
Citation: Zongyuan Zhu, Rachael Simister, Susannah Bird, Simon J. McQueen-Mason, Leonardo D. Gomez, Duncan J. Macquarrie. Microwave assisted acid and alkali pretreatment of Miscanthus biomass for biorefineries[J]. AIMS Bioengineering, 2015, 2(4): 449-468. doi: 10.3934/bioeng.2015.4.449
[1] | Pannathon Kreabkhontho, Watchara Teparos, Thitiya Theparod . Potential for eliminating COVID-19 in Thailand through third-dose vaccination: A modeling approach. Mathematical Biosciences and Engineering, 2024, 21(8): 6807-6828. doi: 10.3934/mbe.2024298 |
[2] | Cheng-Cheng Zhu, Jiang Zhu . Spread trend of COVID-19 epidemic outbreak in China: using exponential attractor method in a spatial heterogeneous SEIQR model. Mathematical Biosciences and Engineering, 2020, 17(4): 3062-3087. doi: 10.3934/mbe.2020174 |
[3] | Fang Wang, Lianying Cao, Xiaoji Song . Mathematical modeling of mutated COVID-19 transmission with quarantine, isolation and vaccination. Mathematical Biosciences and Engineering, 2022, 19(8): 8035-8056. doi: 10.3934/mbe.2022376 |
[4] | Rahat Zarin, Usa Wannasingha Humphries, Amir Khan, Aeshah A. Raezah . Computational modeling of fractional COVID-19 model by Haar wavelet collocation Methods with real data. Mathematical Biosciences and Engineering, 2023, 20(6): 11281-11312. doi: 10.3934/mbe.2023500 |
[5] | Xinyu Bai, Shaojuan Ma . Stochastic dynamical behavior of COVID-19 model based on secondary vaccination. Mathematical Biosciences and Engineering, 2023, 20(2): 2980-2997. doi: 10.3934/mbe.2023141 |
[6] | Xiaojing Wang, Yu Liang, Jiahui Li, Maoxing Liu . Modeling COVID-19 transmission dynamics incorporating media coverage and vaccination. Mathematical Biosciences and Engineering, 2023, 20(6): 10392-10403. doi: 10.3934/mbe.2023456 |
[7] | A. Q. Khan, M. Tasneem, M. B. Almatrafi . Discrete-time COVID-19 epidemic model with bifurcation and control. Mathematical Biosciences and Engineering, 2022, 19(2): 1944-1969. doi: 10.3934/mbe.2022092 |
[8] | Fen-fen Zhang, Zhen Jin . Effect of travel restrictions, contact tracing and vaccination on control of emerging infectious diseases: transmission of COVID-19 as a case study. Mathematical Biosciences and Engineering, 2022, 19(3): 3177-3201. doi: 10.3934/mbe.2022147 |
[9] | Beatriz Machado, Liliana Antunes, Constantino Caetano, João F. Pereira, Baltazar Nunes, Paula Patrício, M. Luísa Morgado . The impact of vaccination on the evolution of COVID-19 in Portugal. Mathematical Biosciences and Engineering, 2022, 19(1): 936-952. doi: 10.3934/mbe.2022043 |
[10] | Saima Akter, Zhen Jin . A fractional order model of the COVID-19 outbreak in Bangladesh. Mathematical Biosciences and Engineering, 2023, 20(2): 2544-2565. doi: 10.3934/mbe.2023119 |
Topological indices have become an important research topic associated with the study of their mathematical and computational properties and, fundamentally, for their multiple applications to various areas of knowledge (see, e.g., [2,3,4,5,6,7,8,9]). Within the study of mathematical properties, we will contribute to the study of the optimization problems involved with topological indices (see, e.g., [10,11,12,13,14,15,16,17,18]).
In [19,20] several degree-based topological indices, called adriatic indices, were presented; one of them is the inverse sum indeg index $ IS\!I $. It is important to note that this index was selected as one of the most predictive, in particular associated with the total surface area of the isomers of octane.
Let $ G $ be a graph and $ E(G) $ the set of all edges in $ G $, denote by $ uv $ the edge of the graph $ G $ with vertices $ u, v $ and $ d_z $ is the degree of the vertex $ z $. the $ ISI $ index is defined by
$ IS\!I(G) = \sum\limits_{uv\in E(G)} \frac{1}{\frac{1}{d_u} + \frac{1}{d_v}} = \sum\limits_{uv\in E(G)} \frac{d_u\, d_v}{d_u + d_v} \, . $ |
Nowadays, this index has become one of the most studied from the mathematical point of view (see, e.g., [21,22,23,24,25,26,27]). We study, here, the mathematical properties of the variable inverse sum deg index defined, for each $ a \in \mathbb{R} $, as
$ IS\!D_a(G) = \sum\limits_{uv \in E(G)} \frac{1}{d_u^a + d_v^a} \, . $ |
Note that $ IS\!D_{-1} $ is the inverse sum indeg index $ ISI $.
This research is motivated, in general, by the theoretical-mathematical importance of the topological indices and by their applicability in different areas of knowledge (see [28,29,30]). Additionally, in particular, by the work developed by Vukičević entitled "Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index" (see [1]), where several open problems on the topological index $ IS\!D_a $ were proposed. The novelty of this work is given in two main directions. The first one is associated with the solution of some of the problems posed in [1]. The second one is associated with the development of new optimization techniques and procedures related to the monotony and differentiation of symmetric functions, which allowed us to solve extremal problems and to present bounds for $ IS\!D_a $. Although, these techniques can be extended or applied in a natural way to obtain new relations and properties of other topological indices, it should be noted that their applicability requires the monotony of the function that determines the index to be studied.
In Section 2, we find optimal bounds and solve extremal problems associated with the topological index $ IS\!D_a $, with $ a < 0 $, for several families of graphs. In Proposition 4, we solve the extremal problems for connected graphs with a given number of vertices. Theorem 6 and Remark 1 solve these problems for graphs with a given number of vertices and minimum degree; similarly, Theorems 8 and 9 present solutions to extremal problems in connected graphs with a given number of vertices and maximum degree. In this direction, in Theorem 5, Proposition 7 and Theorem 10, we present optimal bounds for the studied index.
In Section 3 of this research, a QSPR study related to the $ IS\!D_a $ index in polyaromatic hydrocarbons is performed using experimental data. First, we determine the value of $ a $ that maximizes the Pearson's correlation coefficient between this index, and each of the studied physico-chemical properties. Finally, models for these properties are constructed using the simple linear regression method. A discussion of the results obtained is presented in Section 4, and some open problems for future research on this topic are raised.
In this research, $ G = (V (G), E (G)) $ denotes an undirected finite simple graph without isolated vertices. By $ n $, $ m $, $ \Delta $ and $ \delta $, we denote the cardinality of the set of vertices of $ G $, the cardinality of the set of edges of $ G $, its maximum degree and its minimum degree, respectively. Thus, we have $ 1 \le \delta \le \Delta < n $. We denote by $ N(u) $ the set of neighbors of the vertex $ u \in V(G) $.
