Citation: Mark Warburton, Hossam Omar Ali, Wai Choon Liong, Arona Martin Othusitse, Amir Zaki Abdullah Zubir, Steve Maddock, Tuck Seng Wong. OneClick: A Program for Designing Focused Mutagenesis Experiments[J]. AIMS Bioengineering, 2015, 2(3): 126-143. doi: 10.3934/bioeng.2015.3.126
[1] | Antonio DeSimone, Natalie Grunewald, Felix Otto . A new model for contact angle hysteresis. Networks and Heterogeneous Media, 2007, 2(2): 211-225. doi: 10.3934/nhm.2007.2.211 |
[2] | Steinar Evje, Aksel Hiorth . A mathematical model for dynamic wettability alteration controlled by water-rock chemistry. Networks and Heterogeneous Media, 2010, 5(2): 217-256. doi: 10.3934/nhm.2010.5.217 |
[3] | Liping Yu, Hans Kleppe, Terje Kaarstad, Svein M. Skjaeveland, Steinar Evje, Ingebret Fjelde . Modelling of wettability alteration processes in carbonate oil reservoirs. Networks and Heterogeneous Media, 2008, 3(1): 149-183. doi: 10.3934/nhm.2008.3.149 |
[4] | Sharif Ullah, Obaid J. Algahtani, Zia Ud Din, Amir Ali . Numerical analysis of stretching/shrinking fully wet trapezoidal fin. Networks and Heterogeneous Media, 2024, 19(2): 682-699. doi: 10.3934/nhm.2024030 |
[5] | Oliver Kolb, Simone Göttlich, Paola Goatin . Capacity drop and traffic control for a second order traffic model. Networks and Heterogeneous Media, 2017, 12(4): 663-681. doi: 10.3934/nhm.2017027 |
[6] | Henri Berestycki, Jean-Pierre Nadal, Nancy Rodíguez . A model of riots dynamics: Shocks, diffusion and thresholds. Networks and Heterogeneous Media, 2015, 10(3): 443-475. doi: 10.3934/nhm.2015.10.443 |
[7] | Tong Li, Sunčica Čanić . Critical thresholds in a quasilinear hyperbolic model of blood flow. Networks and Heterogeneous Media, 2009, 4(3): 527-536. doi: 10.3934/nhm.2009.4.527 |
[8] | Giuseppe Toscani, Andrea Tosin, Mattia Zanella . Kinetic modelling of multiple interactions in socio-economic systems. Networks and Heterogeneous Media, 2020, 15(3): 519-542. doi: 10.3934/nhm.2020029 |
[9] | Naoki Sato, Toyohiko Aiki, Yusuke Murase, Ken Shirakawa . A one dimensional free boundary problem for adsorption phenomena. Networks and Heterogeneous Media, 2014, 9(4): 655-668. doi: 10.3934/nhm.2014.9.655 |
[10] | Frédéric Coquel, Edwige Godlewski, Jean-Marc Hérard, Jacques Segré . Preface. Networks and Heterogeneous Media, 2010, 5(3): i-ii. doi: 10.3934/nhm.2010.5.3i |
[1] |
Dalbadie-McFarland G, Cohen LW, Riggs AD, et al. (1982) Oligonucleotide-directed mutagenesis as a general and powerful method for studies of protein function. Proc Natl Acad Sci U S A 79: 6409-6413. doi: 10.1073/pnas.79.21.6409
![]() |
[2] |
Sigal IS, Harwood BG, Arentzen R (1982) Thiol-beta-lactamase: replacement of the active-site serine of RTEM beta-lactamase by a cysteine residue. Proc Natl Acad Sci U S A 79: 7157-7160. doi: 10.1073/pnas.79.23.7157
![]() |
[3] |
Winter G, Fersht AR, Wilkinson AJ, et al. (1982) Redesigning enzyme structure by site-directed mutagenesis: tyrosyl tRNA synthetase and ATP binding. Nature 299: 756-758. doi: 10.1038/299756a0
![]() |
[4] |
Brannigan JA, Wilkinson AJ (2002) Protein engineering 20 years on. Nat Rev Mol Cell Biol 3: 964-970. doi: 10.1038/nrm975
![]() |
[5] |
Tee KL, Wong TS (2013) Polishing the craft of genetic diversity creation in directed evolution. Biotechnol Adv 31: 1707-1721. doi: 10.1016/j.biotechadv.2013.08.021
![]() |
[6] |
Wong TS, Zhurina D, Schwaneberg U (2006) The diversity challenge in directed protein evolution. Comb Chem High Throughput Screen 9: 271-288. doi: 10.2174/138620706776843192
![]() |
[7] |
Wong TS, Roccatano D, Zacharias M, et al. (2006) A statistical analysis of random mutagenesis methods used for directed protein evolution. J Mol Biol 355: 858-871. doi: 10.1016/j.jmb.2005.10.082
![]() |
[8] |
Verma R, Wong TS, Schwaneberg U, et al. (2014) The Mutagenesis Assistant Program. Methods Mol Biol 1179: 279-290. doi: 10.1007/978-1-4939-1053-3_19
![]() |
[9] |
Reetz MT, Kahakeaw D, Lohmer R (2008) Addressing the numbers problem in directed evolution. Chembiochem 9: 1797-1804. doi: 10.1002/cbic.200800298
![]() |
[10] |
Edelheit O, Hanukoglu A, Hanukoglu I (2009) Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC Biotechnol 9: 61. doi: 10.1186/1472-6750-9-61
![]() |
[11] | Wang W, Malcolm BA (1999) 2-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange Site-Directed Mutagenesis. Biotechniques 26: 680-682. |
[12] |
Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35: W43-46. doi: 10.1093/nar/gkm234
![]() |
[13] |
Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5: 109-118. doi: 10.1016/S0022-2836(62)80066-7
![]() |
[14] |
Wallace RB, Shaffer J, Murphy RF, et al. (1979) Hybridization of synthetic oligodeoxyribonucleotides to phi chi 174 DNA: the effect of single base pair mismatch. Nucleic Acids Res 6: 3543-3557. doi: 10.1093/nar/6.11.3543
![]() |
[15] |
Bernhardt R, Urlacher VB (2014) Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Appl Microbiol Biotechnol 98: 6185-6203. doi: 10.1007/s00253-014-5767-7
![]() |
[16] |
Munro AW, Leys DG, McLean KJ, et al. (2002) P450 BM3: the very model of a modern flavocytochrome. Trends Biochem Sci 27: 250-257. doi: 10.1016/S0968-0004(02)02086-8
![]() |
[17] |
Chen CK, Shokhireva T, Berry RE, et al. (2008) The effect of mutation of F87 on the properties of CYP102A1-CYP4C7 chimeras: altered regiospecificity and substrate selectivity. J Biol Inorg Chem 13: 813-824. doi: 10.1007/s00775-008-0368-5
![]() |
[18] |
Vottero E, Rea V, Lastdrager J, et al. (2011) Role of residue 87 in substrate selectivity and regioselectivity of drug-metabolizing cytochrome P450 CYP102A1 M11. J Biol Inorg Chem 16: 899-912. doi: 10.1007/s00775-011-0789-4
![]() |
[19] |
Graham-Lorence S, Truan G, Peterson JA, et al. (1997) An active site substitution, F87V, converts cytochrome P450 BM-3 into a regio- and stereoselective (14S,15R)-arachidonic acid epoxygenase. J Biol Chem 272: 1127-1135. doi: 10.1074/jbc.272.2.1127
![]() |
[20] |
Li QS, Ogawa J, Schmid RD, et al. (2001) Residue size at position 87 of cytochrome P450 BM-3 determines its stereoselectivity in propylbenzene and 3-chlorostyrene oxidation. FEBS Lett 508: 249-252. doi: 10.1016/S0014-5793(01)03074-5
![]() |
[21] |
Oliver CF, Modi S, Sutcliffe MJ, et al. (1997) A single mutation in cytochrome P450 BM3 changes substrate orientation in a catalytic intermediate and the regiospecificity of hydroxylation. Biochemistry 36: 1567-1572. doi: 10.1021/bi962826c
![]() |
[22] |
Li QS, Ogawa J, Shimizu S (2001) Critical role of the residue size at position 87 in H2O2- dependent substrate hydroxylation activity and H2O2 inactivation of cytochrome P450BM-3. Biochem Biophys Res Commun 280: 1258-1261. doi: 10.1006/bbrc.2001.4261
![]() |
[23] |
Kuper J, Tee KL, Wilmanns M, et al. (2012) The role of active-site Phe87 in modulating the organic co-solvent tolerance of cytochrome P450 BM3 monooxygenase. Acta Crystallogr Sect F Struct Biol Cryst Commun 68: 1013-1017. doi: 10.1107/S1744309112031570
![]() |
[24] |
Kuper J, Wong TS, Roccatano D, et al. (2007) Understanding a mechanism of organic cosolvent inactivation in heme monooxygenase P450 BM-3. J Am Chem Soc 129: 5786-5787. doi: 10.1021/ja067036x
![]() |
[25] |
Wong TS, Arnold FH, Schwaneberg U (2004) Laboratory evolution of cytochrome p450 BM-3 monooxygenase for organic cosolvents. Biotechnol Bioeng 85: 351-358. doi: 10.1002/bit.10896
![]() |
[26] | Volkman BF, Liu TY, Peterson FC (2009) Chapter 3. Lymphotactin structural dynamics. Methods Enzymol 461: 51-70. |
[27] |
Reetz MT, Wang LW, Bocola M (2006) Directed evolution of enantioselective enzymes: iterative cycles of CASTing for probing protein-sequence space. Angew Chem Int Ed Engl 45: 1236-1241. doi: 10.1002/anie.200502746
![]() |
