| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
|
Citation: Thomas C. Chiang. Economic policy uncertainty and stock returns—evidence from the Japanese market[J]. Quantitative Finance and Economics, 2020, 4(3): 430-458. doi: 10.3934/QFE.2020020
[1] | Pengliang Xu, Xiaomin Tang . Graded post-Lie algebra structures and homogeneous Rota-Baxter operators on the Schrödinger-Virasoro algebra. Electronic Research Archive, 2021, 29(4): 2771-2789. doi: 10.3934/era.2021013 |
[2] | Yizheng Li, Dingguo Wang . Lie algebras with differential operators of any weights. Electronic Research Archive, 2023, 31(3): 1195-1211. doi: 10.3934/era.2023061 |
[3] | Wen Teng, Xiansheng Dai . Nonabelian embedding tensors on 3-Lie algebras and 3-Leibniz-Lie algebras. Electronic Research Archive, 2025, 33(3): 1367-1383. doi: 10.3934/era.2025063 |
[4] | Kailash C. Misra, Sutida Patlertsin, Suchada Pongprasert, Thitarie Rungratgasame . On derivations of Leibniz algebras. Electronic Research Archive, 2024, 32(7): 4715-4722. doi: 10.3934/era.2024214 |
[5] | Shanshan Liu, Abdenacer Makhlouf, Lina Song . The full cohomology, abelian extensions and formal deformations of Hom-pre-Lie algebras. Electronic Research Archive, 2022, 30(8): 2748-2773. doi: 10.3934/era.2022141 |
[6] | Hongliang Chang, Yin Chen, Runxuan Zhang . A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29(3): 2457-2473. doi: 10.3934/era.2020124 |
[7] | Margarida Camarinha . A natural 4th-order generalization of the geodesic problem. Electronic Research Archive, 2024, 32(5): 3396-3412. doi: 10.3934/era.2024157 |
[8] | Jinguo Jiang . Algebraic Schouten solitons associated to the Bott connection on three-dimensional Lorentzian Lie groups. Electronic Research Archive, 2025, 33(1): 327-352. doi: 10.3934/era.2025017 |
[9] | Hongyan Guo . Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, 2021, 29(4): 2673-2685. doi: 10.3934/era.2021008 |
[10] | Ying Hou, Liangyun Chen, Keli Zheng . Super-bimodules and O-operators of Bihom-Jordan superalgebras. Electronic Research Archive, 2024, 32(10): 5717-5737. doi: 10.3934/era.2024264 |
The Schrödinger-Virasoro algebra is an infinite-dimensional Lie algebra that was introduced (see, e.g., [10]) in the context of non-equilibrium statistical physics. In [21], the author give a representation of the Schrödinger-Virasoro algebra by using vertex algebras, and introduced an extension of the Schrödinger-Virasoro algebra. To be precise, for
{Li,Hj,Ii|i∈Z,j∈ε+Z} |
and Lie brackets
[Lm,Ln]=(m−n)Lm+n,[Lm,Hn]=(12m−n)Hm+n,[Lm,In]=−nIm+n,[Hm,Hn]=(m−n)Im+n,[Hm,In]=[Im,In]=0. |
The Lie algebra
Post-Lie algebras were introduced around 2007 by B. Vallette [22], who found the structure in a purely operadic manner as the Koszul dual of a commutative trialgebra. Post-Lie algebras have arose the interest of a great many authors, see [4,5,12,13]. One of the most important problems in the study of post-Lie algebras is to find the post-Lie algebra structures on the (given) Lie algebras. In [13,18,20], the authors determined all post-Lie algebra structures on
In this paper, we shall study the graded post-Lie algebra structures on the Schrödinger-Virasoro algebra. We only study the twisted Schrödinger-Virasoro algebra
Throughout this paper, we denote by
The paper is organized as follows. In Section 2, we give general results on post-Lie algebras and some lemmas which will be used to our proof. In Section 3, we completely characterize the graded post-Lie algebra structures on Schrödinger-Virasoro algebra
We will give the essential definitions and results as follows.
Definition 2.1. A post-Lie algebra
[x,y]▹z=x▹(y▹z)−y▹(x▹z)−⟨x,y⟩▹z, | (1) |
x▹[y,z]=[x▹y,z]+[y,x▹z] | (2) |
for all
Suppose that
τ(x▹1y)=τ(x)▹2τ(y),∀x,y∈L. |
Remark 1. The left multiplications of the post-Lie algebra
Lemma 2.2. [15] Denote by
Der(S)=Inn(S)⊕CD1⊕CD2⊕CD3 |
where
D1(Ln)=0,D1(Hn)=Hn,D1(In)=2In,D2(Ln)=nIn,D2(Hn)=0,D2(In)=0,D3(Ln)=In,D3(Hn)=0,D3(In)=0. |
Since the Schrödinger-Virasoro algebra
Lm▹Ln=ϕ(m,n)Lm+n, | (3) |
Lm▹Hn=φ(m,n)Hm+n, | (4) |
Lm▹In=χ(m,n)Im+n, | (5) |
Hm▹Ln=ψ(m,n)Hm+n, | (6) |
Hm▹Hn=ξ(m,n)Im+n, | (7) |
Im▹Ln=θ(m,n)Im+n, | (8) |
Hm▹In=Im▹Hn=Im▹In=0, | (9) |
for all
We start with the crucial lemma.
Lemma 3.1. There exists a graded post-Lie algebra structure on
ϕ(m,n)=(m−n)f(m), | (10) |
φ(m,n)=(m2−n)f(m)+δm,0μ, | (11) |
χ(m,n)=−nf(m)+2δm,0μ, | (12) |
ψ(m,n)=−(n2−m)h(m), | (13) |
ξ(m,n)=(m−n)h(m), | (14) |
θ(m,n)=mg(m)+δm,0na, | (15) |
(m−n)(f(m+n)(1+f(m)+f(n))−f(n)f(m))=0, | (16) |
(m−n)δm+n,0μ(1+f(m)+f(n))=0, | (17) |
(m2−n)(h(m+n)(1+f(m)+h(n))−f(m)h(n))=0, | (18) |
nδm+n,0a(1+f(m)+g(n))=0, | (19) |
n(m+n)(g(m+n)(1+f(m)+g(n))−f(m)g(n)) =δn,0m2a(f(m)−g(m)), | (20) |
(m−n)δm+n,0a(1+h(m)+h(n))=0, | (21) |
(m−n)(g(m+n)(1+h(m)+h(n))−h(m)h(n))=0. | (22) |
Proof. Suppose that there exists a graded post-Lie algebra structure satisfying (3)-(9) on
x▹y=(adψ(x)+α(x)D1+β(x)D2+γ(x)D3)(y)=[ψ(x),y]+α(x)D1(y)+β(x)D2(y)+γ(x)D3(y) |
where
Lm▹Ln=[ψ(Lm),Ln]+β(Lm)nIn+γ(Lm)In=ϕ(m,n)Lm+n, | (23) |
Lm▹Hn=[ψ(Lm),Hn]+α(Lm)Hn=φ(m,n)Hm+n, | (24) |
Lm▹In=[ψ(Lm),In]+α(Lm)2In=χ(m,n)Im+n, | (25) |
Hm▹Ln=[ψ(Hm),Ln]+β(Hm)nIn+γ(Hm)In=ψ(m,n)Hm+n, | (26) |
Hm▹Hn=[ψ(Hm),Hn]+α(Hm)Hn=ξ(m,n)Im+n, | (27) |
Hm▹In=[ψ(Hm),In]+α(Hm)2In=0, | (28) |
Im▹Ln=[ψ(Im),Ln]+β(Im)nIn+γ(Im)In=θ(m,n)Im+n, | (29) |
Im▹Hn=[ψ(Im),Hn]+α(Im)Hn=0, | (30) |
Im▹In=[ψ(Im),In]+α(Im)2In=0. | (31) |
Let
ψ(Lm)=∑i∈Za(m)iLi+∑i∈Zb(m)iHi+∑i∈Zc(m)iIi,ψ(Hm)=∑i∈Zd(m)iLi+∑i∈Ze(m)iHi+∑i∈Zf(m)iIi,ψ(Im)=∑i∈Zg(m)iLi+∑i∈Zh(m)iHi+∑i∈Zx(m)iIi |
where
The "if'' part is a direct checking. The proof is completed.
Lemma 3.2. Let
g(n),h(n)∈{0,−1}for everyn≠0. | (32) |
Proof. By letting
Lemma 3.3. Let
g(Z)=h(Z)=0org(Z)=h(Z)=−1. |
Proof. Since
a(1+g(−1))=0. | (33) |
By letting
(m2−n)(h(m+n)(1+h(n))=0, | (34) |
n(m+n)(g(m+n)(1+g(n))=0, | (35) |
(m−n)(g(m+n)−h(m)h(n)+h(m)g(m+n)+h(n)g(m+n))=0. | (36) |
We now prove the following four claims:
Claim 1. If
By (34) with
Claim 2. If
By (34) with
Claim 3. If
By (35) with
Claim 4. If
By (35) with
Now we consider the values of
Case i. If
Case ii. If
Case iii. If
Case iv. If
Lemma 3.4. Let
(i)
(ii)
(iii)
Proof. By
h(m+n)(h(n)+1)=0 if m⩽1,m2−n≠0, | (37) |
g(m+n)(g(n)+1)=0 if m⩽1,n≠0,m+n≠0, | (38) |
g(m+n)(1+h(m)+h(n))=h(m)h(n) if m≠n. | (39) |
We first prove the following six claims:
Claim 1. If
By (37) with
Claim 2. If
By (37) with
Claim 3. If
By (37) with
Claim 4. If
By (37) with
Next, similar to Claims 1 and 3, we from (38) obtain the following claims.
Claim 5. If
Claim 6. If
Now we discuss the values of
Case i. When
By Claim 1 we have
Case ii. When
By Claim 2 we have
Case iii. When
By Claims 3 and 4 we have
It is easy to check that the values of
Lemma 3.5. Let
(i)
(ii)
(iii)
for some
(iv)
Proof. Take
h(0)(1+f(−n)+h(n))=f(−n)h(n), for all n≠0, | (40) |
a(1+f(−n)+g(n))=0, for all n≠0, | (41) |
a(1+h(−n)+h(n))=0, for all n≠0, | (42) |
g(0)(1+h(−n)+h(n))=h(−n)h(n), for all n≠0. | (43) |
Note that
h(n)(h(m+n)+1)=0 for all m>0,m2−n≠0; | (44) |
h(m+n)(h(n)+1)=0 for all m<0,m2−n≠0; | (45) |
g(n)(g(m+n)+1)=0 for all m>0,n≠0,m+n≠0; | (46) |
g(m+n)(g(n)+1)=0 for all m<0,n≠0,m+n≠0; | (47) |
g(m+n)(1+h(m)+h(n))=h(m)h(n) for all m≠n. | (48) |
For any
Claim 1. If
In fact, by (44) with
Claim 2. If
This proof is similar to Claim 1 by using (44) and (45). Also, similar to Claims 1 and 2, by (46) and (47) we can obtain the following two claims:
Claim 3. If
Claim 4. If
According to (32), by Claims 1 and 2,
(1)
(2)
(3)
(4)
In view of the above result, the next proof will be divided into the following cases.
Case i. When
By taking
Case ii. When
By taking
Case iii. When
By (48) we see that
Case iv. When
Note that
Lemma 3.6. Let
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
|
Proof. The proof of the "if" direction can be directly verified. We now prove the "only if" direction. In view of
| |
| |
| |
| |
| |
| |
| |
| |
|
When
When
When
Lemma 3.7. Let (P(ϕi,φi,χi,ψi,ξi,θi),▹i), i=1,2 be two algebras with the same linear space as S and equipped with C-bilinear products x▹iy such that
Lm▹iLn=ϕi(m,n)Lm+n,Lm▹iHn=φi(m,n)Hm+n,Lm▹iIn=χi(m,n)Im+n,Hm▹iLn=ψi(m,n)Hm+n,Hm▹iHn=ξi(m,n)Im+n,Im▹iLn=θi(m,n)Im+n,Hm▹iIn=Im▹iHn=Im▹iIn=0 |
for all m,n∈Z, where ϕi,φi,χi,ψi,ξi,θi, i=1,2 are complex-valued functions on Z×Z. Furthermore, let τ:P(ϕ1,φ1,χ1,ψ1,ξ1,θ1)→P(ϕ2,φ2,χ2,ψ2,ξ2,θ2) be a linear map determined by
τ(Lm)=−L−m,τ(Hm)=−H−m,τ(Im)=−I−m |
for all
{ϕ2(m,n)=−ϕ1(−m,−n);φ2(m,n)=−φ1(−m,−n);χ2(m,n)=−χ1(−m,−n);ψ2(m,n)=−ψ1(−m,−n);ξ2(m,n)=−ξ1(−m,−n);θ2(m,n)=−θ1(−m,−n). | (49) |
Proof. Clearly,
τ(Lm▹iLn)=−ϕi(m,n)L−(m+n),τ(Lm▹iHn)=−φi(m,n)H−(m+n),τ(Lm▹iIn)=−χi(m,n)I−(m+n),τ(Hm▹iLn)=−ψi(m,n)H−(m+n),τ(Hm▹iHn)=−ξi(m,n)I−(m+n),τ(Im▹iLn)=−θi(m,n)I−(m+n) |
for
The remainder is to prove that
τ(Lm▹1Ln)=−ϕ1(m,n)L−(m+n)=ϕ2(−m,−n)L−(m+n)=τ(Lm)▹2τ(Ln),τ(Lm▹1Hn)=−φ1(m,n)H−(m+n)=φ2(−m,−n)H−(m+n)=τ(Lm)▹2τ(Hn),τ(Lm▹1In)=−χ1(m,n)I−(m+n)=χ2(−m,−n)I−(m+n)=τ(Lm)▹2τ(In),τ(Hm▹1Ln)=−ψ1(m,n)H−(m+n)=ψ2(−m,−n)H−(m+n)=τ(Hm)▹2τ(Ln),τ(Hm▹1Hn)=−φ1(m,n)I−(m+n)=φ2(−m,−n)I−(m+n)=τ(Hm)▹2τ(Hn), |
τ(Im▹1Ln)=−θ1(m,n)I−(m+n)=ϕ2(−m,−n)I−(m+n)=τ(Im)▹2τ(Ln) |
and
Theorem 3.8. A graded post-Lie algebra structure on
where
Proof. Suppose that
Conversely, every type of the
Finally, by Lemma 3.7 with maps
The Rota-Baxter algebra was introduced by the mathematician Glen E. Baxter [2] in 1960 in his probability study, and was popularized mainly by the work of Rota [G. Rota1, G. Rota2] and his school. Recently, the Rota-Baxter algebra relation were introduced to solve certain analytic and combinatorial problem and then applied to many fields in mathematics and mathematical physics (see [6,7,19,23] and the references therein). Now let us recall the definition of Rota-Baxter operator.
Definition 4.1. Let
[R(x),R(y)]=R([R(x),y]+[x,R(y)])+λR([x,y]),∀x,y∈L. | (50) |
Note that if
In this section, we mainly consider the homogeneous Rota-Baxter operator
R(Lm)=f(m)Lm, R(Hm)=h(m)Hm, R(Im)=g(m)Im | (51) |
for all
Lemma 4.2. (see [1]) Let
Theorem 4.3. A homogeneous Rote-Baxrer operator
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
for all
Proof. In view of Lemma 4.2, if we define a new operation
Lm▹Ln=[R(Lm),Ln]=(m−n)f(m)Lm+n, | (52) |
Lm▹Hn=[R(Lm),Hn]=(m2−n)f(m)Hm+n, | (53) |
Lm▹In=[R(Lm),In]=−nf(m)Im+n, | (54) |
Hm▹Ln=[R(Hm),Ln]=−(n2−m)h(m)Hm+n, | (55) |
Hm▹Hn=[R(Hm),Hn]=(m−n)h(m)Im+n, | (56) |
Im▹Ln=[R(Im),Ln]=mg(m)Im+n | (57) |
and
A similar discussion to Lemma 3.1 gives
(m−n)(f(m+n)−f(n)f(m)+f(m)f(m+n)+f(n)f(m+n))=0,(m2−n)(h(m+n)−f(m)h(n)+f(m)h(m+n)+h(n)h(m+n))=0,n(m+n)(g(m+n)(1+f(m)+g(n))−f(m)g(n))=0,(m−n)(g(m+n)−h(m)h(n)+h(m)g(m+n)+h(n)g(m+n))=0. |
From this we conclude that Equations (10)-(22) hold with
The natural question is: how we can characterize the Rota-Baxter operators of weight zero on the Schrödinger-Virasoro
Definition 4.4. A pre-Lie algebra
(x▹y)▹z−x▹(y▹z)=(y▹x)▹z−y▹(x▹z),∀x,y,z∈A. | (58) |
As a parallel result of Lemma 4.2, one has the following conclusion.
Proposition 1. (see [8]) Let
Using a similar method on classification of Rota-Baxter operators of weight
We would like to express our sincere thanks to the anonymous referees for their careful reading and valuable comments towards the improvement of this article.
[1] |
Antonakakis N, Chatziantoniou I, Filis G (2013) Dynamic co-movements of stock market returns, implied volatility and policy uncertainty. Econ Lett 120: 87-92. doi: 10.1016/j.econlet.2013.04.004
![]() |
[2] |
Aono K, Iwaisako T (2010) On the Predictability of Japanese stock returns using dividend yield. Asia-Pac Financ Mark 17: 141-149. doi: 10.1007/s10690-009-9105-5
![]() |
[3] | Arbatli EC, Davis SJ, Ito A, et al. (2017) Policy uncertainty in Japan. IMF Working Papers 17/128, International Monetary Fund. |
[4] |
Arouri M, Estay C, Rault C, et al. (2016) Economic policy uncertainty and stock markets: Long run evidence from the US. Financ Res Lett 18: 136-141. doi: 10.1016/j.frl.2016.04.011
![]() |
[5] | Bahmani-Oskooee M, Saha S (2019a) On the effects of policy uncertainty on stock prices. J Econ Financ 43: 764-778. |
[6] | Bahmani-Oskooee M, Saha S (2019b) On the effects of policy uncertainty on stock prices: An asymmetric analysis. Quant Financ Econ 3: 412-424. |
[7] |
Bae K, Karolyi G, Stulz R (2003). A New Approach to Measuring Financial Contagion. Rev Financ Stud 16: 717-763. doi: 10.1093/rfs/hhg012
![]() |
[8] |
Baker SR, Bloom N, Davis S (2016) Measuring economic policy uncertainty. Q J Econ 131: 1593-1636. doi: 10.1093/qje/qjw024
![]() |
[9] |
Bali TG, Brown SJ, Tang Y (2017) Is economic uncertainty priced in the cross-section of stock returns? J Financ Econ 126: 471-489. doi: 10.1016/j.jfineco.2017.09.005
![]() |
[10] |
Bali TG, Cakici N (2010) World market risk, country-specific risk and expected returns in international stock markets. J Bank Financ 34: 1152-1165. doi: 10.1016/j.jbankfin.2009.11.012
![]() |
[11] |
Bali TG, Demirtas KO, Levy H (2009) Is there an intertemporal relation between downside risk and expected returns? J Financ Quant Anal 44: 883-909. doi: 10.1017/S0022109009990159
![]() |
[12] |
Bali TG, Engle RF (2010) The intertemporal capital asset pricing model with dynamic conditional correlations. J Monetary Econ 57: 377-390. doi: 10.1016/j.jmoneco.2010.03.002
![]() |
[13] | Bali TG, Peng L (2006) Is there a risk-return tradeoff? Evidence from high frequency data. J Appl Econometrics 21: 1169-1198. |
[14] |
Balli F, Uddin GS, Mudassar H, et al. (2017) Cross-country determinants of economic policy uncertainty spillovers. Econ Lett 156: 179-183. doi: 10.1016/j.econlet.2017.05.016
![]() |
[15] |
Bekaert G, Harvey CR (1995) Time-varying world market integration. J Financ 50: 403-444. doi: 10.1111/j.1540-6261.1995.tb04790.x
![]() |
[16] |
Bekaert G, Hoerova M (2016) What do asset prices have to say about risk appetite and uncertainty? J Bank Financ 67: 103-118. doi: 10.1016/j.jbankfin.2015.06.015
![]() |
[17] |
Bloom N (2009) The impact of uncertainty shocks. Econometrica 77: 623-685. doi: 10.3982/ECTA6248
![]() |
[18] |
Bloom N (2014) Fluctuations in uncertainty. J Econ Perspect 28: 153-176. doi: 10.1257/jep.28.2.153
![]() |
[19] | Bollerslev T (2010) Glossary to ARCH (GARCH), in Volatility and Time Series Econometrics: Essays in Honor of Robert Engle, edited by Tim Bollerslev, Jeffrey Russell, and Mark Watson, Oxford University Press, Oxford, UK. |
[20] |
Bollerslev T, Chou RY, Kroner KF (1992) ARCH modeling in finance: a review of the theory and empirical evidence. J Econometrics 52: 5-59. doi: 10.1016/0304-4076(92)90064-X
![]() |
[21] |
Brogaard J, Detzel A (2015) The asset pricing implications of government economic policy uncertainty. Manage Sci 61: 3-18. doi: 10.1287/mnsc.2014.2044
![]() |
[22] |
Caggiano G, Castelnuovo E, Groshenny N (2014) Uncertainty shocks and unemployment dynamics in U.S. recessions. J Monetary Econ 67: 78-92. doi: 10.1016/j.jmoneco.2014.07.006
![]() |
[23] |
Campbell JY, Hamao Y (1992) Predictable stock returns in the United States and Japan: A study of long‐term capital market integration. J Financ 47: 43-69. doi: 10.1111/j.1540-6261.1992.tb03978.x
![]() |
[24] | Campbell JY, Lo AW, MacKinlay AC (1997) The Econometrics of Financial Markets, Princeton, NJ: Princeton University Press, 1997. |
[25] |
Carleton RN, Norton MA, Asmundson GJ (2007) Fearing the unknown: a short version of the intolerance of uncertainty scale. J Anxiety Disord 21: 105-117. doi: 10.1016/j.janxdis.2006.03.014
![]() |
[26] |
Chen CWS, Chiang TC, So MKP (2003) Asymmetrical reaction to US stock-return news: Evidence from major stock markets based on a double-threshold model. J Econ Bus 55: 487-502. doi: 10.1016/S0148-6195(03)00051-1
![]() |
[27] |
Chen CYH, Chiang TC (2016) Empirical analysis of the intertemporal relation between downside risk and expected returns: Evidence from time-varying transition probability models. Eur Financ Manage 22: 749-796. doi: 10.1111/eufm.12079
![]() |
[28] |
Chen CYH, Chiang TC, Härdle WK (2018) Downside risk and stock returns in the G7 countries: An empirical analysis of their long-run and short-run dynamics. J Bank Financ 93: 21-32. doi: 10.1016/j.jbankfin.2018.05.012
![]() |
[29] |
Chen J, Jiang F, Tong G (2017) Economic policy uncertainty in China and stock market expected returns. Account Financ 57: 1265-1286. doi: 10.1111/acfi.12338
![]() |
[30] | Chiang TC (2019a) Economic policy uncertainty, risk and stock returns: Evidence from G7 stock markets. Financ Res Lett 29: 41-49. |
[31] | Chiang TC (2019b) Financial risk, uncertainty and expected returns: evidence from Chinese equity markets. China Financ Rev Int 9: 425-454. |
[32] |
Chiang TC, Li H, Zheng D (2015) The Intertemporal Return-Risk Relationship: Evidence from international Markets. J Int Financ Mark Inst Money 39: 156-180. doi: 10.1016/j.intfin.2015.06.003
![]() |
[33] |
Chiang TC, Jeon BN, Li H (2007) Dynamic correlation analysis of financial contagion: Evidence from Asian markets. J Int Money Financ 26: 1206-1228. doi: 10.1016/j.jimonfin.2007.06.005
![]() |
[34] |
Chong TTL, Wong YC, Yan IKM (2008) Linkages of the Japanese stock market. Japan World Economy 20: 601-662. doi: 10.1016/j.japwor.2007.06.004
![]() |
[35] |
Christou C, Cunado J, Gupta R, et al. (2017) Economic policy uncertainty and stock market returns in Pacific-Rim countries: Evidence based on a Bayesian panel VAR model. J Multinal Financ Manage 40: 92-102. doi: 10.1016/j.mulfin.2017.03.001
![]() |
[36] |
Connolly R, Stivers C, Sun L (2005) Stock market uncertainty and the stock-bond return relation. J Financ Quant Anal 40: 161-194. doi: 10.1017/S0022109000001782
![]() |
[37] | Cornell B (1983) The money supply announcements puzzle: Review and interpretation. Am Econ Rev 73: 644-657. |
[38] | Connolly RA, Wang FA (1999) Economic news and stock market linkages: Evidence from the U.S., U.K., and Japan. Proceedings of the Second Joint Central Bank Research Conference on Risk Management and Systemic Risk. Available from: https://www.imes.boj.or.jp/cbrc/cbrc-11.pdf. |
[39] |
Cornish EA, Fisher RA (1937) Moments and cumulants in the specification of distribution. Rev Int Stat Institute 5: 307-320. doi: 10.2307/1400905
![]() |
[40] | Davis S (2016) An index of global economic policy uncertainty. NBER Working Paper 22740. Available from: http://faculty.chicagobooth.edu/steven.davis/pdf/GlobalEconomic.pdf. |
[41] |
Demir E, Gozgor G, Lau CKM, et al. (2018) Does economic policy uncertainty predict the Bitcoin returns? An empirical investigation. Financ Res Lett 26: 145-149. doi: 10.1016/j.frl.2018.01.005
![]() |
[42] |
Diebold FX, Yilmaz K (2009) Measuring financial asset return and volatility spillovers, with application to global equity markets. Econ J 119: 158-171. doi: 10.1111/j.1468-0297.2008.02208.x
![]() |
[43] |
Dugas MJ, Ladouceur R (2000) Treatment of Gad: Targeting Intolerance of Uncertainty in Two Types of Worry. Behav Modif 24: 635-657. doi: 10.1177/0145445500245002
![]() |
[44] |
Edwards S (1982) Exchange rates and 'news': A multi-currency approach. J Int Money Financ 1: 211-224. doi: 10.1016/0261-5606(82)90016-X
![]() |
[45] | Engle RF (2009) Anticipating correlations: A new paradigm for risk management, Princeton: Princeton University Press. |
[46] |
Engle RF, Granger CWJ (1987) Co-integration and error correction: Representation, estimation, and testing. Econometrica 55: 251-276. doi: 10.2307/1913236
![]() |
[47] |
Fernandez-Villaverde J, Guerron-Quintana P, Kuester K, et al. (2015) Fiscal volatility shocks and economic activity. Am Econ Rev 105: 3352-3384. doi: 10.1257/aer.20121236
![]() |
[48] | Forbes K, Kristin F (2012) The "Big C": Identifying and mitigating contagion. Federal Reserve Bank of Kansas City. Proc-Econ Policy Symposium-Jackson Hole, 23-87. |
[49] |
French K, Schwert W, Stambaugh R (1987) Expected stock returns and volatility. J Financ Econ 19: 3-29. doi: 10.1016/0304-405X(87)90026-2
![]() |
[50] |
Ghysels E, Santa-Clara R, Valkanov R (2005) There is a risk-return tradeoff after all. J Financ Econ 76: 509-548. doi: 10.1016/j.jfineco.2004.03.008
![]() |
[51] |
Glosten L, Jagannathan R, Runkle D (1993) On the relation between the expected value and volatility of the nominal excess return on stocks. J Financ 48: 1779-1801. doi: 10.1111/j.1540-6261.1993.tb05128.x
![]() |
[52] | Gu M, Sun M, Wu Y, et al. (2018) Economic policy uncertainty and momentum, presented at the 26th Annual Conference on Pacific Basin Finance, Economics, Accounting, and Management Conference, September 6-7, 2018, Rutgers University, USA. |
[53] |
Guo H, Whitelaw R (2006) Uncovering the risk-return relation in the stock market. J Financ 61: 1433-1463. doi: 10.1111/j.1540-6261.2006.00877.x
![]() |
[54] |
Hamao Y (2018) Japanese financial market research: A survey. Asia-Pac J Financ Stud 47: 361-380. doi: 10.1111/ajfs.12214
![]() |
[55] |
Hamao Y, Masulis RW, Ng V (1990) Correlations in price changes and volatility across international stock markets. Rev Financ Stud 3: 281-307. doi: 10.1093/rfs/3.2.281
![]() |
[56] | Hakkio CS, Keeton WR (2009) Financial stress: What is it, how can it be measured, and why does it matter? Econ Rev 94: 5-50. |
[57] |
Hansen LP, Sargent TJ, Tallarini TD (1999) Robust permanent income and pricing. Rev Econ Stud 66: 873- 907. doi: 10.1111/1467-937X.00112
![]() |
[58] |
Harvey CR, Liechty JC, Liechty MW, et al. (2010) Portfolio selection with higher moments. Quant Financ 10: 469-485. doi: 10.1080/14697681003756877
![]() |
[59] |
Hillen MA, Gutheil CM, Strout TD, et al. (2017) Tolerance of uncertainty: Conceptual analysis, integrative model, and implications for healthcare. Social Sci Med 180: 62-75. doi: 10.1016/j.socscimed.2017.03.024
![]() |
[60] |
Izadi S, Hassan MK (2018) Portfolio and hedging effectiveness of financial assets of the G7 countries. Eurasian Econ Rev 8: 183-213. doi: 10.1007/s40822-017-0090-0
![]() |
[61] | Johannsen BK (2014) When are the Effects of Fiscal Policy Uncertainty Large? Finance and Economics Discussion Series 2014-40, Board of Governors of the Federal Reserve System, US. |
[62] | Karolyi GA, Stulz RM (1996) Why do markets move together? An investigation of US-Japanese stock return comovements. J Financ 51: 951-986. |
[63] | Kirange DK, Deshmukh RR (2016) Sentiment Analysis of news headlines for stock price prediction. Available from: https://www.researchgate.net/publication/299536363_Sentiment_Analysis_of_ |
[64] | News_Headlines_for_Stock_Price_Prediction. |
[65] | 64. Kennedy P (2008) A Guide to Econometrics, 6th ed., Oxford, U.K., Blackwell Publishing. |
[66] |
65. Klößner S, Sekkel R (2014) International spillovers of policy uncertainty. Econ Lett 124: 508-512. doi: 10.1016/j.econlet.2014.07.015
![]() |
[67] | 66. Knight F (1921) Risk, Uncertainty, and Profit, 5th ed., New York, Dover Publications. |
[68] |
67. Koutmos G (2014) Positive feedback trading: A review. Rev Behav Financ 6: 155-162. doi: 10.1108/RBF-08-2014-0043
![]() |
[69] | 68. Lettau M, Ludvigson SC (2010) Measuring and modeling variation in the risk-return trade-off, In: Aït-Sahalia, Y., Hansen, L., Scheinkman, J.A (Eds.), Handbook of Financial Econometrics, North Holland, Amsterdam. |
[70] |
69. Li Q, Yang J, Hsiao C, et al. (2005) The relationship between stock returns and volatility in international stock markets. J Empir Financ 12: 650-665. doi: 10.1016/j.jempfin.2005.03.001
![]() |
[71] |
70. Li X (2017) New evidence on economic policy uncertainty and equity premium. Pacific-Basin Financ J 46: 41-56. doi: 10.1016/j.pacfin.2017.08.005
![]() |
[72] |
71. Li X, Balcilar M, Gupta R, et al. (2015) The causal relationship between economic policy uncertainty and stock returns in China and India: evidence from a bootstrap rolling-window approach. Emerg Mark Financ Trade 52: 674-689. doi: 10.1080/1540496X.2014.998564
![]() |
[73] | 72. Li Z, Zhong J (2019) Impact of economic policy uncertainty shocks on China's financial conditions. Financ Res Lett. |
[74] |
73. Liu L, Zhang T (2015) Economic policy uncertainty and stock market volatility. Financ Res Lett 15: 99-105. doi: 10.1016/j.frl.2015.08.009
![]() |
[75] |
74. Menzly L, Santos T, Veronesi P (2004) Understanding predictability. J Political Economy 112: 1-47. doi: 10.1086/379934
![]() |
[76] |
75. Merton RC (1980) On estimating the expected return on the market: An exploratory investigation. J Financ Econ 8: 323-361. doi: 10.1016/0304-405X(80)90007-0
![]() |
[77] | 76. Mishkin FS (1982) Monetary policy and short‐term interest Rates: An efficient markets‐rational expectations approach. J Financ 37: 63-72. |
[78] |
77. Nelson D (1991) Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59: 347-370. doi: 10.2307/2938260
![]() |
[79] |
78. Newey W, West KD (1987) A simple, positive definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55: 703-708. doi: 10.2307/1913610
![]() |
[80] |
79. Ozoguz A (2009) Good times or bad times? Investors' uncertainty and stock returns. Rev Financ Stud 22: 4377-4422. doi: 10.1093/rfs/hhn097
![]() |
[81] |
80. Pastor L, Veronesi P (2013) Political uncertainty and risk premia. J Financ Econ 110: 520-545. doi: 10.1016/j.jfineco.2013.08.007
![]() |
[82] |
81. Pearce DK, Roley VV (1983) The reaction of stock prices to unanticipated changes in money: A note. J Financ 38: 1323-1333. doi: 10.1111/j.1540-6261.1983.tb02303.x
![]() |
[83] |
82. Peng L, Xiong W (2006) Investor attention, overconfidence and category learning. J Financ Econ 80: 563-602. doi: 10.1016/j.jfineco.2005.05.003
![]() |
[84] |
83. Phan DHB, Sharma SS, Tran VT (2018) Can economic policy uncertainty predict stock returns? Global evidence. J Int Financ Mark Inst Money 55: 134-150. doi: 10.1016/j.intfin.2018.04.004
![]() |
[85] |
84. Rapach DE, Strauss JK, Zhou G (2013) International stock return predictability: What is the role of the United States? J Financ 68: 1633-1622. doi: 10.1111/jofi.12041
![]() |
[86] |
85. Roy AD (1952) Safety first and the holding of assets. Econometrica 20: 431-449. doi: 10.2307/1907413
![]() |
[87] |
86. Scruggs JF (1998) Resolving the puzzling intertemporal relation between the market risk premium and conditional market variance: A two-factor approach. J Financ 53: 575-603. doi: 10.1111/0022-1082.235793
![]() |
[88] | 87. Sum V (2012) How do stock markets in China and Japan respond to economic policy uncertainty in the United States? Available from: https://ssrn.com/abstract=2092346. |
[89] |
88. Tetlock P, Saar-Tsechansky M, Macskassy S (2008) More than words: quantifying language to measure firms' fundamentals. J Financ 63: 1437-1467. doi: 10.1111/j.1540-6261.2008.01362.x
![]() |
[90] |
89. Trung NB (2019) The spillover effect of the US uncertainty on emerging economies: A Panel VAR Approach. Appl Econ Lett 26: 210-216. doi: 10.1080/13504851.2018.1458183
![]() |
[91] |
90. Tsai IC (2017) The source of global stock market risk: A viewpoint of economic policy uncertainty. Econ Model 60: 122-131. doi: 10.1016/j.econmod.2016.09.002
![]() |
[92] | 91. Wang GJ, Xie C, Wen D, et al. (2019) When Bitcoin meets economic policy uncertainty (EPU): Measuring risk spillover effect from EPU to Bitcoin. Financ Res Lett 31(C). |
[93] |
92. Whaley RE (2009) Understanding the VIX. J Portf Manage 35: 98-105. doi: 10.3905/JPM.2009.35.3.098
![]() |
[94] |
93. Zhang Y (2018) China, Japan and the US stock markets and global financial crisis. Asia-Pac Financ Mark 25 23-45. doi: 10.1007/s10690-018-9237-6
![]() |
![]() |
![]() |
1. | Zhongxian Huang, Biderivations of the extended Schrödinger-Virasoro Lie algebra, 2023, 8, 2473-6988, 28808, 10.3934/math.20231476 | |
2. | Ivan Kaygorodov, Abror Khudoyberdiyev, Zarina Shermatova, Transposed Poisson structures on not-finitely graded Witt-type algebras, 2025, 31, 1405-213X, 10.1007/s40590-024-00702-8 |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
|
| |
| |
| |
| |
| |
| |
| |
| |
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
|
| |
| |
| |
| |
| |
| |
| |
| |
|