Suppose $ \delta < \Delta $, we say that a graph $ G $ is $ (\delta, \Delta) $-quasi-regular if it contains a vertex $ w $, such that $ \delta = d_w $ and $ \Delta = d_z $ for every $ z \in V(G) \setminus \{w\} $; $ G $ is $ (\delta, \Delta) $-pseudo-regular if it contains a vertex $ w $, such that $ \Delta = d_w $ and $ \delta = d_z $ for every $ z \in V(G) \setminus \{w\} $.
In [31] appears the following result.
Lemma 1. Let $ k $ be an integer, such that $ 2 \le k < n $.
$ (1) $ If $ n k $ is even, then there exists a $ k $-regular graph that is connected and has $ n $ vertices.
$ (2) $ If $ n k $ is odd, then there exist a $ (k, k-1) $-quasi-regular and a connected $ (k+1, k) $-pseudo-regular graphs, which are connected and have $ n $ vertices.
The following result is basic to the development of this work.
Lemma 2. For each $ a < 0 $, the function $ f: \mathbb{R}^+ \times \mathbb{R}^+ \rightarrow \mathbb{R}^+ $ given by
$ f(x, y) = \frac1{x^a + y^a} $ |
is strictly increasing in each variable.
Proof. Since $ a < 0 $, we have
$ \frac{\partial f}{\partial x}(x, y) = \frac{-ax^{a-1}}{(x^a+y^a)^2} > 0. $ |
Then, $ f $ is a strictly increasing function in $ x $, and since $ f $ is symmetric, it is also strictly decreasing in $ y $.
Using Lemma 2, we obtain the following result.
Proposition 3. If $ G $ is a graph, $ u, v \in V(G) $ with $ uv \notin E(G) $, and $ a < 0 $, then $ IS\!D_a(G \cup \{uv\}) > IS\!D_a(G) $.
Given an integer number $ n\ge 2 $, let $ \mathcal{G}(n) $ (respectively, $ \mathcal{G}_c(n) $) be the set of graphs (respectively, connected graphs) with $ n $ vertices.
Next, given integer numbers $ 1 \le \delta \le \Delta < n $, we are going to define the following classes of graphs: let $ \mathcal{H}(n, \delta) $ (respectively, $ \mathcal{H}_c(n, \delta) $) be the graphs (respectively, connected graphs) with $ n $ vertices and minimum degree $ \delta $, and let $ \mathcal{I}(n, \Delta) $ (respectively, $ \mathcal{I}_c(n, \Delta) $) be the graphs (respectively, connected graphs) with maximum degree $ \Delta $ and $ n $ vertices.
First, let us state an optimization result for the $ IS\!D_a $ index on $ \mathcal{G}_c(n) $ and $ \mathcal{G}(n) $ (see [32]).
Proposition 4. Consider $ a < 0 $ and an integer $ n\ge 2 $.
$ (1) $ The graph that maximizes the $ IS\!D_{a} $ index on $ \mathcal{G}_c(n) $ or $ \mathcal{G}(n) $ is unique and given by the complete graph $ K_n $.
$ (2) $ If a graph minimizes the $ IS\!D_{a} $ index on $ \mathcal{G}_c(n) $, then it is a tree.
$ (3) $ If $ n $ is even, then the graph that minimizes the $ IS\!D_{a} $ index on $ \mathcal{G}(n) $ is unique and given by the union of $ n/2 $ paths $ P_2 $. If $ n $ is odd, then the graph that minimizes the $ IS\!D_{a} $ index on $ \mathcal{G}(n) $ is unique and given by the union of $ (n-3)/2 $ paths $ P_2 $ with a path $ P_3 $.
Proof. Let $ G $ be a graph with $ n $ vertices, $ m $ edges and minimum degree $ \delta $.
Items (1) and (2) follow directly from Proposition 3.
For the proof of item (3), we first assume that $ n $ is even. For any graph $ G\in \mathcal{G}(n) $ Lemma 2 gives
$ IS\!D_ \alpha(G) = \sum\limits_{uv \in E(G)}\frac{1}{d_u^a+d_v^a} \ge \sum\limits_{uv \in E(G)}\frac{1}{1^a+1^a} = \frac{m}{2}, $ |
and the equality is attained if, and only if, $ \{d_u, d_v\} = \{1\} $ for each $ uv\in E(G) $, i.e., $ G $ is the union of $ n/2 $ path graphs $ P_2 $.
Now, we assume that $ n $ is odd. If $ d_u = 1 $ for each $ u\in V(G) $, handshaking lemma gives $ 2m = n $, a contradiction. So, there exists $ w\in V(G) $, such that $ d_w\ge2 $. Let $ N(w) $ be the set of neighbors of the vertex $ w $, from Lemma 2, we obtain
$ ISDα(G)=∑uv∈E(G),u,v≠w1dau+dav+∑u∈N(w)1dau+daw≥∑uv∈E(G),u,v≠w11a+1a+∑u∈N(w)11a+2a≥m−22+21+2a, $
|
and the equality is attained if, and only if, $ d_u = 1 $ for each $ u\in V(G)\setminus w $ and $ d_w = 2 $. Hence, $ G $ is the union of $ (n-3)/2 $ path graphs $ P_2 $ and a path graph $ P_3 $.
Proposition 4 allows to obtain the following inequalities.
Theorem 5. Consider a graph $ G $ with $ n $ vertices and a negative constant $ a $.
$ (1) $ Then,
$ IS\!D_a(G) \le \frac{1}4 \, n(n-1)^{1-a} , $ |
and equality holds if, and only if, $ G $ is the complete graph $ K_n $.
$ (2) $ If $ n $ is even, then
$ IS\!D_a(G) \ge \frac{1}4 \, n , $ |
and equality holds if, and only if, $ G $ is the union of $ n/2 $ path graphs $ P_2 $.
$ (3) $ If $ n $ is odd, then
$ IS\!D_a(G) \ge \frac{1}4 \, (n-3) + \frac2{1+2^a} \, , $ |
and equality holds if, and only if, $ G $ is the union of a path graph $ P_3 $ and $ (n-3)/2 $ path graphs $ P_2 $.
Proof. Proposition 4 gives
$ IS\!D_a(G) \le IS\!D_a(K_n) = \sum\limits_{uv \in E(K_n)} \frac{1}{d_u^a + d_{v}^a} = \frac{n(n-1)}2 \, \frac{1}{2 (n-1)^a} = \frac{1}4 \, n(n-1)^{1-a} . $ |
This argument gives that the bound is attained if, and only if, $ G $ is the complete graph $ K_n $. Hence, item $ (1) $ holds.
Suppose $ G $ has minimum degree $ \delta $. If $ n $ is even, handshaking lemma gives $ 2m\ge n \delta \ge n $, using this and the proof of Proposition 4, we have
$ IS\!D_a(G)\ge\frac{m}{2}\ge\frac{n}{4}, $ |
and equality holds if, and only if, $ G $ is the union of $ n/2 $ path graphs $ P_2 $. This gives item (2).
If $ n $ is odd, handshaking lemma gives $ 2m\ge (n-1) \delta +2 \ge n+1 $, using this and the proof of Proposition 4, we have
$ IS\!D_a(G)\ge \frac{m-2}{2}+\frac{2}{1+2^a}\ge \frac{\frac{n+1}{2}-2}{2}+\frac{2}{1+2^a} = \frac{n-3}{4}+\frac{2}{1+2^a}, $ |
and equality holds if, and only if, $ G $ is the union of a path graph $ P_3 $ and $ (n-3)/2 $ path graphs $ P_2 $. This gives item (3).
Fix positive integers $ 1\le \delta < n $. Let $ K_n^\delta $ be the $ n $-vertex graph with minimum and maximum degrees $ \delta $ and $ n-1 $, respectively, obtained from $ K_{n-1} $ (the complete graph with $ n-1 $ vertices) and an additional vertex $ w $, as follows: If we fix $ \delta $ vertices $ v_1, \dots, v_\delta \in V(K_{n-1}) $, then the vertices of $ K_n^\delta $ are $ w $ and the vertices of $ K_{n-1} $, and the edges of $ K_n^\delta $ are $ \{v_1w, \dots, v_\delta w\} $ and the edges of $ K_{n-1} $.
We consider now the optimization problem for the $ IS\!D_a $ index on $ \mathcal{H}_c(n, \delta) $ and $ \mathcal{H}(n, \delta) $.
Theorem 6. Consider $ a < 0 $ and integers $ 1\le \delta < n $.
$ (1) $ Then, the graph in $ \mathcal{H}_c(n, \delta) $ that maximizes the $ IS\!D_{a} $ index is unique and given by $ K_n^\delta $.
$ (2) $ If $ \delta \ge 2 $ and $ n \delta $ is even, then all the graphs in $ \mathcal{H}_c(n, \delta) $ that minimize $ IS\!D_{a} $ are the connected $ \delta $-regular graphs.
$ (3) $ If $ \delta \ge 2 $ and $ n \delta $ is odd, then all the graphs in $ \mathcal{H}_c(n, \delta) $ that minimize $ IS\!D_{a} $ are the connected $ (\delta+1, \delta) $-pseudo-regular graphs.
Proof. Given a graph $ G \in \mathcal{H}_c(n, \delta)\setminus \{K_n^\delta\} $, fix any vertex $ u \in V(G) $ with $ d_u = \delta $. Since
$ G \neq G \cup \{vw: v, w\in V(G) \setminus \{u\} \text{ and } vw\notin E(G) \} = K_n^\delta, $ |
Proposition 3 gives $ IS\!D_a(K_n^\delta) > IS\!D_a(G) $. This proves item $ (1) $.
Handshaking lemma gives $ 2m \ge n \delta $.
Since $ d_u \ge \delta $ for every $ u \in V(G) $, Lemma 2 gives
$ IS\!D_a(G) = \sum\limits_{uv \in E(G)} \frac{1}{d_u^a + d_{v}^a} \ge \sum\limits_{uv \in E(G)} \frac{1}{2\delta^a} = \frac{m}{2\delta^a} \ge \frac{n\delta/2}{2\delta^a} = \frac{1}{4} \, n\delta^{1-a}, $ |
and the bound is attained if, and only if, $ \delta = d_u $ for all $ u \in V(G) $.
If $ \delta n $ is even, then Lemma 1 gives that there is a connected $ \delta $-regular graph with $ n $ vertices. Hence, the unique graphs in $ \mathcal{H}_c(n, \delta) $ that minimize the $ IS\!D_{a} $ index are the connected $ \delta $-regular graphs.
If $ \delta n $ is odd, then handshaking lemma gives that there is no regular graph. Hence, there exists a vertex $ w $ with $ d_w \ge \delta+1 $. Since $ d_u \ge \delta $ for every $ u \in V(G) $, handshaking lemma gives $ 2m \ge (n-1) \delta+\delta+1 = n \delta+1 $. Lemma 2 gives
$ ISDa(G)=∑u∈N(w)1dau+daw+∑uv∈E(G),u,v≠w1dau+dav≥∑u∈N(w)1δa+(δ+1)a+∑uv∈E(G),u,v≠w12δa≥δ+1δa+(δ+1)a+m−δ−12δa≥δ+1δa+(δ+1)a+(nδ+1)/2−δ−12δa, $
|
and the bound is attained if, and only if, $ d_u = \delta $ for all $ u \in V(G)\setminus \{w\} $, and $ d_w = \delta+1 $. Lemma 1 gives that there is a connected $ (\delta+1, \delta) $-pseudo-regular graph with $ n $ vertices. Therefore, the unique graphs in $ \mathcal{H}_c(n, \delta) $ that minimize the $ IS\!D_{a} $ index are the connected $ (\delta+1, \delta) $-pseudo-regular graphs.
Remark 1. If we replace $ \mathcal{H}_c(n, \delta) $ with $ \mathcal{H}(n, \delta) $ everywhere in the statement of Theorem 6, then the argument in its proof gives that the same conclusions hold if we remove everywhere the word "connected".
Theorem 6 and Remark 1 have the following consequence.
Proposition 7. Consider a graph $ G $ with minimum degree $ \delta $ and $ n $ vertices, and a negative constant $ a $.
$ (1) $ Then,
$ IS\!D_{a}(G) \le \frac{(n-\delta-1)(n-\delta-2)}{4(n-2)^a} + \frac{\delta}{\delta^a+(n-1)^a} +\frac{\delta(\delta-1)}{4(n-1)^a} +\frac{\delta(n-\delta-1)}{(n-2)^a+(n-1)^a} \, , $ |
and the bound is attained if, and only if, $ G $ is isomorphic to $ K_n^\delta $.
$ (2) $ If $ \delta \ge 2 $ and $ \delta n $ is even, then
$ IS\!D_{a}(G) \ge \frac{1}{4}\, n\delta^{1-a} , $ |
and the bound is attained if, and only if, $ G $ is $ \delta $-regular.
$ (3) $ If $ \delta \ge 2 $ and $ n \delta $ is odd, then
$ IS\!D_{a}(G) \ge \frac{\delta(n-2)-1}{4\delta^a} + \frac{\delta+1}{\delta^a+(\delta+1)^a} \, , $ |
and the bound is attained if, and only if, $ G $ is $ (\delta+1, \delta) $-pseudo-regular.
Let us deal with the optimization problem for the $ IS\!D_a $ index on $ \mathcal{I}_c(n, \Delta) $.
Theorem 8. Consider $ a < 0 $ and integers $ 2\le \Delta < n $.
$ (1) $ If $ n \Delta $ is even, then all the graphs that maximize $ IS\!D_{a} $ on $ \mathcal{I}_c(n, \Delta) $ are the connected $ \Delta $-regular graphs.
$ (2) $ If $ n \Delta $ is odd, then all the graphs that maximize $ IS\!D_{a} $ on $ \mathcal{I}_c(n, \Delta) $ are the connected $ (\Delta, \Delta-1) $-quasi-regular graphs.
$ (3) $ If a graph minimizes $ IS\!D_{a} $ on $ \mathcal{I}_c(n, \Delta) $, then it is a tree.
Proof. Handshaking lemma gives $ 2m \le n \Delta $. Since $ d_u \le \Delta $ for every $ u \in V(G) $, Lemma 2 gives
$ IS\!D_a(G) = \sum\limits_{uv \in E(G)} \frac{1}{d_u^a + d_{v}^a} \le \sum\limits_{uv \in E(G)} \frac{1}{2 \Delta^a} = \frac{m}{2 \Delta^a} \le \frac{n \Delta/2}{2 \Delta^a} = \frac{1}4 \, n \Delta^{1-a} , $ |
and the bound is attained if, and only if, $ \Delta = d_u $ for all $ u \in V(G) $.
If $ n \Delta $ is even, then Lemma 1 gives that there is a connected $ \Delta $-regular graph with $ n $ vertices. Hence, the unique graphs in $ \mathcal{I}_c(n, \Delta) $ that maximize the $ IS\!D_{a} $ index are the connected $ \Delta $-regular graphs.
If $ n \Delta $ is odd, then handshaking lemma gives that there is no regular graph in $ \mathcal{I}_c(n, \Delta) $. Let $ G \in \mathcal{I}_c(n, \Delta) $. Hence, there exists a vertex $ w $ with $ d_w \le \Delta-1 $. Then, $ 2m \le \Delta(n-1)+ \Delta-1 = \Delta n-1 $. Lemma 2 gives
$ ISDa(G)=∑u∈N(w)1dau+daw+∑uv∈E(G),u,v≠w1dau+dav≤∑u∈N(w)1Δa+(Δ−1)a+∑uv∈E(G),u,v≠w12Δa≤Δ−1Δa+(Δ−1)a+m−Δ+12Δa≤Δ−1Δa+(Δ−1)a+(Δn−1)/2−Δ+12Δa, $
|
and the bound is attained if, and only if, $ d_u = \Delta $ for all $ u \in V(G)\setminus \{w\} $, and $ d_w = \Delta-1 $. Lemma 1 gives that there is a connected $ (\Delta, \Delta-1) $-quasi-regular graph with $ n $ vertices. Therefore, the unique graphs in $ \mathcal{I}_c(n, \delta) $ that maximize the $ IS\!D_{a} $ index are the connected $ (\Delta, \Delta-1) $-quasi-regular graphs.
Given any graph $ G \in \mathcal{I}_c(n, \Delta) $ which is not a tree, fix any vertex $ u \in V(G) $ with $ d_u = \Delta $. Since $ G $ is not a tree, there exists a cycle $ C $ in $ G $. Since $ C $ has at least three edges, there exists $ vw \in E(G)\cap C $, such that $ u \notin \{v, w\} $. Since $ vw $ is contained in a cycle of $ G $, then $ G\setminus \{vw\} $ is a connected graph. Thus, $ G\setminus \{vw\} \in \mathcal{I}_c(n, \Delta) $ and Proposition 3 gives $ IS\!D_a(G) > IS\!D_a(G\setminus \{vw\}) $. By iterating this argument, we obtain that if a graph minimizes the $ IS\!D_{a} $ index on $ \mathcal{I}_c(n, \Delta) $, then it is a tree.
The following result deals with the optimization problem for the $ IS\!D_a $ index on $ \mathcal{I}(n, \Delta) $.
Theorem 9. Consider $ a < 0 $ and integers $ 2\le \Delta < n $.
$ (1) $ If $ n \Delta $ is even, then all the graphs that maximize the $ IS\!D_{a} $ index on $ \mathcal{I}(n, \Delta) $ are the $ \Delta $-regular graphs.
$ (2) $ If $ n \Delta $ is odd, then all the graphs that maximize the $ IS\!D_{a} $ index on $ \mathcal{I}(n, \Delta) $ are the $ (\Delta, \Delta-1) $-quasi-regular graphs.
$ (3) $ If $ n- \Delta $ is odd, then the graph that minimizes the $ IS\!D_{a} $ index on $ \mathcal{I}(n, \Delta) $ is unique and given by the union of the star graph $ S_{ \Delta+1} $ and $ (n- \Delta-1)/2 $ path graphs $ P_2 $.
$ (4) $ If $ n = \Delta+2 $, then the graph that minimizes the $ IS\!D_{a} $ index on $ \mathcal{I}(n, \Delta) $ is unique and given by the star graph $ S_{ \Delta+1} $ with an additional edge attached to a vertex of degree $ 1 $ in $ S_{ \Delta+1} $.
$ (5) $ If $ n \ge \Delta+4 $ and $ n- \Delta $ is even, then the graph that minimizes the $ IS\!D_{a} $ index on $ \mathcal{I}(n, \Delta) $ is unique and given by the union of the star graph $ S_{ \Delta+1} $, $ (n- \Delta-4)/2 $ path graphs $ P_2 $ and a path graph $ P_3 $.
Proof. The argument in Theorem 8 gives directly items $ (1) $ and $ (2) $.
Let $ G \in \mathcal{I}(n, \Delta) $ and $ w \in V(G) $ a vertex with $ d_w = \Delta $.
Assume first that $ n- \Delta $ is odd. Handshaking lemma gives $ 2m \ge n-1+ \Delta $. Note that $ n-1+ \Delta = n- \Delta + 2 \Delta-1 $ is even. Lemma 2 gives
$ ISDa(G)=∑u∈N(w)1dau+daw+∑uv∈E(G),u,v≠w1dau+dav≥∑u∈N(w)11a+Δa+∑uv∈E(G),u,v≠w11a+1a=Δ1+Δa+m−Δ2≥Δ1+Δa+(n−1+Δ)/2−Δ2=Δ1+Δa+n−Δ−14, $
|
and the bound is attained if, and only if, $ 1 = d_u $ for all $ u \in V(G) \setminus \{w\} $, i.e., $ G $ is the union of the star graph $ S_{ \Delta+1} $ and $ (n- \Delta-1)/2 $ path graphs $ P_2 $.
Assume now that $ n = \Delta+2 $. Let $ z \in V(G) \setminus N(w) $ be the vertex with $ V(G) = \{w, z\} \cup N(w) $. Choose $ p \in N(z) $; since $ z \notin N(w) $, we have $ p \in N(w) $ and so, $ d_p \ge 2 $. Handshaking lemma gives $ 2m \ge (n-2) + \Delta +2 = n + \Delta $. Lemma 2 gives
$ ISDa(G)=∑u∈N(w)1dau+daw+∑uv∈E(G),u,v≠w1dau+dav≥Δ−11+Δa+12a+Δa+11+2a, $
|
and the bound is attained if, and only if, $ 1 = d_u $ for all $ u \in V(G) \setminus \{w, p\} $ and $ d_p = 2 $, i.e., $ G $ is the star graph $ S_{ \Delta+1} $ with an additional edge attached to a vertex of degree $ 1 $ in $ S_{ \Delta+1} $.
Assume that $ n \ge \Delta+4 $ and $ n- \Delta $ is even. If $ d_u = 1 $ for every $ u \in V(G) \setminus \{w\} $, then handshaking lemma gives $ 2m = n-1+ \Delta $, a contradiction since $ n-1+ \Delta = n- \Delta+2 \Delta-1 $ is odd. Thus, there exists a vertex $ p \in V(G) \setminus \{w\} $ with $ d_p \ge 2 $. Handshaking lemma gives $ 2m \ge (n-2) +2 + \Delta = n + \Delta $.
If $ p \notin N(w) $, then Lemma 2 gives
$ ISDa(G)=∑u∈N(w)1dau+daw+∑u∈N(p)1dau+dap+∑uv∈E(G),u,v∉{w,p}1dau+dav≥∑u∈N(w)11a+Δa+∑u∈N(p)11a+2a+∑uv∈E(G),u,v∉{w,p}11a+1a≥Δ1+Δa+21+2a+m−Δ−22≥Δ1+Δa+21+2a+(n+Δ)/2−Δ−22=Δ1+Δa+21+2a+n−Δ−44, $
|
and the bound is attained if, and only if, $ d_u = 1 $ for all $ u \in V(G)\setminus \{w, p\} $, and $ d_p = 2 $, i.e., $ G $ is the union of the star graph $ S_{ \Delta+1} $, $ (n- \Delta-4)/2 $ path graphs $ P_2 $ and a path graph $ P_3 $.
If $ p \in N(w) $, then
$ ISDa(G)=∑u∈N(w)∖{p}1dau+daw+∑u∈N(p)∖{w}1dau+dap+1dap+daw+∑uv∈E(G),u,v∉{w,p}1dau+dav≥∑u∈N(w)∖{p}11a+Δa+∑u∈N(p)∖{w}11a+dap+1dap+Δa+∑uv∈E(G),u,v∉{w,p}11a+1a≥Δ−11+Δa+11+2a+12a+Δa+m−Δ−12≥Δ−11+Δa+11+2a+12a+Δa+(n+Δ)/2−Δ−12=Δ−11+Δa+11+2a+12a+Δa+n−Δ−24. $
|
Hence, in order to finish the proof of item $ (5) $, it suffices to show that
$ Δ−11+Δa+11+2a+12a+Δa+n−Δ−24>Δ1+Δa+21+2a+n−Δ−44. $
|
We have
$ (1−2a)(1−Δa)>0,1+2aΔa>2a+Δa,2aΔa+Δa+2a+1>2(2a+Δa),(Δa+1)(1+2a)(2+2a+Δa)>2(2a+Δa)(2a+Δa+2),12a+Δa+12>11+Δa+11+2a,Δ−11+Δa+11+2a+12a+Δa+n−Δ−24>Δ1+Δa+21+2a+n−Δ−44, $
|
and so, $ (5) $ holds.
Remark 2. Note that the case $ \Delta = 1 $ in Theorem 9 is trivial: if $ \Delta = 1 $, then $ G $ is a union of isolated edges.
Also, we can state the following inequalities.
Theorem 10. Consider a graph $ G $ with maximum degree $ \Delta $ and $ n $ vertices, and a negative constant $ a $.
$ (1) $ If $ n \Delta $ is even, then
$ IS\!D_a(G) \le \frac{1}4 \, n \Delta^{1-a} , $ |
and the bound is attained if, and only if, $ G $ is a regular graph.
$ (2) $ If $ n \Delta $ is odd, then
$ IS\!D_a(G) \le \frac{ \Delta-1}{ \Delta^a + ( \Delta-1)^a} + \frac{ \Delta (n - 2)+1}{4 \Delta^a} \, , $ |
and the bound is attained if, and only if, $ G $ is a $ (\Delta, \Delta-1) $-quasi-regular graph.
$ (3) $ If $ n- \Delta $ is odd, then
$ IS\!D_a(G) \ge \frac{ \Delta}{1 + \Delta^a} + \frac{n- \Delta-1}{4} \, , $ |
and the bound is attained if, and only if, $ G $ is the union of the star graph $ S_{ \Delta+1} $ and $ (n- \Delta-1)/2 $ path graphs $ P_2 $.
$ (4) $ If $ n = \Delta+2 $, then
$ IS\!D_a(G) \ge \frac{ \Delta-1}{1 + \Delta^a} + \frac{1}{2^a + \Delta^a} + \frac{1}{1 + 2^a} \, , $ |
and the bound is attained if, and only if, $ G $ is the star graph $ S_{ \Delta+1} $ with an additional edge attached to a vertex of degree $ 1 $ in $ S_{ \Delta+1} $.
$ (5) $ If $ n \ge \Delta+4 $ and $ n- \Delta $ is even, then
$ IS\!D_a(G) \ge \frac{ \Delta}{1 + \Delta^a} + \frac{2}{1 + 2^a} + \frac{n- \Delta-4}{4} \, , $ |
and the bound is attained if, and only if, $ G $ is the union of the star graph $ S_{ \Delta+1} $, $ (n- \Delta-4)/2 $ path graphs $ P_2 $ and a path graph $ P_3 $.
Proof. The argument in the proof of Theorem 8 gives items $ (1) $ and $ (2) $, since the variable inverse sum deg index of a regular graph is
$ \frac{1}4 \, n \Delta^{1-a} , $ |
and the $ IS\!D_a $ index of a $ (\Delta, \Delta-1) $-quasi-regular graph is
$ \frac{ \Delta-1}{ \Delta^a + ( \Delta-1)^a} + \frac{ \Delta (n - 2)+1}{4 \Delta^a} \, . $ |
The argument in the proof of Theorem 9 gives directly items $ (3) $–$ (5) $.
The variable inverse sum deg index $ IS\!D_{-1.950} $ was selected in [33] as a significant predictor of standard enthalpy of formation for octane isomers. In this section, we will test the predictive power of the $ IS\!D_a $ index using experimental data on three physicochemical properties of 82 polyaromatic hydrocarbons (PAH). The properties studied are the melting point (MP), boiling point (BP) and octanol-water partition coefficient (LogP) (the experimental data were obtained from [34]). In order to obtain the values of the $ IS\!D_a $ index, we constructed the hydrogen-suppressed graph of each molecule, then we use a program of our own elaboration to compute the index for each value of $ a $ analyzed.
We calculated the Pearson's correlation coefficient $ r $ between the three analyzed properties and the $ IS\!D_a $ index, for values of $ a $ in the interval $ [-5, 5] $ with a spacing of $ 0.01 $; the results are shown in Figure 1. The dashed red line indicates the value of $ a $ that maximizes $ r $.
Figure 2 shows the $ IS\!Da $ index (for values of $ a $ that maximize $ r $) vs. the studied properties of PAH. In addition, in Figure 2, we test the following linear regression models (red lines)
$ MP=31.54ISD0.15−121.15BP=58.94ISD0.39−13.35LogP=0.68ISD0.63+1.55. $
|
Table 1 summarizes the statistical and regression parameters of these models.
Property | $ a $ | $ r $ | $ c $ | $ m $ | $ SE $ | $ F $ | $ SF $ |
MP | $ 0.15 $ | $ 0.856 $ | $ -122.15 $ | $ 31.54 $ | $ 54.61 $ | $ 214.47 $ | $ 4.31\times 10^{-24} $ |
BP | $ 0.39 $ | $ 0.989 $ | $ -13.35 $ | $ 58.94 $ | $ 12.42 $ | $ 2272.86 $ | $ 5.69\times 10^{-44} $ |
LogP | $ 0.63 $ | $ 0.943 $ | $ 1.55 $ | $ 0.68 $ | $ 0.34 $ | $ 282.04 $ | $ 2.53\times 10^{-18} $ |
Motivated by a paper of Vukičević [1], and based on the practical applications found for the variable inverse sum deg index $ IS\!D_{a} $, we focus our research on the study of optimal graphs associated with $ IS\!D_{a} $, when $ a < 0 $. In this direction, it is wise to study the extremal properties of $ IS\!D_{a} $, when $ a < 0 $ in general graphs. Specifically, in this paper, we characterize the graphs with extremal values in the following significant classes of graphs with a fixed number of vertices:
● graphs with a fixed minimum degree;
● connected graphs with a fixed minimum degree;
● graphs with a fixed maximum degree;
● connected graphs with a fixed maximum degree.
From the QSPR study performed on polyaromatic hydrocarbons, it can be concluded that the $ IS\!D_a $ index presents a strong correlation with the boiling point and octanol-water partition coefficient properties, with maximum values of $ r $ higher than $ 0.98 $ and $ 0.94 $, respectively. Further, the melting point property presents some correlation with the $ IS\!D_a $ index with maximum value of $ r $ close to $ 0.85 $.
For future research, we suggests:
● To study the extreme problems for the $ IS\!D_a $ index for values of $ a > 0 $.
● To consider the problem of finding which tree/trees with $ n $ vertices (with a fixed maximum degree or not) minimize the index $ IS\!D_a $ ($ a < 0 $).
● To analyze the behavior of the $ IS\!D_{a} $ index in other important families of graphs, such as graph products and graph operators.
● To explore the mathematical properties and possible applications of the exponential extension of the $ IS\!D_a $ index.
● To study the predictive power of this index on other physicochemical properties of PAH, and on other classes of molecules.
The authors were supported by a grant from Agencia Estatal de Investigación (PID2019-106433GB-I00 / AEI / 10.13039/501100011033), Spain.
The authors declare there are no conflicts of interest.
[1] |
Kaar WE, Holtzapple MT (2000) Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass Bioenerg 18: 189-199. doi: 10.1016/S0961-9534(99)00091-4
![]() |
[2] |
Ju Y-H, Huynh L-H, Kasim NS, et al. (2011) Analysis of soluble and insoluble fractions of alkali and subcritical water treated sugarcane bagasse. Carbohyd Polym 83: 591-599. doi: 10.1016/j.carbpol.2010.08.022
![]() |
[3] | Han M, Choi GW, Kim Y, et al. (2011) Bioethanol Production by Miscanthus as a Lignocellulosic Biomass: Focus on High Efficiency Conversion to Glucose and Ethanol. Bioresources 6: 1939-1953. |
[4] |
Lu X, Xi B, Zhang Y, et al. (2011) Microwave pretreatment of rape straw for bioethanol production: Focus on energy efficiency. Bioresource Technol 102: 7937-7940. doi: 10.1016/j.biortech.2011.06.065
![]() |
[5] |
Xu J, Chen HZ, Kadar Z, et al. (2011) Optimization of microwave pretreatment on wheat straw for ethanol production. Biomass Bioenerg 35: 3859-3864. doi: 10.1016/j.biombioe.2011.04.054
![]() |
[6] |
Brosse N, Dufour A, Meng XZ, et al. (2012) Miscanthus: a fast-growing crop for biofuels and chemicals production. Biofuels Bioprod Biorefining 6: 580-598. doi: 10.1002/bbb.1353
![]() |
[7] |
Chen W-H, Tu Y-J, Sheen H-K (2011) Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Appl Energ 88: 2726-2734. doi: 10.1016/j.apenergy.2011.02.027
![]() |
[8] |
Sun Y, Cheng JY (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technol 83: 1-11. doi: 10.1016/S0960-8524(01)00212-7
![]() |
[9] |
Kovacs K, Macrelli S, Szakacs G, et al. (2009) Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house. Biotechnol Biofuels 2: 14. doi: 10.1186/1754-6834-2-14
![]() |
[10] |
Balat M, Balat H, Oz C (2008) Progress in bioethanol processing. Prog Energ Combust Sci 34: 551-573. doi: 10.1016/j.pecs.2007.11.001
![]() |
[11] | Alizadeh H, Teymouri F, Gilbert TI, et al. (2005) Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Appl Biochem Biotech 121: 1133-1141. |
[12] |
Kim KH, Hong J (2001) Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresource Technol 77: 139-144. doi: 10.1016/S0960-8524(00)00147-4
![]() |
[13] |
Nikolic S, Mojovic L, Rakin M, et al. (2011) Utilization of microwave and ultrasound pretreatments in the production of bioethanol from corn. Clean Technol Environ Policy 13: 587-594. doi: 10.1007/s10098-011-0366-0
![]() |
[14] |
Xu N, Zhang W, Ren SF, et al. (2012) Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Biotechnol Biofuels 5: 58. doi: 10.1186/1754-6834-5-58
![]() |
[15] |
Canilha L, Santos VTO, Rocha GJM, et al. (2011) A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. J Ind Microbiol Biot 38: 1467-1475. doi: 10.1007/s10295-010-0931-2
![]() |
[16] |
Rezende CA, de Lima MA, Maziero P, et al. (2011) Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels 4: 1-18. doi: 10.1186/1754-6834-4-1
![]() |
[17] |
Macquarrie DJ, Clark JH, Fitzpatrick E (2012) The microwave pyrolysis of biomass. Biofuels Bioprod Biorefining 6: 549-560. doi: 10.1002/bbb.1344
![]() |
[18] | Hu Z, Wen Z (2008) Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochem Eng J 38: 369-378. |
[19] | Keshwani DR, Cheng JJ (2010) Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production. Biotechnol Progr 26: 644-652. |
[20] |
Zhu S, Wu Y, Yu Z, et al. (2006) Microwave-assisted alkali pre-treatment of wheat straw and its enzymatic hydrolysis. Biosyst Eng 94: 437-442. doi: 10.1016/j.biosystemseng.2006.04.002
![]() |
[21] |
Kappe CO (2004) Controlled Microwave Heating in Modern Organic Synthesis. Angew Chem Int Ed 43: 6250-6284. doi: 10.1002/anie.200400655
![]() |
[22] |
Jones L, Milne JL, Ashford D, et al. (2003) Cell wall arabinan is essential for guard cell function. Proc Natl Acad Sci U S A 100: 11783-11788. doi: 10.1073/pnas.1832434100
![]() |
[23] | Foster CE, Martin TM, Pauly M (2010) Comprehensive Compositional Analysis of Plant Cell Walls (Lignocellulosic biomass) Part II: Carbohydrates. e1837. |
[24] | Foster CE, Martin TM, Pauly M (2010) Comprehensive Compositional Analysis of Plant Cell Walls (Lignocellulosic biomass) Part I: Lignin. e1745. |
[25] |
Gomez LD, Whitehead C, Barakate A, et al. (2010) Automated saccharification assay for determination of digestibility in plant materials. Biotechnol Biofuels 3: 23. doi: 10.1186/1754-6834-3-23
![]() |
[26] |
Wang W, Yuan TQ, Wang K, et al. (2012) Combination of biological pretreatment with liquid hot water pretreatment to enhance enzymatic hydrolysis of Populus tomentosa. Bioresource Technol 107: 282-286. doi: 10.1016/j.biortech.2011.12.116
![]() |
[27] | Youngmi Kim RH, Nathan S. Mosier,Michael R. Ladisch (2009) Liquid Hot Water Pretreatment of Cellulosic Biomass. Biofuel methods and protocols.Mielenz. JR, editor. New York: Humana Press Inc, 93-102. |
[28] |
Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technol 100: 10-18. doi: 10.1016/j.biortech.2008.05.027
![]() |
[29] |
Garrote G, Dominguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Als Roh-Und Werkstoff 57: 191-202. doi: 10.1007/s001070050039
![]() |
[30] |
Szabolcs A, Molnar M, Dibo G, et al. (2013) Microwave-assisted conversion of carbohydrates to levulinic acid: an essential step in biomass conversion. Green Chem 15: 439-445. doi: 10.1039/C2GC36682G
![]() |
[31] | Lee YY, Iyer P, Torget RW (1999) Dilute-Acid Hydrolysis of Lignocellulosic Biomass. In: Tsao GT, Brainard AP, Bungay HR et al., editors. Advances in Biochemical Engineering/Biotechnology.: Springer Berlin Heidelberg. 65: 93-115. |
[32] |
Brosse N, Sannigrahi P, Ragauskas A (2009) Pretreatment of Miscanthus x giganteus Using the Ethanol Organosolv Process for Ethanol Production. Ind Eng Chem Res 48: 8328-8334. doi: 10.1021/ie9006672
![]() |
[33] |
Yu G, Afzal W, Yang F, et al. (2014) Pretreatment of Miscanthus×giganteus using aqueous ammonia with hydrogen peroxide to increase enzymatic hydrolysis to sugars. J Chem Technol Biotechnol 89: 698-706. doi: 10.1002/jctb.4172
![]() |
[34] |
Haverty D, Dussan K, Piterina AV, et al. (2012) Autothermal, single-stage, performic acid pretreatment of Miscanthus x giganteus for the rapid fractionation of its biomass components into a lignin/hemicellulose-rich liquor and a cellulase-digestible pulp. Bioresource Technol 109: 173-177. doi: 10.1016/j.biortech.2012.01.007
![]() |
[35] |
Budarin VL, Clark JH, Lanigan BA, et al. (2010) Microwave assisted decomposition of cellulose: A new thermochemical route for biomass exploitation. Bioresource Technol 101: 3776-3779. doi: 10.1016/j.biortech.2009.12.110
![]() |
[36] |
Mosier N, Wyman C, Dale B, et al. (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol 96: 673-686. doi: 10.1016/j.biortech.2004.06.025
![]() |
[37] |
Li JB, Henriksson G, Gellerstedt G (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresource Technol 98: 3061-3068. doi: 10.1016/j.biortech.2006.10.018
![]() |
[38] |
Mittal A, Katahira R, Himmel ME, et al. (2011) Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 4: 41. doi: 10.1186/1754-6834-4-41
![]() |
[39] |
Liu CF, Xu F, Sun JX, et al. (2006) Physicochemical characterization of cellulose from perennial ryegrass leaves (Lolium perenne). Carbohydr Res 341: 2677-2687. doi: 10.1016/j.carres.2006.07.008
![]() |
[40] |
Chen W-H, Ye S-C, Sheen H-K (2012) Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment. Appl Energ 93: 237-244. doi: 10.1016/j.apenergy.2011.12.014
![]() |
[41] |
Kaparaju P, Felby C (2010) Characterization of lignin during oxidative and hydrothermal pre-treatment processes of wheat straw and corn stover. Bioresource Technol 101: 3175-3181. doi: 10.1016/j.biortech.2009.12.008
![]() |
[42] |
Corredor DY, Salazar JM, Hohn KL, et al. (2009) Evaluation and Characterization of Forage Sorghum as Feedstock for Fermentable Sugar Production. Appl Biochem Biotechnol 158: 164-179. doi: 10.1007/s12010-008-8340-y
![]() |
[43] |
Stewart D, Wilson HM, Hendra PJ, et al. (1995) Fourier-Transform Infrared and Raman-Spectroscopic Study of Biochemical and Chemical Treatments of Oak Wood (Quercus-Rubra) and Barley (Hordeum-Vulgare) Straw. J Agric Food Chem 43: 2219-2225. doi: 10.1021/jf00056a047
![]() |
[44] |
Kumar R, Mago G, Balan V, et al. (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresource Technol 100: 3948-3962. doi: 10.1016/j.biortech.2009.01.075
![]() |
[45] |
Sun JX, Sun XF, Sun RC, et al. (2003) Inhomogeneities in the chemical structure of sugarcane bagasse lignin. J Agric Food Chem 51: 6719-6725. doi: 10.1021/jf034633j
![]() |
[46] |
Guo GL, Hsu DC, Chen WH, et al. (2009) Characterization of enzymatic saccharification for acid-pretreated lignocellulosic materials with different lignin composition. Enzyme Microb Technol 45: 80-87. doi: 10.1016/j.enzmictec.2009.05.012
![]() |
[47] | Mizi Fan DD, Biao Huang (2012) Fourier Transform Infrared Spectroscopy for Natural Fibres In: Salih DS, editor. Fourier Transform - Materials Analysis: InTech, 45-52. |
[48] |
Li CL, Knierim B, Manisseri C, et al. (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technol 101: 4900-4906. doi: 10.1016/j.biortech.2009.10.066
![]() |
[49] |
Boonmanumsin P, Treeboobpha S, Jeamjumnunja K, et al. (2012) Release of monomeric sugars from Miscanthus sinensis by microwave-assisted ammonia and phosphoric acid treatments. Bioresource Technol 103: 425-431. doi: 10.1016/j.biortech.2011.09.136
![]() |
[50] |
Ju YH, Huynh LH, Kasim NS, et al. (2011) Analysis of soluble and insoluble fractions of alkali and subcritical water treated sugarcane bagasse. Carbohyd Polym 83: 591-599. doi: 10.1016/j.carbpol.2010.08.022
![]() |
[51] | Li HJ, Lu JR, Mo JC (2012) Physiochemical lignocellulose modification by the formosan subterranean termite Coptotermes Formosanus Shiraki (Isoptera: Rhinotermitidae) and its potential uses in the production of biofuels. Bioresources 7: 675-685. |
[52] |
Titirici M-M, Antonietti M, Baccile N (2008) Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chemistry 10: 1204-1212. doi: 10.1039/b807009a
![]() |
[53] |
Lima MA, Lavorente GB, da Silva HKP, et al. (2013) Effects of pretreatment on morphology, chemical composition and enzymatic digestibility of eucalyptus bark: a potentially valuable source of fermentable sugars for biofuel production - part 1. Biotechnol Biofuels 6: 75. doi: 10.1186/1754-6834-6-75
![]() |
[54] |
Heiss-Blanquet S, Zheng D, Ferreira NL, et al. (2011) Effect of pretreatment and enzymatic hydrolysis of wheat straw on cell wall composition, hydrophobicity and cellulase adsorption. Bioresource Technol 102: 5938-5946. doi: 10.1016/j.biortech.2011.03.011
![]() |
[55] | Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technol 74: 25-33. |
1. | Shuo Li, Saif Ullah, Salman A. AlQahtani, Sayed M. Tag, Ali Akgül, Mathematical assessment of Monkeypox with asymptomatic infection: Prediction and optimal control analysis with real data application, 2023, 51, 22113797, 106726, 10.1016/j.rinp.2023.106726 | |
2. | Yuzhen Wang, Saif Ullah, Ihsan Ullah Khan, Salman A. AlQahtani, Ahmed M. Hassan, Numerical assessment of multiple vaccinations to mitigate the transmission of COVID-19 via a new epidemiological modeling approach, 2023, 52, 22113797, 106889, 10.1016/j.rinp.2023.106889 | |
3. | Rehana Naz, Andrew Omame, Mariano Torrisi, Cost-effectiveness analysis of COVID-19 vaccination: A review of some vaccination models, 2024, 11, 26668181, 100842, 10.1016/j.padiff.2024.100842 | |
4. | Yan Li, Laique Zada, Emad A. A. Ismail, Fuad A. Awwad, Ahmed M. Hassan, Assessing the Impact of Time-Varying Optimal Vaccination and Non-Pharmaceutical Interventions on the Dynamics and Control of COVID-19: A Computational Epidemic Modeling Approach, 2023, 11, 2227-7390, 4253, 10.3390/math11204253 | |
5. | Laiquan Wang, Arshad Alam Khan, Saif Ullah, Nadeem Haider, Salman A. AlQahtani, Abdul Baseer Saqib, A rigorous theoretical and numerical analysis of a nonlinear reaction-diffusion epidemic model pertaining dynamics of COVID-19, 2024, 14, 2045-2322, 10.1038/s41598-024-56469-5 | |
6. | Y. Sudha, V. N. Deiva Mani, K. Murugesan, On the Solvability of Time-Fractional Spatio-Temporal COVID-19 Model with Non-linear Diffusion, 2024, 48, 2731-8095, 1281, 10.1007/s40995-024-01663-3 | |
7. | Wafa F. Alfwzan, Mahmoud H. DarAssi, F.M. Allehiany, Muhammad Altaf Khan, Mohammad Y. Alshahrani, Elsayed M. Tag-eldin, A novel mathematical study to understand the Lumpy skin disease (LSD) using modified parameterized approach, 2023, 51, 22113797, 106626, 10.1016/j.rinp.2023.106626 | |
8. | Changtong Li, Saif Ullah, Rashid Nawaz, Salman A AlQahtani, Shuo Li, Mathematical modeling and analysis of monkeypox 2022 outbreak with the environment effects using a Cpauto fractional derivative, 2023, 98, 0031-8949, 105239, 10.1088/1402-4896/acf88e | |
9. | Abdeldjalil Kadri, Ahmed Boudaoui, Saif Ullah, Mohammed Asiri, Abdul Baseer Saqib, Muhammad Bilal Riaz, A comparative study of deterministic and stochastic computational modeling approaches for analyzing and optimizing COVID-19 control, 2025, 15, 2045-2322, 10.1038/s41598-025-96127-y | |
10. | Manal Almuzini, Farah A. Abdullah, Matthew O. Adewole, Shaher Momani, S. A. Khuri, Generalized Mathematical Model of Infectious Disease During Medicinal Intervention by Employing Fractional Differential Equations, 2025, 0170-4214, 10.1002/mma.11019 |
Property | $ a $ | $ r $ | $ c $ | $ m $ | $ SE $ | $ F $ | $ SF $ |
MP | $ 0.15 $ | $ 0.856 $ | $ -122.15 $ | $ 31.54 $ | $ 54.61 $ | $ 214.47 $ | $ 4.31\times 10^{-24} $ |
BP | $ 0.39 $ | $ 0.989 $ | $ -13.35 $ | $ 58.94 $ | $ 12.42 $ | $ 2272.86 $ | $ 5.69\times 10^{-44} $ |
LogP | $ 0.63 $ | $ 0.943 $ | $ 1.55 $ | $ 0.68 $ | $ 0.34 $ | $ 282.04 $ | $ 2.53\times 10^{-18} $ |
Property | $ a $ | $ r $ | $ c $ | $ m $ | $ SE $ | $ F $ | $ SF $ |
MP | $ 0.15 $ | $ 0.856 $ | $ -122.15 $ | $ 31.54 $ | $ 54.61 $ | $ 214.47 $ | $ 4.31\times 10^{-24} $ |
BP | $ 0.39 $ | $ 0.989 $ | $ -13.35 $ | $ 58.94 $ | $ 12.42 $ | $ 2272.86 $ | $ 5.69\times 10^{-44} $ |
LogP | $ 0.63 $ | $ 0.943 $ | $ 1.55 $ | $ 0.68 $ | $ 0.34 $ | $ 282.04 $ | $ 2.53\times 10^{-18} $ |