Mini review

Modeling cell behavior: moving beyond intuition

  • Received: 19 February 2014 Accepted: 28 March 2014 Published: 09 April 2014
  • In the context of the launching of this new journal, we propose a forum to the community of researchers interested and involved in, or even simply questioning the why, what, how, and when of modeling cell or cell culture behavior. To start the discussion, we review some of the usual questions we are routinely asked on the pertinence of modeling cell behavior, and on who might benefit from conducting such work. To draw a global portrait, throughout this text we refer the reader to handbooks introducing the basics of modeling a biosystem, as well as to selected works that can help visualize the broad fields of applications.

    Citation: Mario Jolicoeur. Modeling cell behavior: moving beyond intuition[J]. AIMS Bioengineering, 2014, 1(1): 1-12. doi: 10.3934/bioeng.2014.1.1

    Related Papers:

    [1] Mengting Sui, Yanfei Du . Bifurcations, stability switches and chaos in a diffusive predator-prey model with fear response delay. Electronic Research Archive, 2023, 31(9): 5124-5150. doi: 10.3934/era.2023262
    [2] Yujia Xiang, Yuqi Jiao, Xin Wang, Ruizhi Yang . Dynamics of a delayed diffusive predator-prey model with Allee effect and nonlocal competition in prey and hunting cooperation in predator. Electronic Research Archive, 2023, 31(4): 2120-2138. doi: 10.3934/era.2023109
    [3] Jiani Jin, Haokun Qi, Bing Liu . Hopf bifurcation induced by fear: A Leslie-Gower reaction-diffusion predator-prey model. Electronic Research Archive, 2024, 32(12): 6503-6534. doi: 10.3934/era.2024304
    [4] Fengrong Zhang, Ruining Chen . Spatiotemporal patterns of a delayed diffusive prey-predator model with prey-taxis. Electronic Research Archive, 2024, 32(7): 4723-4740. doi: 10.3934/era.2024215
    [5] Yichao Shao, Hengguo Yu, Chenglei Jin, Jingzhe Fang, Min Zhao . Dynamics analysis of a predator-prey model with Allee effect and harvesting effort. Electronic Research Archive, 2024, 32(10): 5682-5716. doi: 10.3934/era.2024263
    [6] Xiaowen Zhang, Wufei Huang, Jiaxin Ma, Ruizhi Yang . Hopf bifurcation analysis in a delayed diffusive predator-prey system with nonlocal competition and schooling behavior. Electronic Research Archive, 2022, 30(7): 2510-2523. doi: 10.3934/era.2022128
    [7] Miao Peng, Rui Lin, Zhengdi Zhang, Lei Huang . The dynamics of a delayed predator-prey model with square root functional response and stage structure. Electronic Research Archive, 2024, 32(5): 3275-3298. doi: 10.3934/era.2024150
    [8] Yuan Tian, Yang Liu, Kaibiao Sun . Complex dynamics of a predator-prey fishery model: The impact of the Allee effect and bilateral intervention. Electronic Research Archive, 2024, 32(11): 6379-6404. doi: 10.3934/era.2024297
    [9] Kimun Ryu, Wonlyul Ko . Global existence of classical solutions and steady-state bifurcation in a prey-taxis predator-prey system with hunting cooperation and a logistic source for predators. Electronic Research Archive, 2025, 33(6): 3811-3833. doi: 10.3934/era.2025169
    [10] Yuan Tian, Hua Guo, Wenyu Shen, Xinrui Yan, Jie Zheng, Kaibiao Sun . Dynamic analysis and validation of a prey-predator model based on fish harvesting and discontinuous prey refuge effect in uncertain environments. Electronic Research Archive, 2025, 33(2): 973-994. doi: 10.3934/era.2025044
  • In the context of the launching of this new journal, we propose a forum to the community of researchers interested and involved in, or even simply questioning the why, what, how, and when of modeling cell or cell culture behavior. To start the discussion, we review some of the usual questions we are routinely asked on the pertinence of modeling cell behavior, and on who might benefit from conducting such work. To draw a global portrait, throughout this text we refer the reader to handbooks introducing the basics of modeling a biosystem, as well as to selected works that can help visualize the broad fields of applications.


    The relationship between predator and prey is an important research content in ecosystem, and many scholars have studied this interaction by differential equation models [1,2,3,4,5,6]. The direct relationship between predator and prey is the consumption of prey. One of the indirect relationship between predator and prey is the fear of predator. When the prey gets the predator's signal (chemical/vocal), they will increase their vigilance time and reduce their foraging [7], such as mule deer v.s. mountain lions [8], elk v.s. wolves [9]. Consider the fear effect, Panday et al. [10] proposed the following model

    $ {dudt=R01+Kvu(1uK0)CAuvB+u,dvdt=AuvB+XDv.
    $
    (1.1)

    All parameters are positive. The biological interpretation of parameters is given in Table 1. They incorporated fear effect by modifying the prey intrinsic growth rate $ R_0 $ as $ \frac{R_0}{1+Kv} $. By the scaling

    $ uK0=ˉu,CvK0=ˉv,R0t=ˉt,AK0R0B=a,K0B=b,KK0C=c,DR0=μ,
    $
    (1.2)
    Table 1.  Biological description of parameters.
    Parameter Definition Parameter Definition
    $ t $ Time variable $ x $ Spatial variable
    $ u $ Prey density $ v $ Predator density
    $ R_0 $ Prey intrinsic growth rate $ K_0 $ Prey carrying capacity
    $ A $ Maximum predation rate $ B $ Half-saturation constant of predator
    $ C^{-1} $ Conversion efficiency $ D $ Death rate of predators
    $ K $ Fear parameter $ \tau $ Averaged memory period of predator
    $ d_1 $ Diffusion coefficient of prey $ d_2 $ Diffusion coefficient of predator
    $ d $ Memory-based diffusion coefficient

     | Show Table
    DownLoad: CSV

    model (1.1) is changed to (drop the bars)

    $ {dudt=u(1u)1+cvauv1+bu,dvdt=auv1+buμv.
    $
    (1.3)

    Panday et al. [10] introduced time delay of perceiving predator signals to model (1.3), and mainly studied the boundedness, persistence, local and global behavior of the delayed model.

    In the real world, in addition to the fear effect of the prey, the clever predator also has spatial-memory and cognition [11], which is often ignored in modeling the predator-prey interaction. For example, blue whales rely on memory for migration, which is presented by B. Abrahms et al. [12] and W. F. Fagan [13]. As another example, animals in polar regions usually determine their spatial movement by judging footprints, which record the history of species distribution and movement, involving time delay [14]. Obviously, highly developed animals can even remember the historical distribution or cluster of species in space. Much progress has been made in implicitly integrating spatial cognition or memory [14,15,16,17,18]. To incorporate the memory effect, Shi et al. proposed a single specie model with spatial memory by introducing a additional delayed diffusion term [14]. They supposed that in addition to the negative gradient of the density distribution function at the present time, there is a directed movement toward the negative gradient of the density distribution function at past time [14]. After this pioneering work, some recent works [19,20,21,22,23] about the population model with memory effect have emerged. In [23], Song et al. obtained a computing method for the normal forms of the Hopf bifurcations in the diffusive predator-prey model with memory effect, which is friendly to use.

    Inspired by the above work, we suppose the predator has spatial-memory diffusion and the prey has fear effect, then modified the model (1.3) as follow

    $ {u(x,t)t=d1Δu(x,t)+u(1u)1+cvauv1+bu,v(x,t)t=d(v(x,t)u(x,tτ))+d2Δv(x,t)+auv1+buμv,xΩ,t>0u(x,t)ˉν=v(x,t)ˉν=0,xΩ,t>0u(x,θ)=u0(x,θ)0,v(x,θ)=v0(x,θ)0,xˉΩ,θ[τ,0].
    $
    (1.4)

    All parameters are positive. The biological description of parameters is given in Table 1. The term $ -d\nabla (v \nabla u(t-\tau)) $ represents the memory-based diffusion effect of the predator. The Neumann boundary conditions is used. The aim of this paper is to study the effect of predator's memory-based diffusion and prey's fear on the model (1.4).

    The rest of this paper is organized as follows. In Section 2, the stability of coexisting equilibrium and the existence of Hopf bifurcation are considered. In Section 3, the property of Hopf bifurcation is studied. In Section 3, some numerical simulations are given to analyze the effect of spatial-memory and fear effect. In Section 4, a short conclusion is given.

    For simplicity, we choose $ \Omega = (0, l\pi) $. Denote $ \mathbb{N} $ as positive integer set, and $ \mathbb{N}_0 $ as nonnegative integer set. It is easy to obtain $ (0, 0) $ and $ (1, 0) $ are two boundary equilibria of model (1.4). Next, we will give the existence of coexisting equilibrium.

    Lemma 2.1. If $ a > (1+b) \mu $, model (1.4) has one unique coexisting equilibrium $ (u_*, v_*) $ where $ u_* = \frac{\mu }{a-b \mu } $, $ v_* = \frac{1}{2 c}\left(-1+\sqrt{1+\frac{4 c [a-(1+b) \mu ]}{(a-b \mu)^2}}\right) $.

    Proof. The coexisting equilibrium of (1.4) is a positive root of the following equations

    $ {u(1u)1+cvauv1+bu=0,auv1+buμv=0.
    $
    (2.1)

    From the second equation, we have $ u = \frac{\mu }{a-b \mu } $. Substitute it into the first equation, we have

    $ c v^2+v-\frac{(a-(1+b) \mu )}{(a-b \mu )^2} = 0. $

    Then $ v = \frac{1}{2 c}\left(-1\pm \sqrt{1+4 c \frac{(a-(1+b) \mu)}{(a-b \mu)^2}}\right) $. Obviously, the conclusion holds.

    In this paper, we mainly study the stability of coexisting equilibrium $ E_*(u_*, v_*) $. Linearize model (1.4) at $ E_*(u_*, v_*) $, we have

    $ ut(u(x,t)u(x,t))=D1(Δu(t)Δv(t))+D2(Δu(tτ)Δv(tτ))+L(u(x,t)v(x,t)),
    $
    (2.2)

    where

    $ D1=(d100d2),D2=(00dv0),L=(a1a2b10),
    $

    and $ a_1 = u_*\left(\frac{a b v_*}{(1+b u_*)^2}-\frac{1}{1+c v_*}\right) $, $ a_2 = -\frac{u_*(1-u_*)(1+2 c v_*)}{v_*(1+c v_*)^2} < 0 $, $ b_1 = \frac{a v_*}{(1+b u_*)^2} > 0 $. The characteristic equations are

    $ λ2+Anλ+Bn+Cneλτ=0,nN0,
    $
    (2.3)

    where

    $ A_n = (d_1+d_2)\frac{n^2}{l^2}-a_1,\; \; B_n = -a_2 b_1-a_1 d_2\frac{ n^2}{l^2}+d_1 d_2 \frac{n^4}{l^4},\; \; C_n = -a_2 dv_*\frac{ n^2}{l^2}. $

    When $ \tau = 0 $, the characteristic Eq (2.3) become

    $ λ2+Anλ+Bn+Cn=0,nN0,
    $
    (2.4)

    where $ B_n+C_n = -a_2 b_1-(a_2 d v_*+a_1 d_2)\frac{ n^2}{l^2}+d_1 d_2 \frac{n^4}{l^4} $. Make the following hypothesis

    $ (H1)a>(1+b)μ,a1<0.
    $

    Theorem 2.1. For model (1.4) with $ \tau = 0 $, $ E_*(u_*, v_*) $ is locally asymptotically stable under the hypothesis $ {\bf (H_1)} $.

    Proof. If $ {\bf (H_1)} $ holds, we can easily obtain that $ A_n > 0 $ and $ B_n+C_n > 0 $. Then the characteristic roots of (2.4) all have negative real parts. Then $ E_*(u_*, v_*) $ is locally asymptotically stable.

    In the following, we assume $ {\bf (H_1)} $ holds. Let $ \mbox{i}\omega $ ($ \omega > 0 $) be a solution of Eq (2.3), then we have

    $ - \omega^2+A_n\mbox{i} \omega +B_n+C_n(\mbox{cos} \omega \tau-\mbox{i} \mbox{sin} \omega \tau) = 0. $

    We can obtain $ {\rm{cos}}\omega\tau = \frac{\omega ^2-B_n}{C_n} $, $ {\rm{sin}}\omega\tau = \frac{A_n\omega }{C_n} > 0 $ under hypothesis $ {\bf (H_1)} $. It leads to

    $ ω4+(A2n2Bn)ω2+B2nC2n=0.
    $
    (2.5)

    Let $ p = \omega^2 $, then (2.5) becomes

    $ p2+(A2n2Bn)p+B2nC2n=0,
    $
    (2.6)

    and the roots of (2.6) are $ p_n^{\pm} = \frac{1}{2}[-\left(A_n^2-2 B_n\right) \pm \sqrt{\left(A_n^2-2 B_n\right)^2-4(B_n^2-C_n^2)}]. $ By direct computation, we have

    $ {A2n2Bn=a21+2a2b12a1d1n2l2+(d21+d22)n4l4,BnCn=d1d2n4l4+(a2dva1d2)n2l2a2b1,
    $

    and $ B_n+C_n > 0 $ under hypothesis $ {\bf (H_1)} $. Define $ z_{\pm} = \frac{-(a_2 d v_*-a_1 d_2)\pm\sqrt{(a_2 d v_*-a_1 d_2)^2-4 d_1 d_2 (-a_2 b_1)}}{2 d_1 d_2} $, $ d_* = \frac{a_1 d_2}{a_2v_*}+\frac{2}{v_*} \sqrt{-\frac{b_1 d_1 d_2}{a_2}} $, and $ \mathbb{M} = \{n|\frac{n^2}{l_2}\in (z_-, z_+), \; n\in\mathbb{N}_0 \} $. Then we can obtain that

    $ {BnCn>0,fordd,nN0,BnCn>0,ford>d,nM,BnCn<0,ford>d,nM.
    $
    (2.7)

    The existence of purely imaginary roots of Eq (2.3) can be divided into the following two cases.

    $ {\bf Case\; 1:}\; a_1^2+2 a_2 b_1 > 0 $. We can obtain $ A_n^2-2B_n > a_1^2+2 a_2 b_1 > 0 $. For $ d > d_* $ and $ n\in \mathbb{M} $, Eq (2.3) has a pair of purely imaginary roots $ \pm i\omega^+_n $ at $ \tau^{j, +}_n $ for $ j \in \mathbb{N}_0 $ and $ n\in\mathbb{M} $. Otherwise, Eq (2.3) does not have characteristic roots with zero real parts.

    $ {\bf Case\; 2:}\; a_1^2+2 a_2 b_1 < 0 $. This case can be divided into the following two subcases.

    $ \bullet $ For $ d \leq d_* $ and $ n\in \mathbb{M}_1: = \{n|A_n^2-2 B_n < 0, \; \left(A_n^2-2 B_n\right)^2-4(B_n^2-C_n^2) > 0, \; n\in\mathbb{N}_0 \} $, Eq (2.3) has two pairs of purely imaginary roots $ \pm i\omega^\pm_n $ at $ \tau^{j, \pm}_n $ for $ j \in \mathbb{N}_0 $ and $ n\in\mathbb{M}_1 $. Otherwise, Eq (2.3) does not have characteristic roots with zero real parts.

    $ \bullet $ For $ d > d_* $ and $ n\in \mathbb{M}_2: = \{n|A_n^2-2 B_n < 0, \; \left(A_n^2-2 B_n\right)^2-4(B_n^2-C_n^2) > 0, \; n\in\mathbb{N}_0, \; n\notin\mathbb{M} \} $, Eq (2.3) has two pairs of purely imaginary roots $ \pm i\omega^\pm_n $ at $ \tau^{j, \pm}_n $ for $ j \in \mathbb{N}_0 $ and $ n\in\mathbb{M}_1 $. For $ d > d_* $ and $ n\in \mathbb{M} $, Eq (2.3) has a pair of purely imaginary roots $ \pm i\omega^+_n $ at $ \tau^{j, +}_n $ for $ j \in \mathbb{N}_0 $ and $ n\in\mathbb{M} $. Otherwise, Eq (2.3) does not have characteristic roots with zero real parts.

    The $ \omega^\pm_n $ and $ \tau^{j, \pm}_n $ are defined as follow

    $ ω±n=p±n,τj,±n=1ω±narccos((ω±n)2BnCn)+2jπ.
    $
    (2.8)

    Define

    $ \mathbb{S} = \{\tau^{j,+}_n\; \mbox{or}\; \tau^{j,-}_n| {\rm{Eq\;(2.3)\;has\;purely\;imaginary\;roots}} \pm i\omega^+_n\; \mbox{or}\; \pm i\omega^-_n\; {\rm{when}}\; \tau = \tau^{j,+}_n\; \mbox{or}\; \tau^{j,-}_n\}. $

    We have the following lemma.

    Lemma 2.2. Assume $ {\bf (H_1)} $ holds. Then$ \mathit{{\rm{Re}}}(\frac{d \lambda} {d \tau})|_{\tau = \tau^{j, +}_n} > 0 $, $ \mathit{{\rm{Re}}} (\frac{d \lambda} {d \tau})|_{\tau = \tau^{j, -}_n} < 0 $ for $ \tau^{j, \pm}_n \in \mathbb{S} $ and $ j \in \mathbb{N}_0 $.

    Proof. By Eq (2.3), we have

    $ (\frac{d \lambda} {d \tau})^{-1} = \frac{2 \lambda +A_n} {C_n\lambda e^{-\lambda \tau}}- \frac{\tau}{\lambda}. $

    Then

    $ [Re(dλdτ)1]τ=τj,±n=Re[2λ+AnCnλeλττλ]τ=τj,±n=[1A2nω2+(Bnω)2(2ω2+A2n2Bn)]τ=τj,±n=±[1A2nω2+(Bnω)2(A2n2Bn)24(B2nC2n)]τ=τj,±n.
    $

    Therefore $ {\rm{Re}}(\frac{d \lambda} {d \tau})|_{\tau = \tau^{j, +}_n} > 0 $, $ {\rm{Re}} (\frac{d \lambda} {d \tau})|_{\tau = \tau^{j, -}_n} < 0 $.

    Denote $ \tau_* = min\{\tau^{0, \pm}_n|\; \tau^{0, \pm}_n\in\mathbb{S}\} $. We have the following theorem.

    Theorem 2.2. Assume $ {\bf (H_1)} $ holds, then the following statements are true for model (1.4).

    $ \bullet $ $ E_*(u_*, v_*) $ is locally asymptotically stable for $ \tau > 0 $ when $ \mathbb{S} = \varnothing $.

    $ \bullet $ $ E_*(u_*, v_*) $ is locally asymptotically stable for $ \tau \in [0, \tau_*) $ when $ \mathbb{S}\neq \varnothing $.

    $ \bullet $ $ E_*(u_*, v_*) $ is unstable for $ \tau \in (\tau_*, \tau_*+\varepsilon) $ for some $ \varepsilon > 0 $ when $ \mathbb{S}\neq \varnothing $.

    $ \bullet $ Hopf bifurcation occurs at$ (u_*, v_*) $ when $ \tau = \tau^{j, +}_n $ $ (\tau = \tau^{j, -}_n) $, $ j\in \mathbb{N}_0 $, $ \tau^{j, \pm}_n \in \mathbb{S} $.

    Remark 2.1. In the Theorem 2, if $ E_*(u_*, v_*) $ is locally asymptotically stable, the densities of prey and predator will tend to the equilibrium state in the whole region when the initial densities of prey and predator is near $ E_*(u_*, v_*) $. When Hopf bifurcation occurs at$ (u_*, v_*) $, then the densities of prey and predator will produce periodic oscillation. Especially, spatially homogeneous periodic oscillations may occur when $ \tau $ near the critical value $ \tau = \tau^{j, +}_0 $ or $ \tau = \tau^{j, -}_0 $, and spatially inhomogeneous periodic oscillations may occur when $ \tau $ near the critical value $ \tau = \tau^{j, +}_n $ or $ \tau = \tau^{j, -}_n $ ($ n > 0 $).