1. | Giovanni Noselli, Antonio DeSimone, A robotic crawler exploiting directional frictional interactions: experiments, numerics and derivation of a reduced model, 2014, 470, 1364-5021, 20140333, 10.1098/rspa.2014.0333 | |
2. | J. Dohmen, N. Grunewald, F. Otto, M. Rumpf, 2008, Chapter 7, 978-3-540-77202-6, 75, 10.1007/978-3-540-77203-3_7 | |
3. | Xiao-Ping Wang, Xianmin Xu, A dynamic theory for contact angle hysteresis on chemically rough boundary, 2017, 37, 1553-5231, 1061, 10.3934/dcds.2017044 | |
4. | P. Gruber, D. Knees, S. Nesenenko, M. Thomas, Analytical and numerical aspects of time-dependent models with internal variables, 2010, 90, 00442267, 861, 10.1002/zamm.200900387 | |
5. | Xianmin Xu, Yinyu Zhao, Xiaoping Wang, Analysis for Contact Angle Hysteresis on Rough Surfaces by a Phase-Field Model with a Relaxed Boundary Condition, 2019, 79, 0036-1399, 2551, 10.1137/18M1182115 | |
6. | Mathilde Reyssat, David Quéré, Contact Angle Hysteresis Generated by Strong Dilute Defects, 2009, 113, 1520-6106, 3906, 10.1021/jp8066876 | |
7. | G. Bellettini, Sh.Yu. Kholmatov, Minimizing movements for mean curvature flow of droplets with prescribed contact angle, 2018, 117, 00217824, 1, 10.1016/j.matpur.2018.06.003 | |
8. | Alessandro Turco, François Alouges, Antonio DeSimone, Wetting on rough surfaces and contact angle hysteresis: numerical experiments based on a phase field model, 2009, 43, 0764-583X, 1027, 10.1051/m2an/2009016 | |
9. | Xianmin Xu, Xiaoping Wang, Analysis of Wetting and Contact Angle Hysteresis on Chemically Patterned Surfaces, 2011, 71, 0036-1399, 1753, 10.1137/110829593 | |
10. | Jiwoong Jang, Capillary-type boundary value problems of mean curvature flows with force and transport terms on a bounded domain, 2023, 62, 0944-2669, 10.1007/s00526-023-02450-5 | |
11. | Antonio DeSimone, Martin Kružík, Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation, 2013, 8, 1556-181X, 481, 10.3934/nhm.2013.8.481 | |
12. | Antonio DeSimone, Paolo Gidoni, Giovanni Noselli, Liquid crystal elastomer strips as soft crawlers, 2015, 84, 00225096, 254, 10.1016/j.jmps.2015.07.017 | |
13. | Livio Fedeli, Alessandro Turco, Antonio DeSimone, Metastable equilibria of capillary drops on solid surfaces: a phase field approach, 2011, 23, 0935-1175, 453, 10.1007/s00161-011-0189-6 | |
14. | David Quéré, Wetting and Roughness, 2008, 38, 1531-7331, 71, 10.1146/annurev.matsci.38.060407.132434 | |
15. | Abner J. Salgado, A diffuse interface fractional time-stepping technique for incompressible two-phase flows with moving contact lines, 2013, 47, 0764-583X, 743, 10.1051/m2an/2012047 | |
16. | Giovanni Alberti, Antonio DeSimone, Quasistatic Evolution of Sessile Drops and Contact Angle Hysteresis, 2011, 202, 0003-9527, 295, 10.1007/s00205-011-0427-x | |
17. | William M. Feldman, Limit Shapes of Local Minimizers for the Alt–Caffarelli Energy Functional in Inhomogeneous Media, 2021, 240, 0003-9527, 1255, 10.1007/s00205-021-01635-6 | |
18. | Antonio DeSimone, Livio Fedeli, Alessandro Turco, 2010, Chapter 4, 978-90-481-9194-9, 51, 10.1007/978-90-481-9195-6_4 | |
19. | William M. Feldman, Inwon C. Kim, Liquid Drops on a Rough Surface, 2018, 71, 00103640, 2429, 10.1002/cpa.21793 | |
20. | Mathilde Reyssat, Denis Richard, Christophe Clanet, David Quéré, Dynamical superhydrophobicity, 2010, 146, 1359-6640, 19, 10.1039/c000410n | |
21. | S. Cacace, A. Chambolle, A. DeSimone, L. Fedeli, Macroscopic contact angle and liquid drops on rough solid surfaces via homogenization and numerical simulations, 2013, 47, 0764-583X, 837, 10.1051/m2an/2012048 | |
22. | A. DeSimone, F. Guarnieri, G. Noselli, A. Tatone, Crawlers in viscous environments: Linear vs non-linear rheology, 2013, 56, 00207462, 142, 10.1016/j.ijnonlinmec.2013.02.007 | |
23. | P. Gidoni, G. Noselli, A. DeSimone, Crawling on directional surfaces, 2014, 61, 00207462, 65, 10.1016/j.ijnonlinmec.2014.01.012 |