-
AIMS Agriculture and Food, 2019, 4(2): 303-319. doi: 10.3934/agrfood.2019.2.303.
Research article
-
Export file:
Format
- RIS(for EndNote,Reference Manager,ProCite)
- BibTex
- Text
Content
- Citation Only
- Citation and Abstract
Quantitative priority estimation model for evaluation of various non-edible plant oils as potential biodiesel feedstock
Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
Received: , Accepted: , Published:
Keywords: Analytic Hierarchy Process (AHP); Non-edible plant; feedstock; biodiesel; biomass
Citation: Zul Ilham, Farhana Haque Nimme. Quantitative priority estimation model for evaluation of various non-edible plant oils as potential biodiesel feedstock. AIMS Agriculture and Food, 2019, 4(2): 303-319. doi: 10.3934/agrfood.2019.2.303
References:
-
1. Rastogi RP, Pandey A, Larroche C, et al. (2018) Algal green energy-R&D and technological perspectives for biodiesel production. Renewable Sustainable Energy Rev 82: 2946–2969.
- 2. Anitha A, Dawn SS (2010) Spent groundnut oil for biodiesel production using supported heteropolyacids. 2nd International Conference on Chemical, Biological and Environmental Engineering, Chennai, India.
-
3. Ambat I, Srivastava V, Sillanpää M (2018) Recent advancement in biodiesel production methodologies using various feedstock: A review. Renewable Sustainable Energy Rev 90: 356–369.
- 4. Carvalho J, Ribeiro A, Castro J, et al. (2011) Biodiesel production by microalgae and macroalgae from north littoral portuguese coast. WASTES: Solutions, Treatments and Opportunities 1st International Conference, September 12th–14th, Guimaraes, Portugal.
-
5. Aburas H, Demirbas A (2015) Evaluation of beech for production of bio-char, bio-oil and gaseous materials. Process Saf Environ Prot 94: 29–36.
- 6. Albayrak E, Erensal YC (2004) Using analytic hierarchy process (AHP) to improve human performance. An application of multiple criteria decision making problem. J Intell Manuf 15: 491–503.
-
7. Vaidya OS, Kumar S (2006) Analytic hierarchy process: An overview of applications. Eur J Oper Res 169: 1–29.
-
8. Abdel-malak FF, Issa UH, Miky YH, et al. (2017) Applying decision-making techniques to Civil Engineering Projects. Beni-Suef Univ J Basic Appl Sci 6: 326–331.
- 9. Saaty TL (2008) Decision making with the analytic hierarchy process. Int J Ser Sci 1: 83–98.
-
10. Ong HC, Mahlia TMI, Masjuki HH, et al. (2011) Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review. Renewable Sustainable Energy Rev 15: 3501–3515.
- 11. Atabani AE, César ADS (2014) Calophyllum inophyllum L.-A prospective non-edible biodiesel feedstock. Study of biodiesel production, properties, fatty acid composition, blending and engine performance. Renewable Sustainable Energy Rev 37: 644–655.
- 12. Fadhlullaha M, Widiyantoa SNB, Restiawatya E (2015) The potential of nyamplung (Calophyllum inophyllum L.) seed oil as biodiesel feedstock: Effect of seed moisture content and particle size on oil yield. Energy Procedia 68: 177–185.
-
13. Zakaria MB, Vijayasekaran, Ilham Z, et al. (2014) Anti-inflammatory activity of Calophyllum inophyllum fruits extracts. Procedia Chem 13: 218–220.
- 14. Manjunathan M, Vivek T, Sathishkumar S (2016) Performance of Albizia saman oil blend in CI engine. Int J Innovative Res Sci, Eng Technol 5: 14606–14616.
- 15. Phoo ZWMM, Ilham Z, Goembira F, et al. (2013) Physico-chemical properties of biodiesel from various feedstocks. Green Energy Technol 66: 113–121.
- 16. Riayatsyah TMI, Ong HC, Chong WT, et al. (2017) Life cycle cost and sensitivity analysis of Reutealis trisperma as non-edible feedstock for future biodiesel production. Energies 10: 1–21.
- 17. Supriyadi S, Purwanto P, Anggoro DD, et al. (2018) Enhancing biodiesel from kemiri sunan oil manufacturing using ultrasonics. E3S Web Conf 31: 1–5.
-
18. Phoo ZWMM, Razon LF, Knothe G, et al. (2014) Evaluation of Indian milkweed (Calotropis gigantea) seed oil as alternative feedstock for biodiesel. Ind Crops Prod 54: 226–232.
-
19. Kusumo F, Silitonga AS, Masjuki HH, et al. (2017) Optimization of transesterification process for Ceiba pentandra oil : A comparative study between kernel-based extreme learning machine and artificial neural networks. Energy 134: 24–34.
- 20. Kumar R, Das N (2018) Survey and selection of Jatropha curcas L. germplasm : Assessment of genetic variability and divergence studies on the seed traits and oil content. Ind Crops Prod 118: 125–130.
-
21. Ilham Z, Saka S (2010) Two-step supercritical dimethyl carbonate method for biodiesel production from Jatropha curcas oil. Bioresour Technol 101: 2735–2740.
- 22. Devi M, Ariharan VN, Prasad N (2013) Nutritive value and potential uses of Leucaena leucocephala as biofuel-A mini review. Res J Pharm, Biol Chem Sci 4: 515–521.
-
23. Ramli N, Ilham Z (2017) Mimosine toxicity in Leucaena biomass : A hurdle impeding maximum use for bio products and Bioenergy. Int J Environ Sci Nat Resour 6: 1–5.
-
24. Ilham Z, Hamidon H, Rosji NA, et al. (2015) Extraction and quantification of toxic compound mimosine from Leucaena leucocephala leaves. Procedia Chem 16: 164–170.
- 25. Hakimi MI, Goembira F, Ilham Z (2017) Engine-compatible biodiesel from Leucaena leucocephala seed oil. J Soc Automot Eng Malays 1: 86–93.
-
26. Suryawanshi B, Mohanty B (2018) Modeling and optimization : Supercritical CO2 extraction of Pongamia pinnata (L.) seed oil. J Environ Chem Eng 6: 2660–2673.
-
27. Atabani AE, Silitonga AS, Ong HC, et al. (2013) Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renewable Sustainable Energy Rev 18: 211–245.
-
28. Goembira F, Saka S (2015) Advanced supercritical methyl acetate method for biodiesel production from Pongamia pinnata oil. Renewable Energy 83: 1245–1249.
- 29. Mund NK, Dash D, Barik CR, et al. (2016) Chemical composition, pretreatments and saccharification of Senna siamea (Lam.) H.S. Irwin & Barneby: An efficient biomass producing tree legume. Bioresour Technol 207: 205–212.
- 30. Folorunsho AT, Ojediran J, Olawale O (2014) Solvent extraction of oil from soursop oilseeds & its quality characterization. Inte J Sustainable Energy Environ Res 3: 80–89.
-
31. Daǧdeviren M, Yavuz S, Kilinç N (2009) Weapon selection using the AHP and TOPSIS methods under fuzzy environment. Expert Syst Appl 36: 8143–8151.
-
32. Morteza Z, Reza FM, Seddiq MM, et al. (2016) Selection of the optimal tourism site using the ANP and fuzzy TOPSIS in the framework of integrated coastal zone management: A case of Qeshm Island. Ocean Coastal Manage 130: 179–187.
-
33. Bitarafan M, Hosseini SB, Sabeti N, et al. (2016) The architectural evaluation of buildings' indices in explosion crisis management. Alexandria Eng J 55: 3219–3228.
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *