from: http://water.epa.gov/scitech/wastetech/upload/Emerging-Technologies-Report-2.pdf. |
[75] | Fligger K (2011) Clean watersheds needs survey 2012 update. U.S. EPA, Office of Wastewater Management. Available from: http://www.cifanet.org/documents/11work/KarenFligger.pdf. |
[76] | EPA (2015) Municipal wastewater treatment facilities. combined heat and power partnership. Last updated on 2/14/2015. Available from: http://www.epa.gov/chp/markets/wastewater.html. |
[77] | EPA (2015) Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2013. EPA 430-R-15-004. U.S. Environmental Protection Agency, Washington, DC. Available from: http://www.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2015-Main-Text.pdf. |
[78] | USDA (2015) Cattle. National Agricultural Statistics Service, Agricultural Statistics Board, U.S. Department of Agriculture, Washington, DC. Available from: http://usda.mannlib.cornell.edu/usda/current/Catt/Catt-07-24-2015.pdf. |
[79] | Wang B, Lan C, Courchesne N, et al. (2010) Microalgae for biofuel production and CO2 sequestration. Nova Science Publishers, Hauppauge, NY. |
[80] | Wiesmann U, Choi IS, Dombrowski, EM (2006) Fundamentals of biological wastewater treatment, 1st ed. Wiley-VCH, Weinheim, Germany, 362 pp. |
[81] | Wigmosta MS, Coleman AM, Skaggs RJ, et al. (2011) National microalgae biofuel productio. potential and resource demand. Water Resour Res 47: 13. |
[82] |
Wilkie AC, Mulbry WW (2002) Recovery of dairy manure nutrients by benthic freshwater algae. Bioresource Technol 84: 81–91. doi: 10.1016/S0960-8524(02)00003-2
![]() |
[83] | Williams C, Biswas, TK, Black I, et al. (2008) Pathways to prosperity: second generation biomass crops for biofuels using saline lands and wastewater. J Agric Sci 21: 28–34. |
[84] | Wuertz S, Bishop PL, Wilderer PA (2003) Biofilms in wastewater treatment: an interdisciplinary approach. London: IWA Publishing, 401. |
[85] |
Zeevalkink J, Kelderman P, Visser D, et al. (1979) Physical mass transfer in a rotating disc gas-liquid contactor. Water Res 13: 913–9. doi: 10.1016/0043-1354(79)90228-8
![]() |
[86] | U.S. EIA (2015) Annual energy outlook 2015 with projections to 2040. DOE/EIA-0383, U.S. Energy Information Administration, Washington, DC. |
[87] | IEA (2011) Technology roadmaps biofuels for transport, international energy agency. 9 rue de la Fédération 75739 Paris Cedex 15, France. Available from: http://www.iea.org/publications/freepublications/publication/biofuels_roadmap_web.pdf. |
[88] | Multi-Year Program Plan (2014) Bioenergy Technologies Office. U. S. Department of Energy, Energy Efficiency & Renewable Energy. Available from: http://www.energy.gov/sites/prod/files/2014/07/f17/mypp_july_2014.pdf. |
1. | Maaz Bahauddin Naveed, Data Evaluation and Modeling of Billet Characteristics in the Steel Industry, 2025, 2181, 10.38124/ijisrt/25apr652 | |
2. | Renan J. S. Isneri, César E. Torres Ledesma, Saddle Solutions for Allen–Cahn Type Equations Involving the Prescribed Mean Curvature Operator, 2025, 1424-9286, 10.1007/s00032-025-00418-y |