    In this section, we use the algorithm in [23] to compute the normal form of Hopf bifurcation. We denote the critical value of Hopf bifurcation as $ \tilde{\tau} $ and the purely imaginary roots as $ \pm i \omega_n $ of Eq (2.3). Let $ \bar{u}(x, t) = u(x, \tau t)-u_* $ and $ \bar{v}(x, t) = v(x, \tau t)-v_* $. Drop the bar, the model (1.4) can be written as

    $ {ut=τ[d1Δu+(u+u)(1(u+u))1+c(v+v)a(u+u)(v+v)1+b(u+u)],vt=τ[d((v+v)(u(t1)+u))+d2Δv+a(u+u)(v+v)1+b(u+u)μ(v+v)].
    $
    (3.1)

    Define the real-valued Sobolev space $ \mathbb{X} = \left\{U = (u, v)^T\in W^{2, 2}(0, l\pi)^2, \; (\frac{\partial{u}}{\partial{x}}, \frac{\partial{v}}{\partial{x}})|_{x = 0, l\pi} = 0 \right\} $, the inner product

    $ [U,V] = \int_{0}^{l\pi} U^T Vdx,\; \; \mbox{for}\; \; U,\; V\in\mathbb{X}, $

    and $ \mathbb{C} = C([-1, 0];\mathbb{X}) $. Set $ \tau = \tilde{\tau}+\varepsilon $, where $ \varepsilon $ is small perturbation. Then system (3.1) is rewritten as

    $ dU(t)dt=d(ε)Δ(Ut)+L(ε)(Ut)+F(Ut,ε),
    $
    (3.2)

    where for $ \varphi = (\varphi_, \varphi_2)^T \in \mathbb{C} $, $ d(\varepsilon)\Delta $, $ L(\varepsilon):\mathbb{C}\rightarrow \mathbb{X} $, $ F:\mathbb{C}\times \mathbb{R}^2\rightarrow \mathbb{X} $. They are defined as

    $ d(\varepsilon)\Delta(\varphi) = d_0\Delta(\varphi)+F^d(\varphi,\varepsilon), \; L(\varepsilon)(\varphi) = (\tilde{\tau}+\varepsilon)A\varphi(0), $
    $ F(\varphi,\varepsilon) = (\tilde{\tau}+\varepsilon)\left( f(ϕ(1)(0)+u,ϕ(2)(0)+v)g(ϕ(1)(0)+u,ϕ(2)(0)+v)
    \right)-L(\varepsilon)(\varphi), $

    and

    $ d_0\Delta(\varphi) = \tilde{\tau}D_1\varphi_{xx}(0)+\tilde{\tau}D_2\varphi_{xx}(-1), $
    $ F^d(\varphi,\varepsilon) = -d(\tilde{\tau}+\varepsilon)\left( 0ϕ(1)x(1)ϕ(2)x(0)+ϕ(1)xx(1)ϕ(2)(0)
    \right)+\varepsilon\left( d1ϕ(1)xx(0)dvϕ(1)xx(1)+d2ϕ(2)xx(0)
    \right). $

    Denote $ L_0(\varphi) = \tilde{\tau}A\varphi(0) $, and rewrite (3.2) as

    $ dU(t)dt=d0Δ(Ut)+L0(Ut)+˜F(Ut,ε),
    $
    (3.3)

    where $ \tilde{F}(\varphi, \varepsilon) = \varepsilon A\varphi(0)+F(\varphi, \varepsilon)+F^d(\varphi, \varepsilon) $. The characteristic equation for the linearized equation $ \frac{dU(t)}{dt} = d_0\Delta (U_t)+L_0 (U_t) $ is $ \tilde{\Gamma}_n(\lambda) = det\left(\tilde{M}_n((\lambda))\right) $, where

    $ ˜Mn(λ)=λI2+˜τn2l2D1+˜τeλn2l2D2˜τA.
    $
    (3.4)

    The eigenvalue problem

    $ -z(x)'' = \nu z(x),\; \; x\in(0,l\pi); \; \; z(0)' = z(l\pi)' = 0, $

    has eigenvalues $ \frac{n^2}{l^2} $ and normalized eigenfunctions

    $ zn(x)=cosnxl||cosnxl||2,2={1lπn=0,2lπcosnxln0,
    $
    (3.5)

    Set $ \beta_n^{(j)} = z_n(x)e_j $, $ j = 1, 2 $, where $ e_1 = (1, 0)^T $ and $ e_2 = (0, 1)^T $. Define $ \eta_n(\theta)\in BV([-1, 0], \mathbb{R}^2) $, such that

    $ \int_{-1}^{0}d \eta^n(\theta) \phi(\theta) = L_0^d(\varphi(\theta))+L_0(\varphi(\theta)),\; \; \varphi\in C, $

    $ C = C([-1, 0], \mathbb{R}^2) $, $ C^* = C([0, 1], \mathbb{R}^{2*}) $, and

    $ <ψ(s),φ(θ)>=ψ(0)φ(0)01θ0ψ(ξθ)dηn(θ)φ(ξ)dξ,ψC,φC.
    $
    (3.6)

    Let $ \bigwedge = \{i\tilde{\omega}, -i\tilde{\omega} \} $, the eigenspace $ P $, and corresponding adjoint space $ P^* $. Decompose $ C = P\oplus Q $, where $ Q = \{\varphi\in C: < \psi, \varphi > = 0, \forall \psi\in P^* \} $. Choose $ \Phi(\theta) = (\phi(\theta), \bar{\phi}(\theta)) $, $ \Psi(\theta) = col(\psi^T(s), \bar{\psi}^T(s)) $, where

    $ \phi(\theta) = \phi e^{i\tilde{\omega}\theta}: = \left( ϕ1(θ)ϕ2(θ)
    \right),\; \; \psi(s) = \psi e^{-i\tilde{\omega}s}: = \left( ψ1(s)ψ2(s)
    \right), $
    $ \phi = \left( 11a2(a1+d1n2l2+i˜ω)
    \right),\; \; \; \; \psi = M\left( 1a2d2n2l2+i˜ω
    \right), $

    and

    $ M = \left(-\frac{a_1 l^2-d_1 n^2-d_2 n^2-a_2 d v_* e^{-i \tilde{\omega} } n^2 \tilde{\tau} -2 i l^2 \tilde{\omega} }{d_2 n^2+i l^2 \tilde{\omega} }\right)^{-1}. $

    Then $ \phi(\theta) $ and $ \psi(s) $ are the bases of $ P $ and $ P^* $, respectively, and such that $ < \phi, \psi > = I_2 $.

    By direct computation, we have

    $ f_{20} = \left( f(1)20f(2)20
    \right),\; \; f_{11} = \left( f(1)11f(2)11
    \right),\; \; f_{02} = \left( f(1)02f(2)02
    \right), $
    $ f_{30} = \left( f(1)30f(2)30
    \right),\; \; f_{21} = \left( f(1)21f(2)21
    \right),\; \; f_{12} = \left( f(1)12f(2)12
    \right),\; \; f_{03} = \left( f(1)03f(2)03
    \right), $

    where $ f^{(1)}_{20} = \frac{2 a b v_*}{(1+b u_*)^3}-\frac{2}{1+c v_*} $, $ f^{(1)}_{11} = -\frac{a}{(1+b u_*)^2}+\frac{c (-1+2 u_*)}{(1+c v_*)^2} $, $ f^{(1)}_{02} = \frac{2 c^2 (1-u_*) u_*}{(1+c v_*)^3} $, $ f^{(1)}_{30} = -\frac{6 a b^2 v_*}{(1+b u_*)^4} $, $ f^{(1)}_{21} = \frac{2 a b}{(1+b u_*)^3}+\frac{2 c}{(1+c v_*)^2} $, $ f^{(1)}_{12} = \frac{2 c^2 (1-2 u_*)}{(1+c v_*)^3} $, $ f^{(1)}_{03} = -\frac{6 c^3 (1-u_*) u_*}{(1+c v_*)^4} $, $ f^{(2)}_{20} = -\frac{2 a b v_*}{(1+b u_*)^3} $, $ f^{(2)}_{11} = \frac{a}{(1+b u_*)^2} $, $ f^{(2)}_{02} = 0 $, $ f^{(2)}_{30} = \frac{6 a b^2 v_*}{(1+b u_*)^4} $, $ f^{(2)}_{21} = -\frac{2 a b}{(1+b u_*)^3} $, $ f^{(2)}_{12} = 0 $, $ f^{(2)}_{03} = 0 $. We can compute the following parameters

    $ A20=f20ϕ1(0)2+f02ϕ2(0)2+2f11ϕ1(0)ϕ2(0)=¯A02,A11=2f20ϕ1(0)ˉϕ1(0)+2f02ϕ2(0)ˉϕ2(0)+2f11(ϕ1(0)ˉϕ2(0)+ˉϕ1(0)ϕ2(0)),A21=3f30ϕ1(0)2ˉϕ1(0)+3f03ϕ2(0)2ˉϕ2(0)+3f21(ϕ1(0)2ˉϕ2(0)+2ϕ1(0)ˉϕ1(0)ϕ2(0))+3f12(ϕ2(0)2ˉϕ1(0)+2ϕ2(0)ˉϕ2(0)ϕ1(0)),
    $
    (3.7)
    $ A^d_{20} = -2 d \tau \left( 0ϕ1(0)(1)ϕ2(0)(0)
    \right) = \bar{A_{02}^d},\; \; A^d_{11} = -2 d \tau \left( 02Re[ϕ1(1)ˉϕ2(0)]
    \right), $

    and $ \widetilde{A}_{j_1 j_2} = A_{j_1 j_2}-2\frac{n^2}{l^2}A^d_{j_1 j_2} $ for $ j_1, j_2 = 0, 1, 2, \; j_1+j_2 = 2 $. In addition, $ h_{0, 20}(\theta) = \frac{1}{l\pi}(\widetilde{M}_0(2i\tilde{\omega}))^{-1}A_{20}e^{2i\tilde{\omega} \theta} $, $ h_{0, 11}(\theta) = \frac{1}{l\pi}(\widetilde{M}_0(0))^{-1}A_{11} $, $ h_{2n, 20}(\theta) = \frac{1}{2l\pi}(\widetilde{M}_{2n}(2i\tilde{\omega}))^{-1}\widetilde{A}_{20}e^{2i\tilde{\omega} \theta} $, $ h_{2n, 11}(\theta) = \frac{1}{l\pi}(\widetilde{M}_{2n}(0))^{-1}\widetilde{A}_{11} $.

    $ S_2(\phi(\theta),h_{n,q_1q_2}(\theta)) = 2\phi_1h^{(1)}_{n,q_1q_2}f_{20}+2\phi_2h^{(2)}_{n,q_1q_2}f_{02}+ 2(\phi_1h^{(2)}_{n,q_1q_2}+\phi_2h^{(1)}_{n,q_1q_2})f_{11}, $
    $ S_2(\bar{\phi}(\theta),h_{n,q_1q_2}(\theta)) = 2\bar{\phi}_1h^{(1)}_{n,q_1q_2}f_{20}+2\bar{\phi}_2h^{(2)}_{n,q_1q_2}f_{02} +2(\bar{\phi}_1h^{(2)}_{n,q_1q_2}+\bar{\phi}_2h^{(1)}_{n,q_1q_2})f_{11}, $
    $ S_2^{d,1}(\phi(\theta),h_{0,11}(\theta)) = -2 d \tilde{\tau} \left( 0ϕ1(1)h(2)0,11(0)
    \right),\; \; \\S_2^{d,1}(\bar{\phi}(\theta),h_{0,11}(\theta)) = -2 d \tilde{\tau} \left( 0ˉϕ1(1)h(2)0,20(0)
    \right), $
    $ S_2^{d,1}(\phi(\theta),h_{2n,11}(\theta)) = -2 d \tilde{\tau} \left( 0ϕ1(1)h(2)2n,11(0)
    \right),\; \; \\S_2^{d,1}(\bar{\phi}(\theta),h_{2n,20}(\theta)) = -2 d \tilde{\tau} \left( 0ˉϕ1(1)h(2)2n,20(0)
    \right), $
    $ S_2^{d,2}(\phi(\theta),h_{2n,11}(\theta)) = -2 d \tilde{\tau} \left( 0ϕ1(1)h(2)2n,11(0)
    \right)-2 d \tilde{\tau} \left( 0ϕ2(0)h(1)2n,11(1)
    \right), $
    $ S_2^{d,2}(\bar{\phi}(\theta),h_{2n,20}(\theta)) = -2 d \tilde{\tau} \left( 0ˉϕ1(1)h(2)2n,20(0)
    \right)-2 d \tilde{\tau} \left( 0ˉϕ2(0)h(1)2n,20(1)
    \right), $
    $ S_2^{d,3}(\phi(\theta),h_{2n,11}(\theta)) = -2 d \tilde{\tau} \left( 0ϕ2(0)h(1)2n,11(1)
    \right),\; \; \\S_2^{d,3}(\bar{\phi}(\theta),h_{2n,20}(\theta)) = -2 d \tilde{\tau} \left( 0ˉϕ1(0)h(2)2n,20(1)
    \right). $

    Then we have

    $ B21=32lπψTA21,B22=1lπψT(S2(ϕ(θ),h0,11(θ))+S2(ˉϕ(θ),h0,20(θ)))+12lπψT(S2(ϕ(θ),h2n,11(θ))+S2(ˉϕ(θ),h2n,20(θ))),B23=1lπn2l2ψT(Sd,12(ϕ(θ),h0,11(θ))+Sd,12(ˉϕ(θ),h0,20(θ)))+12lπψTj=1,2,3b(j)2n(Sd,j2(ϕ(θ),h2n,11(θ))+Sd,j2(ˉϕ(θ),h2n,20(θ))),
    $

    where $ b_{2n}^{(1)} = -\frac{n^2}{l^2} $, $ b_{2n}^{(2)} = -2\frac{n^2}{l^2} $, $ b_{2n}^{(3)} = -4\frac{n^2}{l^2} $. The normal form of the Hopf bifurcation is

    $ ˙z=Bz+12(B1z1εˉB1z2ε)+13!(B2z21z2εˉB2z1z22ε)+O(|z|ε2+|z4|),
    $
    (3.8)

    where

    $ B_1 = 2i\tilde{\omega}\psi^T\phi,\; \; B_2 = B_{21}+\frac{3}{2}(B_{22}+B_{23}). $

    By the coordinate transformation $ z_1 = \omega_1-i\omega_2 $, $ z_2 = \omega_1+i\omega_2 $, and $ \omega_1 = \rho {\rm{cos}}\xi $, $ \omega_2 = \rho {\rm{sin}}\xi $, the normal form (3.8) can be rewritten as

    $ ˙ρ=K1ερ+K2ρ3+O(ρε2+|(ρ,ε)|4),
    $
    (3.9)

    where $ K_1 = \frac{1}{2}{\rm{Re}}(B_1) $, $ K_2 = \frac{1}{3!}{\rm{Re}}(B_2) $.

    By the work [23], we have the following theorem.

    Theorem 3.1. If $ K_1K_2 < 0 (>0) $, the Hopf bifurcation is supercritical (subcritical), and the bifurcating periodic orbits is stable(unstable) for $ K_2 < 0 (>0) $.

    Remark 3.1. In the Theorem 3.1, when Hopf bifurcation is supercritical (subcritical), then the bifurcating periodic solutions exist for $ \tau > \tilde{\tau} $ ($ \tau < \tilde{\tau} $), where $ \tilde{\tau} $ is some critical value $ \tau = \tau^{j, \pm}_n $. When the periodic solution is stable, the densities of prey and predator will produce periodic oscillation, and finally continue to oscillate.

    In this section, we give some numerical simulations to analyze the effect of spatial memory in predator and fear in prey on the model (1.4). Fix the following parameters

    $ a=0.5,b=1,μ=0.2,d1=0.1,d2=0.2,l=2.
    $
    (4.1)

    If we choose $ c = 1 $, then model (1.4) has a unique coexisting equilibrium $ (u_*, v_*)\approx(0.6667, \; 0.0.6667) $, and $ a_1^2+2 a_2 b_1 \approx 0.0352 > 0 $, $ d_*\approx 0.6206 $. To study the effect of memory-based diffusion coefficient $ d $ on the model (1.4), we give the bifurcation diagram of model (1.4) with parameter $ d $ as in Figure 1. By the Theorem 2.2, we know that $ (u_*, v_*) $ is locally stable for $ \tau \geq 0 $ when $ d < d_* $. But when $ d > d_* $, the inhomogeneous Hopf bifurcation curves exist. This means that increasing parameter $ d $ is not conducive to the stability of the equilibrium $ (u_*, v_*) $, and the densities of prey and predator will produce spatially inhomogeneous periodic oscillation.

    Figure 1.  Stability region and Hopf bifurcation curves in $ \tau-d $ plane. The dotted region is the stability region of $ (u_*, v_*) $ and $ \tau = \tau_i^{0, +} $, $ i = 2, 3, 4 $, are Hopf bifurcations curves.

    Choose $ d = 0.7 $, we have $ \mathbb{M} = \{2, \; 3 \} $ and $ \tau_* = \tau_2^{0, +} \approx17.4593 < \tau_3^{0, +} \approx19.1380 $. When $ \tau\in [0, \tau_*) $, $ (u_*, v_*) $ is locally stable (Figure 2). By direct calculation, we can obtain $ K_1\approx 0.0166 $, and $ K_2\approx -0.0699 $. Then, the Hopf bifurcation is supercritical and the bifurcating periodic solution is stable (Figure 3). At this time, the bifurcating periodic solution is spatially inhomogeneous and with mode-2.

    Figure 2.  The numerical simulations of model $ (1.4) $ with $ d = 0.7 $, $ \tau = 9 $ and initial values $ u_0(x) = u_*+0.01\mbox{cos}x $, $ v_0(x) = v_*+0.01\mbox{cos}x $. The coexisting equilibrium $ (u_*, v_*) $ is asymptotically stable.
    Figure 3.  The numerical simulations of model $ (1.4) $ with $ d = 0.7 $, $ \tau = 18 $ and initial values $ u_0(x) = u_*+0.01\mbox{cos}x $, $ v_0(x) = v_*+0.01\mbox{cos}x $. The coexisting equilibrium $ (u_*, v_*) $ is unstable and there exists a spatially inhomogeneous periodic solution with mode-2 spatial pattern.

    Choose $ d = 0.8 $, we have $ \mathbb{M} = \{2, \; 3 \} $ and $ \tau_* = \tau_3^{0, +} \approx8.4754 < \tau_2^{0, +} \approx9.9645 $. When $ \tau\in [0, \tau_*) $, $ (u_*, v_*) $ is locally stable (Figure 4). By direct calculation, we can obtain $ K_1\approx 0.1236 $, $ K_2\approx -0.3994 $. Then, the Hopf bifurcation is supercritical and the bifurcating periodic solution is stable (Figure 5). At this time, the bifurcating periodic solution is spatially inhomogeneous with mode-3. When $ \tau_* = \tau_3^{0, +} < \tau_2^{0, +} < \tau = 10 $, there is an unstably spatially inhomogeneous periodic solution with mode-2 which transitions to the stably spatially inhomogeneous periodic solution with mode-3 (Figure 6).

    Figure 4.  The numerical simulations of model $ (1.4) $ with $ d = 0.8 $, $ \tau = 5 $ and initial values $ u_0(x) = u_*+0.01\mbox{cos}x $, $ v_0(x) = v_*+0.01\mbox{cos}x $. The coexisting equilibrium $ (u_*, v_*) $ is asymptotically stable.
    Figure 5.  The numerical simulations of model $ (1.4) $ with $ d = 0.8 $, $ \tau = 9 $ and initial values $ u_0(x) = u_*+0.01\mbox{cos}x $, $ v_0(x) = v_*+0.01\mbox{cos}x $. The coexisting equilibrium $ (u_*, v_*) $ is unstable and there exists a spatially inhomogeneous periodic solution with mode-3 spatial pattern.
    Figure 6.  The numerical simulations of model $ (1.4) $ with $ d = 0.8 $, $ \tau = 10 $ and initial values $ u_0(x) = u_*+0.01\mbox{cos}x $, $ v_0(x) = v_*+0.01\mbox{cos}x $. The coexisting equilibrium $ (u_*, v_*) $ is unstable and pattern transitions from a spatially inhomogeneous periodic solution with mode-2 to a spatially inhomogeneous periodic solution with mode-3.

    Next, we will study the effect of fear effect $ c $ on the model (1.4). Fix the parameters as (4.1), then model (1.4) has a unique coexisting equilibrium $ (u_*, v_*) $. And $ a_1^2+2 a_2 b_1 > 0 $ when $ 0 < c < 2.6194 $. We give the figure of $ d_* $ with parameter $ c $ as in Figure 7. Set parameter $ d = 0.7 $ and $ d = 0.8 $, we give the bifurcation diagrams of model (1.4) with parameter $ c $ as in Figure 8.

    Figure 7.  Figure of $ d_* $ with parameter $ c $.
    Figure 8.  Stability region and Hopf bifurcation curves in $ \tau-c $ plane. The dotted region is the stability region of $ (u_*, v_*) $ and $ \tau = \tau_i^{0, +} $, $ i = 2, 3 $, are Hopf bifurcations curves.

    When $ d = 0.7 $ and $ \tau = 20 $, increasing parameter $ c $ can destroy the stability of the coexisting equilibrium $ (u_*, v_*) $, and induce spatially inhomogeneous periodic solution (Figure 9). This means that increasing parameter $ c $ is not conducive to the stability of the coexisting equilibrium $ (u_*, v_*) $.

    Figure 9.  The numerical simulations of model $ (1.4) $ with $ d = 0.7 $, $ \tau = 20 $ and initial values $ u_0(x) = u_*+0.01\mbox{cos}x $, $ v_0(x) = v_*+0.01\mbox{cos}x $. The coexisting equilibrium $ (u_*, v_*) $ is asymptotically stable for $ c = 0.3 $ ($ (a) $, $ (b) $). The coexisting equilibrium $ (u_*, v_*) $ is unstable and there exists a spatially inhomogeneous periodic solution with mode-2 for $ c = 1.5 $ ($ (c) $, $ (d) $).

    When $ d = 0.8 $ and $ \tau = 9 $, increasing parameter $ c $ can destroy the stability of the coexisting equilibrium $ (u_*, v_*) $, and induce spatially inhomogeneous periodic solution initially (Figure 10). But when $ c $ is larger enough, increasing parameter $ c $ can rule out the spatially inhomogeneous periodic oscillation and stabilize the coexisting equilibrium $ (u_*, v_*) $ (Figure 10). This means that increasing parameter $ c $ is not conducive to the stability of the equilibrium $ (u_*, v_*) $, initially. But when $ c $ is large, increasing parameter $ c $ is conducive to the stability of the coexisting equilibrium $ (u_*, v_*) $.

    Figure 10.  The numerical simulations of model $ (1.4) $ with $ d = 0.8 $, $ \tau = 9 $ and initial values $ u_0(x) = u_*+0.01\mbox{cos}x $, $ v_0(x) = v_*+0.01\mbox{cos}x $. The coexisting equilibrium $ (u_*, v_*) $ is asymptotically stable for $ c = 0.3 $ ($ (a) $, $ (b) $) and $ c = 1.5 $ ($ (e) $, $ (f) $). The coexisting equilibrium $ (u_*, v_*) $ is unstable and there exists a spatially inhomogeneous periodic solution with mode-3 for $ c = 0.8 $ ($ (c) $, $ (d) $).

    In this paper, we incorporate the memory effect in predator and fear effect in prey into a predator-prey model. By using time delay in the memory of predator as bifurcating parameter, we analyze the local stability of coexisting equilibrium, the existence of Hopf bifurcation, and the property of Hopf bifurcation by the method in [23]. Through the numerical simulations, we analyzed the effect of memory effect in predator and fear in prey on the model.

    The spatial memory effect plays an important role in the dynamics of the predator-prey model. Through the numerical simulations, we observed that the memory-based diffusion coefficient $ d $ has destabilizing effect on the predator-prey model when it is larger than some critical value. In addition. when $ d $ crosses the critical value, time delay $ \tau $ in the memory of predator can affect the stability of the equilibrium $ (u_*, v_*) $. In the numerical simulations, we observe that the first Hopf bifurcation curve is inhomogeneous bifurcation curve, and homogeneous Hopf bifurcation curve does not exist. This is different from the predator-prey model without the spatial memory effect. When $ \tau $ crosses the critical value $ \tau_* $, the densities of prey and predator will produce spatially inhomogeneous periodic oscillation. When $ \tau $ crosses the second critical value, the spatially inhomogeneous periodic oscillations with different modes exist, but the densities of prey and predator will converge to the spatially inhomogeneous periodic solution corresponding to the first bifurcation curve. This shows that the spatially memory effect in predator can destroy the stability of the coexisting equilibrium, and induce spatially inhomogeneous periodic oscillations.

    In addition, the fear effect parameter $ c $ in prey can also affect the stability of the coexisting equilibrium $ (u_*, v_*) $. A small fear effect parameter $ c $ means a large birth rate $ \frac{1}{1+cv} $, then the large birth rate can support fluctuations. Increasing parameter $ c $ can destroy the stability of the coexisting equilibrium $ (u_*, v_*) $, and induce spatially inhomogeneous periodic solution. Hence, we observed the destabilizing effect on the the coexisting equilibrium $ (u_*, v_*) $. A large fear effect parameter $ c $ means a low birth rate, then the low birth rate can not support fluctuations. Increasing parameter $ c $ can rule out the spatially inhomogeneous periodic oscillation and stabilize the coexisting equilibrium $ (u_*, v_*) $. Hence, we observed the stabilizing effect on the the coexisting equilibrium $ (u_*, v_*) $.

    This research is supported by the Fundamental Research Funds for the Central Universities (Grant No. 2572022BC01) and Postdoctoral Program of Heilongjiang Province (No. LBH-Q21060).

    The authors have no relevant financial or non-financial interests to disclose.

    [1] Pavlou AK, Belsey MJ (2008) The therapeutic antibodies market to 2008. Eur J Pharm Biopharm 59: 389-396.
    [2] Wurm F (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22: 1393-1398. doi: 10.1038/nbt1026
    [3] Li F, Vijayasankaran N, Shen A, et al. (2010) Cell culture processes for monoclonal antibody production. mAbs J 2: 466-479. doi: 10.4161/mabs.2.5.12720
    [4] Pirt SJ (1975) Principles of microbe and cell cultivation. Blackwell Scientific Publications.
    [5] Bailey JE, Ollis DF (1986) Biochemical Engineering Fundamentals, 2 Eds., New York: McGraw-Hill, 984.
    [6] Monod J (1949) The Growth of Bacterial Cultures. Ann Rev Microbiol 3: 371. doi: 10.1146/annurev.mi.03.100149.002103
    [7] Lamboursain L, Jolicoeur M (2005) Critical influence of Eschscholtzia californica cells nutritional state on secondary metabolite production. Biotechnol Bioeng 91: 827-837. doi: 10.1002/bit.20553
    [8] Cloutier M, Bouchard-Marchand É, Perrier M, et al. (2007) A predictive nutritional model for plant cells and hairy roots. Biotechnol Bioeng 99: 189-200.
    [9] Stephanopoulos G, Aristodou, Nielsen J (1998) Metabolic Engineering. Principles and Methodologies, San Diego : Academic Press, 698.
    [10] Palsson BO (2011) Systems Biology. Simulation of dynamic network states, Cambridge UK: Cambridge University Press, 317.
    [11] Fell D (1997) Understanding the Control of Metabolism. In Frontiers in metabolism. London UK: Portland Press, 301.
    [12] Bordbar A, Monk JM, King ZA, et al. (2014) Constraint-based models predict metabolic and associated cellular functions. Nat Rev Gen 15: 107-120. doi: 10.1038/nrg3643
    [13] Chong WPK, Thng SH, Hiu AP, et al. (2012) LC-MS-Based Metabolic Characterization of High Monoclonal Antibody-Producing Chinese Hamster Ovary Cells. Biotechnol Bioeng 109:3103-3111. doi: 10.1002/bit.24580
    [14] Dunn WB, Broadhurst DI, Atherton HJ, et al. (2011) Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev 40: 387-426. doi: 10.1039/B906712B
    [15] Ben-Tchavtchavadze M, Perrier M, Jolicoeur M (2010) A Non-Invasive Technique for the Measurement of the Energetic State of Free-Suspension Mammalian Cells. Biotechnol Prog 26: 532-541.
    [16] Scheer M, Grote A, Chang A, et al. (2011) BRENDA, the enzyme information system. Nucleic Acids Res 39 (Database issue http://www.brenda-enzymes.org/): 670-676.
    [17] Nolan RP, Lee K (2011) Dynamic model of CHO cell metabolism. Metab Eng 13: 108-124. doi: 10.1016/j.ymben.2010.09.003
    [18] Leduc M, Tikhomiroff C, Cloutier M, et al. (2006) Development of a kinetic metabolic model: application to Catharanthus roseus hairy root. Bioprocess Biosyst Eng 28: 295-313. doi: 10.1007/s00449-005-0034-z
    [19] Ghorbaniaghdam A, Henry O, Jolicoeur M (2012) A kinetic-metabolic model based on cell energetic state: study of CHO cell behavior under Na-butyrate stimulation, Bioprocess Biosyst Eng 36: 469-487.
    [20] Ghorbaniaghdam A, Chen J, Henry O, et al. (2014) Analyzing clonal variation of monoclonal antibody producing CHO cell lines using an in silico metabolomic platform. PLoS One 9:90832. doi: 10.1371/journal.pone.0090832
    [21] Ghorbaniaghdam A, Chen J, Henry O, et al. (2014) An in silico study of the regulation of CHO cells glycolysis. J Theor Biol In press.
    [22] Cloutier M, Chen J, Tagte F, et al. (2009) Kinetic metabolic modelling for the control of plant cells cytoplasmic phosphate. J Theor Biol 259: 118-131. doi: 10.1016/j.jtbi.2009.02.022
    [23] Cloutier M, Chen J, DeDobbeleer C, et al. (2009) A systems approach to plant bioprocess optimization. Plant Biotechnol J 7: 939-951. doi: 10.1111/j.1467-7652.2009.00455.x
    [24] Valancin A, Srinivasan B, Rivoal J, et al. (2013) Analyzing the effect of decreasing cytosolic triosephosphate isomerase on Solanum tuberosum hairy root cells using a kinetic-metabolic model. Biotechnol Bioeng 110: 924-935. doi: 10.1002/bit.24747
    [25] Poliquin PO, Chen J, Cloutier M, et al. (2013) Metabolomics and in-silico analysis reveal critical energy deregulations in animal models of Parkinson's disease. PLoS One 8: 69146
    [26] Michal G, Schomburg D (2012) Biochemical Pathways: An atlas of biochemistry and molecular biology, 2 Eds., Wiley, 398.
  • This article has been cited by:

    1. Yuying Liu, Qi Cao, Wensheng Yang, Influence of Allee effect and delay on dynamical behaviors of a predator–prey system, 2022, 41, 2238-3603, 10.1007/s40314-022-02118-4
    2. Chenxuan Nie, Dan Jin, Ruizhi Yang, Hopf bifurcation analysis in a delayed diffusive predator-prey system with nonlocal competition and generalist predator, 2022, 7, 2473-6988, 13344, 10.3934/math.2022737
    3. Xiaowen Zhang, Wufei Huang, Jiaxin Ma, Ruizhi Yang, Hopf bifurcation analysis in a delayed diffusive predator-prey system with nonlocal competition and schooling behavior, 2022, 30, 2688-1594, 2510, 10.3934/era.2022128
    4. Kuldeep Singh, Mukesh Kumar, Ramu Dubey, Teekam Singh, Untangling role of cooperative hunting among predators and herd behavior in prey with a dynamical systems approach, 2022, 162, 09600779, 112420, 10.1016/j.chaos.2022.112420
    5. Xubin Jiao, Li Liu, Xiao Yu, Rich dynamics of a reaction–diffusion Filippov Leslie–Gower predator–prey model with time delay and discontinuous harvesting, 2025, 228, 03784754, 339, 10.1016/j.matcom.2024.09.022
    6. Ben Chu, Guangyao Tang, Changcheng Xiang, Binxiang Dai, Dynamic Behaviours and Bifurcation Analysis of a Filippov Ecosystem with Fear Effect, 2023, 2023, 1607-887X, 1, 10.1155/2023/9923003
    7. Yunzhuo Zhang, Xuebing Zhang, Shunjie Li, The effect of self-memory-based diffusion on a predator–prey model, 2024, 75, 0044-2275, 10.1007/s00033-024-02256-1
    8. Hongyan Sun, Pengmiao Hao, Jianzhi Cao, Dynamics analysis of a diffusive prey-taxis system with memory and maturation delays, 2024, 14173875, 1, 10.14232/ejqtde.2024.1.40
    9. Ruying Dou, Chuncheng Wang, Bifurcation analysis of a predator–prey model with memory-based diffusion, 2024, 75, 14681218, 103987, 10.1016/j.nonrwa.2023.103987
    10. Yujia Wang, Chuncheng Wang, Dejun Fan, Yuming Chen, Dynamics of a Predator–Prey Model with Memory-Based Diffusion, 2023, 1040-7294, 10.1007/s10884-023-10305-y
    11. Debasish Bhattacharjee, Dipam Das, Santanu Acharjee, Tarini Kumar Dutta, Two predators, one prey model that integrates the effect of supplementary food resources due to one predator's kleptoparasitism under the possibility of retribution by the other predator, 2024, 10, 24058440, e28940, 10.1016/j.heliyon.2024.e28940
    12. L. R. Ibrahim, D. K. Bahlool, Exploring the Role of Hunting Cooperation, and Fear in a Prey-Predator Model with Two Age Stages, 2024, 18, 1823-8343, 727, 10.47836/mjms.18.4.03
    13. Li Zou, Zhengdi Zhang, Miao Peng, Stability analysis of an eco-epidemic predator–prey model with Holling type-I and type-III functional responses, 2025, 99, 0973-7111, 10.1007/s12043-024-02877-1
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5098) PDF downloads(1019) Cited by(3)

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog