Research article

The effect of pretreatment with hydroalcoholic extract of Alpinia officinarum rhizome on seizure severity and memory impairment in pentylenetetrazol-induced kindling model of seizure in rat

  • Received: 16 April 2019 Accepted: 15 July 2019 Published: 16 August 2019
  • The aim of present study is to investigate pretreatment with hydroalcoholic extract of Alpinia officinarum rhizome on the severity of epilepsy and memory impairment in rat. In this experimental study, rats were randomly assigned to seven groups. Control group and negative control group were intraperitoneally injected with normal saline and PTZ, respectively, for 10 days. The intervention groups received A. officinarum extract at different doses (50, 100 and 150 mg/kg) 30 minutes before PTZ injection. A. officinarum extract treatment in rats with PTZ-induced kindling exerted significant increase in seizure latency and significant decrease in the frequency of total body seizure, frequent spinning, and jumping. Flumazenil significantly inhibited the antiepileptic effects of A. officinarum extract in the rat receiving the extract at 150 mg/kg. A. officinarum extract can inhibit PTZ-induced seizure and memory impairment, and therefore can be considered as a potent agent which warranted further research to clarify its effects.

    Citation: Kamal Solati, Zahra Rabiei, Samira Asgharzade, Hossein Amini-Khoei, Ali Hassanpour, Zahra Abbasiyan, Maryam Anjomshoa, Mahmoud Rafieian-Kopaei. The effect of pretreatment with hydroalcoholic extract of Alpinia officinarum rhizome on seizure severity and memory impairment in pentylenetetrazol-induced kindling model of seizure in rat[J]. AIMS Neuroscience, 2019, 6(3): 128-145. doi: 10.3934/Neuroscience.2019.3.128

    Related Papers:

    [1] Haifa Bin Jebreen, Yurilev Chalco Cano, Ioannis Dassios . An efficient algorithm based on the multi-wavelet Galerkin method for telegraph equation. AIMS Mathematics, 2021, 6(2): 1296-1308. doi: 10.3934/math.2021080
    [2] Muhammad Usman, Hidayat Ullah Khan, Zareen A Khan, Hussam Alrabaiah . Study of nonlinear generalized Fisher equation under fractional fuzzy concept. AIMS Mathematics, 2023, 8(7): 16479-16493. doi: 10.3934/math.2023842
    [3] Xiao Qin, Xiaozhong Yang, Peng Lyu . A class of explicit implicit alternating difference schemes for generalized time fractional Fisher equation. AIMS Mathematics, 2021, 6(10): 11449-11466. doi: 10.3934/math.2021663
    [4] Manal Alqhtani, Khaled M. Saad . Numerical solutions of space-fractional diffusion equations via the exponential decay kernel. AIMS Mathematics, 2022, 7(4): 6535-6549. doi: 10.3934/math.2022364
    [5] Jafar Biazar, Fereshteh Goldoust . Multi-dimensional Legendre wavelets approach on the Black-Scholes and Heston Cox Ingersoll Ross equations. AIMS Mathematics, 2019, 4(4): 1046-1064. doi: 10.3934/math.2019.4.1046
    [6] Ahmed M. Zidan, Adnan Khan, Rasool Shah, Mohammed Kbiri Alaoui, Wajaree Weera . Evaluation of time-fractional Fisher's equations with the help of analytical methods. AIMS Mathematics, 2022, 7(10): 18746-18766. doi: 10.3934/math.20221031
    [7] Haifa Bin Jebreen, Hongzhou Wang . On the effective method for the space-fractional advection-diffusion equation by the Galerkin method. AIMS Mathematics, 2024, 9(9): 24143-24162. doi: 10.3934/math.20241173
    [8] Kamal Shah, Hafsa Naz, Muhammad Sarwar, Thabet Abdeljawad . On spectral numerical method for variable-order partial differential equations. AIMS Mathematics, 2022, 7(6): 10422-10438. doi: 10.3934/math.2022581
    [9] Jagbir Kaur, Vivek Sangwan . Stability estimates for singularly perturbed Fisher's equation using element-free Galerkin algorithm. AIMS Mathematics, 2022, 7(10): 19105-19125. doi: 10.3934/math.20221049
    [10] Lanyin Sun, Kunkun Pang . Numerical solution of unsteady elastic equations with C-Bézier basis functions. AIMS Mathematics, 2024, 9(1): 702-722. doi: 10.3934/math.2024036
  • The aim of present study is to investigate pretreatment with hydroalcoholic extract of Alpinia officinarum rhizome on the severity of epilepsy and memory impairment in rat. In this experimental study, rats were randomly assigned to seven groups. Control group and negative control group were intraperitoneally injected with normal saline and PTZ, respectively, for 10 days. The intervention groups received A. officinarum extract at different doses (50, 100 and 150 mg/kg) 30 minutes before PTZ injection. A. officinarum extract treatment in rats with PTZ-induced kindling exerted significant increase in seizure latency and significant decrease in the frequency of total body seizure, frequent spinning, and jumping. Flumazenil significantly inhibited the antiepileptic effects of A. officinarum extract in the rat receiving the extract at 150 mg/kg. A. officinarum extract can inhibit PTZ-induced seizure and memory impairment, and therefore can be considered as a potent agent which warranted further research to clarify its effects.


    The concept of the hyperchaos was first put forward by Rössler [1] in 1979. Any system with at least two positive Lyapunov exponents is defined as hyperchaotic. Compared to chaotic attractors, hyperchaotic attractors have more complicated dynamical phenomena and stronger randomness and unpredictability. Hyperchaotic systems have aroused wide interest from more and more researchers in the last decades. A number of papers have investigated various aspects of hyperchaos and many valuable results have been obtained. For instance, in applications, in order to improve the security of the cellular neural network system, the chaotic degree of the system can be enhanced by designing 5D memristive hyperchaotic system [2]. For higher computational security, a new 4D hyperchaotic cryptosystem was constructed by adding a new state to the Lorenz system and well used in the AMr-WB G.722.2 codec to fully and partially encrypt the speech codec [3]. In fact, hyperchaos has a wide range applications such as image encryption [4], Hopfield neural network [5] and secure communication [6] and other fields [7,8]. Meanwhile, there are many hyperchaotic systems have been presented so far. Aimin Chen and his cooperators constructed a 4D hyperchaotic system by adding a state feedback controller to Lü system [9]. Based on Chen system, Z. Yan presented a new 4D hyperchaotic system by introducing a state feedback controller [10]. By adding a controlled variable, Gao et al. introduced a new 4D hyperchaotic Lorenz system [11]. Likewise, researchers also formulated 5D Shimizu-Morioka-type hyperchaotic system [12], 5D hyperjerk hypercaotic system [13] and 4D T hyperchaotic system [14] and so on.

    In [15], a chaotic Rabinovich system was introduced

    $ {˙x=hyax+yz,˙y=hxbyxz,˙z=cz+xy,
    $
    (1.1)

    where $ (x, y, z)^{T}\in { \mathbb R^3} $ is the state vector. When $ (h, a, b, c) = (0.04, 1.5, -0.3, 1.67) $, (1.1) has chaotic attractor[15,16]. System (1.1) has similar properties to Lorenz system, the two systems can be considered as special cases of generalized Lorenz system in [17]. Liu and his cooperators formulated a new 4D hyperchaotic Rabinovich system by adding a linear controller to the 3D Rabinovich system [18]. The circuit implementation and the finite-time synchronization for the 4D hyperchaotic Rabinovich system was also studied in [19]. Reference [20] formulated a 4D hyperchaotic Rabinovich system and the dynamical behaviors were studied such as the hidden attractors, multiple limit cycles and boundedness. Based on the 3D chaotic Rabinovich system, Tong et al. presented a new 4D hyperchaotic system by introducing new state variable [21]. The hyperchaos can be generated by adding variables to a chaotic system, which has been verificated by scholars [3,9,10,11,14]. In [18,19,20,21], the hyperchaotic systems were presented by adding a variable to the second equation of system (1.1). In fact, hyperchaos can also be generated by adding a linear controller to the first equation and second equation of system (1.1). Based on it, the following hyperchaotic system is obtained

    $ {˙x=hyax+yz+k0u,˙y=hxbyxz+mu,˙z=dz+xy,˙u=kxky,
    $
    (1.2)

    where $ k_{0}, \, h, \, a, \, b, \, d, \, k, \, k_{0}, \, m\, $ are positive parameters. Like most hyperchaotic studies (see [14,22,23,24] and so on), the abundant dynamical properties of system (1.2) are investigated by divergence, phase diagrams, equilibrium points, Lyapunov exponents, bifurcation diagram and Poincaré maps. The results show that the new 4D Rabinovich system not only exhibit hyperchaotic and Hopf bifurcation behaviors, but also has the rich dynamical phenomena including periodic, chaotic and static bifurcation. In addition, the 4D projection figures are also given for providing more dynamical information.

    The rest of this paper is organized as follows: In the next section, boundedness, dissipativity and invariance, equilibria and their stability of (1.2) are discussed. In the third section, the complex dynamical behaviors such as chaos and hyperchaos are numerically verified by Lyapunov exponents, bifurcation and Poincaré section. In the fourth section, the Hopf bifurcation at the zero equilibrium point of the 4D Rabinovich system is investigated. In addition, an example is given to test and verify the theoretical results. Finally, the conclusions are summarized in the last section.

    Theorem 2.1. If $ k_{0} > m $, system (1.2) has an ellipsoidal ultimate bound and positively invariant set

    $ \Omega = \{(x, y, z, u)|m{x}^{2}+k_{{0}}{y}^{2}+ ( k_{{0}}-m ) [ z-{\frac {h ( k_{{0}}+m ) }{k_{{0}}-m}} ] ^{2}+{\frac {k_{{0}}m{ u}^{2}}{k}}\leq M \}, $

    where

    $ M={14h2d2(m+k0)2(k0m)a(da),(k0>m,d>a),14h2d2(m+k0)2(k0m)b(b+d),(k0>m,d>b),(m+k0)2h2k0m,(k0>m).
    $
    (2.1)

    Proof. $ V(x, y, z, u) = m{x}^{2}+k_{{0}}{y}^{2}+ (k_{{0}}-m)[z-{\frac {h (k_{{0}}+m) }{k_{{0}}-m}}] ^{2}+{\frac {k_{{0}}m{ u}^{2}}{k}} $. Differentiating $ V $ with respect to time along a trajectory of (1.2), we obtain

    $ \frac{\dot V(x, y, z, u)}{2} = -am{x}^{2}-b{y}^{2}k_{{0}}+dhmz+dhzk_{{0}}+dm{z}^{2}-d{z}^{2}k_{{0}}. $

    When $ \frac{\dot V(x, y, z, u)}{2} = 0 $, we have the following ellipsoidal surface:

    $ \Sigma = \{(x, y, z, u)|am{x}^{2}+bk_{{0}}{y}^{2}+d ( k_{{0}}-m ) ( z-{\frac {hm+hk_{{0}}}{2\, k_{{0}}-2\, m}} ) ^{2} = \, {\frac {d{h}^{2} ( k_{{0}}+m ) ^{2}}{4(k_{{0}}-m)}} \}. $

    Outside $ \Sigma $ that is,

    $ am{x}^{2}+bk_{{0}}{y}^{2}+d ( k_{{0}}-m ) ( z-{\frac {hm+hk_{{0}}}{2\, k_{{0}}-2\, m}} ) ^{2} < \, {\frac {d{h}^{2} ( k_{{0}}+m ) ^{2}}{4(k_{{0}}-m)}}, $

    $ \dot V < 0 $, while inside $ \Sigma $, that is,

    $ am{x}^{2}+bk_{{0}}{y}^{2}+d ( k_{{0}}-m ) ( z-{\frac {hm+hk_{{0}}}{2\, k_{{0}}-2\, m}} ) ^{2} > \, {\frac {d{h}^{2} ( k_{{0}}+m ) ^{2}}{4(k_{{0}}-m)}}, $

    $ \dot V > 0 $. Thus, the ultimate bound for system (1.2) can only be reached on $ \Sigma $. According to calculation, the maximum value of $ V $ on $ \Sigma $ is $ V_{max} = \frac{1}{4}\, {\frac {{h}^{2}{d}^{2} \left(m+k_{{0}} \right) ^{2}}{ \left(k_{ {0}}-m \right) a \left(d-a \right) }}, \, (k_{0} > m, \, d > a) $ and

    $ V_{max} = \frac{1}{4}\, {\frac {{h}^{2}{d}^{2} \left( m+k_{{0}} \right) ^{2}}{ \left( k_{ {0}}-m \right) b \left( -b+d \right) }}, \, (k_{0} > m, \, d > b);\; \; V_{max} = {\frac { \left( m+k_{{0}} \right) ^{2}{h}^{2}}{k_{{0}}-m}}, \, (k_{0} > m). $

    In addition, $ \Sigma \subset \Omega $, when a trajectory $ X(t) = (x(t), y(t), z(t), u(t)) $ of (1.2) is outside $ \Omega $, we get $ \dot V(X(t)) < 0 $. Then, $ \mathop{lim}\limits_{t\to+\infty}\rho(X(t, t_{0}, X_{0}), \Omega) = 0 $. When $ X(t)\in \Omega $, we also get $ \dot V(X(t)) < 0 $. Thus, any trajectory $ X(t) $ ($ X(t)\neq X_{0} $) will go into $ \Omega $. Therefore, the conclusions of theorem is obtained.

    We can see that system (1.2) is invariant for the coordinate transformation

    $ (x, y, z, u)\rightarrow (-x, -y, z, -u). $

    Then, the nonzero equilibria of (1.2) is symmetric with respect to $ z $ axis. The divergence of (1.2) is

    $ \nabla W = \frac{\partial \dot x}{\partial x}+\frac{\partial \dot y}{\partial y}+\frac{\partial \dot z}{\partial z}+\frac{\partial \dot u}{\partial u} = -(a+b+d), $

    system (1.2) is dissipative if and only if $ a+b+d > 0 $. It shows that each volume containing the system trajectories shrinks to zero as $ t\to \infty $ at an exponential rate $ -(a+b+d) $.

    For $ m\leq k_{0} $, system (1.2) only has one equilibrium point $ O(0, 0, 0, 0) $ and the Jacobian matrix at $ O $ is

    $ { J} = \left[ ah0k0hb0m00d0kk00
    \right]. $

    Then, the characteristic equation is

    $ (d+λ)(λ3+s2λ2+s1λ+s0),
    $
    (2.2)

    where

    $ s_{2} = a+b, \; \; s_{1} = ab-{h}^{2}+km+kk_{{0}}, \; \; s_{0} = akm+bkk_{{0}}+hkm+hkk_{{0}}. $

    According to Routh-Hurwitz criterion [25], the real parts of eigenvalues are negative if and only if

    $ d>0,a+b>0,(a+b)(abh2)+k(ak0+bmhmhk0)>0.
    $
    (2.3)

    When $ m > k_{0} $, system (1.2) has other two nonzero equilibrium points $ E_{1}(x_{1}^{*}, y_{1}^{*}, z_{1}^{*}, u_{1}^{*}) $ and $ E_{2}(-x_{1}^{*}, -y_{1}^{*}, z_{1}^{*}, -u_{1}^{*}) $, where

    $ x_{1}^{*} = \sqrt {{\frac {d ( am+bk_{{0}}+hm+hk_{{0}}) }{m-k_{{0}}}}}, \; \; y_{1}^{*} = -\sqrt {{\frac {d ( am+bk_{{0}}+hm+hk_{{0}}) }{m-k_{{0}}}}}, $
    $ z_{1}^{*} = -{\frac {am+bk_{{0}}+hm+hk_{{0}}}{m-k_{{0}}}}, \; \; u_{1}^{*} = -{\frac {a+b+2\, h}{m-k_{{0}}}\sqrt {{\frac {d ( am+bk_{{0}}+hm+hk _{{0}} ) }{m-k_{{0}}}}}}. $

    The characteristic equation of Jacobi matrix at $ E_{1} $ and $ E_{2} $ is

    $ \lambda^4+\delta_{3}\lambda^3+\delta_{2}\lambda^2+\delta_{1}\lambda+\delta_{0} = 0, $

    where

    $ \delta_{3} = a+b+d, \; \; \delta_{2} = \frac{{x_{1}^{*}}^{4}}{d^2}+ab+ad+bd-{h}^{2}+km+kk_{{0}}, $
    $ \delta_{1} = \frac{1}{d}[{x_{1}^{*}}^{2} ( 3\, {x_{1}^{*}}^{2}+ad-bd+kk_{0}-km )+k ( m+k_{0}) ( d+h ) ]+ abd+akm+bkk_{0}-d{h}^{2}, $
    $ \delta_{0} = 3\, kk_{0}\, {x_{1}^{*}}^{2}-3\, km{x_{1}^{*}}^{2}+akmd+bkk_{0}\, d+hkk_{0}\, d+hk md . $

    Based on Routh-Hurwitz criterion [25], the real parts of eigenvalues are negative if and only if

    $ δ0>0,δ3>0,δ3δ2δ1>0,δ3δ2δ1δ21δ0δ23>0.
    $
    (2.4)

    Therefore, we have:

    Theorem 2.2. (I) When $ m\leq k_{0} $, system (1.2) only has one equilibrium point $ O(0, 0, 0, 0) $ and $ O $ is asymptotically stable if and only if (2.3) is satisfied.

    (II) when $ m > k_{0} $, system (1.2) has two nonzero equilibria $ E_{1} $, $ E_{2} $, (2.4) is the necessary and sufficient condition for the asymptotically stable of $ E_{1} $ and $ E_{2} $.

    When $ (b, d, h, a, k_{0}, k, m) = (1, 1, 10, 10, 0.8, 0.8, 0.8) $, system (1.2) only has zero-equilibrium point $ E_{0}(0, 0, 0, 0, 0) $, its corresponding characteristic roots are: $ -1, \, 0.230, \, 5.232, \, -16.462 $, $ E_{0} $ is unstable. The Lyapunov exponents are: $ LE_{1} = 0.199 $, $ LE_{2} = 0.083 $, $ LE_{3} = 0.000 $, $ LE_{4} = -12.283 $, system (1.2) is hyperchaotic. Figure 1 shows the hyperchaotic attractors on $ z-x-y $ space and $ y-z-u $ space. The Poincaré mapping on the $ x-z $ plane and power spectrum of time series $ x(t) $ are depicted in Figure 2.

    Figure 1.  Hyperchaotic attractors of (1.2), (I) $ z-x-y $ space and (II) $ y-z-u $ space.
    Figure 2.  (I) Poincaré mapping on the $ x-z $ plane and (II) power spectrum of time series $ x(t) $ for system (1.2).

    In the following, we fix $ b = 1, \, d = 1, \, h = 10, \, a = 10, \, k_{0} = 0.8, \, m = 0.8 $, Figure 3 indicates the Lyapunov exponent spectrum of system (1.2) with respect to $ k\in [0.005, 1.8] $ and the corresponding bifurcation diagram is given in Figure 4. These simulation results illustrate the complex dynamical phenomena of system (1.2). When $ k $ varies in $ [0.005, 1.8] $, there are two positive Lyapunov exponents, system (1.2) is hyperchaoic as $ k $ varies.

    Figure 3.  Lyapunov exponents of (1.2) with $ m\in [0.005, 1.8] $.
    Figure 4.  Bifurcation diagram of system (1.2) corresponding to Figure 3.

    Assume $ b = 1, \, d = 1, \, h = 10, \, k = 0.8, \, k_{0} = 0.8, \, m = 0.8 $, the different Lyapunov exponents and dynamical properties with different values of parameter $ a $ are given in Table 1. It shows that system (1.2) has rich dynamical behaviors including periodic, chaos and hyperchaos with different parameters. The bifurcation diagram of system (1.2) with $ a\in [0.5, 5] $ is given in Figure 5. Therefore, we can see that periodic orbits, chaotic orbits and hyperchaotic orbits can occur with increasing of parameter $ a $. When $ a = 1.08 $, Figure 6 indicates the $ (z, x, y, u) $ 4D surface of section and the location of the consequents is given in the $ (z, x, y) $ subspace and are colored according to their $ u $ value. The chaotic attractor and hyperchaotic attractor on $ y-x-z $ space and hyperchaotic attractor on $ y-z-u $ space are given in Figures 7 and 8, respectively. The Poincaré maps on $ x-z $ plane with $ a = 2 $ and $ a = 4 $ are depicted in Figure 9.

    Table 1.  Lyapunov exponents of (1.2) with $ (b, d, h, k, k_{0}, m) = (1, 1, 10, 0.8, 0.8, 0.8) $.
    $ a $ $ LE_{1} $ $ LE_{2} $ $ LE_{3} $ $ LE_{4} $ Dynamics
    $ 1.08 $ $ 0.000 $ $ -0.075 $ $ -4.661 $ $ -2.538 $ Periodic
    $ 2 $ $ 0.090 $ $ 0.000 $ $ -0.395 $ $ -3.696 $ Chaos
    $ 4 $ $ 0.325 $ $ 0.047 $ $ -0.000 $ $ -6.373 $ Hyperchaos

     | Show Table
    DownLoad: CSV
    Figure 5.  Phase diagram of (1.2) with $ a\in [0.5 5] $.
    Figure 6.  Phase diagram of system (1.2) with $ a = 1.08 $.
    Figure 7.  Phase diagram of system (1.2) with $ a = 2 $.
    Figure 8.  Phase diagrams of (1.2) with $ a = 4 $ (I) $ y-x-z $ space, (II) $ y-z-u $ space.
    Figure 9.  Poincaré maps of (1.2) in $ x-z $ plane with $ a = 2 $ and $ a = 4 $, respectively.

    Theorem 4.1. Suppose that $ ab > h^{2} $ and $ k_{0}(a-h)+m(b-h) < 0 $ are satisfied. Then, as $ m $ varies and passes through the critical value $ k = {\frac {a{h}^{2}+b{h}^{2}-{a}^{2}b-a{b}^{2}}{ak_{{0}}+bm-hm-hk_{{0}}}} $, system (1.2) undergoes a Hopf bifurcation at $ O(0, 0, 0, 0) $.

    Proof. Assume that system (1.2) has a pure imaginary root $ \lambda = {\rm i}\omega, \, (\omega \in {\mathbb {R}}^{+}) $. From (2.2), we get

    $ s_{2}\omega^2-s_{0} = 0, \; \; \omega^3-s_{1}\omega = 0, $

    then

    $ \omega = \omega_{0} = \sqrt{ab-h^2+k(k_{0}+m)}, $
    $ k = k_{*} = \frac{(a+b)(h^2-ab)}{k_{0}(a-h)+m(b-h)}. $

    Substituting $ k = k_{*} $ into (2.2), we have

    $ \lambda_{1} = {\rm i}\omega, \; \; \lambda_{2} = {\rm i}\omega, \; \; \lambda_{3} = -d, \; \; \lambda_{4} = -(a+b). $

    Therefore, when $ ab > h^{2} $, $ k_{0}(a-h)+m(b-h) < 0 $ and $ k = k_{*} $, the first condition for Hopf bifurcation [26] is satisfied. From (2.2), we have

    $ {\rm Re}(\lambda'(k_{*}))|_{\lambda = { i}\omega_{0}} = \frac{h(k_{0}+m)-ak_{0}-bm}{2(s_{2}^2+s_{1})} < 0, $

    Thus, the second condition for a Hopf bifurcation [26] is also met. Hence, Hopf bifurcation exists.

    Remark 4.1. When $ ab-h^{2}+k(k_{0}+m)\leq 0 $, system (1.2) has no Hopf bifurcation at the zero equilibrium point.

    Theorem 4.2. When $ ab > h^{2} $ and $ k_{0}(a-h)+m(b-h) < 0 $, the periodic solutions of (1.2) from Hopf bifurcation at $ O(0, 0, 0, 0) $ exist for sufficiently small

    $ 0 < |k-k_{*}| = |k-\frac{(a+b)(h^2-ab)}{k_{0}(a-h)+m(b-h)}|. $

    And the periodic solutions have the following properties:

    (I) if $ \delta_{g}^{1} > 0 $ (resp., $ \delta_{g}^{1} < 0 $), the hopf bifurcation of system (1.2) at $ (0, 0, 0, 0) $ is non-degenerate and subcritical (resp. supercritical), and the bifurcating periodic solution exists for $ m > m_{*} $ (resp., $ m < m_{*} $) and is unstable (resp., stable), where

    $ δ1g=14dδ(k2δ01k02+ahδ01s1+kδ01k0s12dδ03δ05+2dδ04δ06),δ=ω0[(ab+h2)(akk0+hkk0hs1)+k(bmhk0)(ha+h2+kk0)k(akhm)(a2+hakk0+s1)],δ01=kω0(a2bm+a2hka2hk0+abhm+ah2kah2mah2k0+ak2k0bkmk0h3mhkmk0+hkk02+bms1hk0s1),δ03=ω0(a2bkm2a2bkk0+a2hk2a2hkk0+abhkm+2abhkk0+ah2k2ah2km+ah2kk0ak3k0+bk2mk0h3km2h3kk0+hk2mk0hk2k02+2a2bs12ah2s1bkms1+hkk0s1),δ04=(ab+h2)s12+(a3ba2h2+abh22abkm+2abkk0ahk2+2ahkk0bhkmh4+h2kmh2kk0)s1a2k3k0+abk2mk02abk2k02ahk3k0+ahk2mk0ahk2k02+bhk2mk0+h2k2mk0+h2k2k02,δ05=12d2+8s1[2ω0(kk0aω0+hkk0ω0hω0s1)+d(hω02ak2k02+kk0s1],δ06=12d2+8s1[d(kk0aω0+hkk0ω0hω0s1)2ω0(k2k02+ahs1kk0s1)].
    $

    (II) The period and characteristic exponent of the bifurcating periodic solution are:

    $ T = \frac{2\pi}{\omega_{0}}(1+\tau_{2*}\epsilon^2+O(\epsilon^4)), \; \; \beta = \beta_{2}\epsilon^2+O(\epsilon^4), $

    where $ \epsilon = \frac{k-k_{*}}{\mu_{2}}+O[(k-k_{*})^2] $ and

    $ \mu_{2} = -\frac{{\rm Re}C_{1}(0)}{\alpha'(0)} = -\frac{(s_{2}^{2}+s_{1})\delta_{g}^{1}}{h(k_{0}+m)-ak_{0}-bm}, $
    $ \tau_{2*} = \frac{\delta_{g}^{2}}{\omega_{0}}-\frac{\delta_{g}^{1}( ams_{{2}}+bk_{{0}}s_{{2}}+hms_{{2}}+hk_{{0}}s_{ {2}}+ms_{{1}}+k_{{0}}s_{{1}} )}{s_{1}(h(k_{0}+m)-ak_{0}-bm)}, $
    $ \beta_{2} = \delta_{g}^{1}, $
    $ \delta_{g}^{2} = \frac{1}{4d\delta}(-{k}^{2}\delta_{{02}}{k_{{0}}}^{2}+ah\delta_{{02}}s_{{1}}+k\delta_{{02}}k _{{0}}s_{{1}}-2\, \delta_{{03}}\delta_{{06}}d-2\, \delta_{{04}}\delta_{{05}} d ). $

    (III) The expression of the bifurcating periodic solution is

    $ \left[ xyzu
    \right] = \left[ kk0ϵcos(2πtT)hω0ϵsin(2πtT)(kk0s1)ϵcos(2πtT)aω0ϵsin(2πtT)ϵ2[kk0(kk0s1)+hs1a2d+δ05δ06sin(4πtT)]k(a+h)ϵcos(2πtT)+kω0ϵsin(2πtT)
    \right] +O(\epsilon^{3}) . $

    Proof. Let $ k = k_{*} $, by straightforward computations, we can obtain

    $ t_{1} = \left[ ihω0kk0kk0s1+iaω00(iω0+a+h)k
    \right] , \; \; t_{3} = \left[ 0010
    \right] , \; \; t_{4} = \left[ ak0hmbmhk00h2ab
    \right] , $

    which satisfy

    $ Jt_{1} = {\rm i}\omega_{0}t_{1} , \, Jt_{3} = -dt_{3} , \, Jt_{4} = -(a+b) t_{4}. $

    Now, we use transformation $ X = QX_{1} $, where $ X = (x, y, z, u)^{T} $, $ X_{1} = (x_{1}, y_{1}, z_{1}, u_{1})^{T} $, and

    $ Q = \left[ kk0hω00akhmkk0s1aω00bmhk00010k(a+h)kω00h2ab
    \right], $

    then, system (1.2) is transformed into

    $ {˙x1=ω0y1+F1(x1,y1,z1,u1),˙y1=ω0x1+F2(x1,y1,z1,u1),˙z1=dz1+F3(x1,y1,z1,u1),˙u1=(a+b)u1+F4(x1,y1,z1,u1),
    $
    (4.1)

    where

    $ \delta = \omega_{{0}} $ $ [(-ab+{h}^{2}) (akk_{{0}}+hkk_ {{0}}-hs_{{1}}) +k (bm-hk_{{0}}) (ha+{h}^{2 }+kk_{{0}})-k(ak-hm) $ $ ({a}^{2}+ha-kk_{{0}} +s_{{1}})] $,

    $ F_{1}(x_{1}, y_{1}, z_{1}, u_{1}) $ $ = \frac{1}{\delta}z_{1}(f_{11}x_{1}+f_{12}y_{1}+f_{13}u_{1}) $,

    $ f_{11} = -kk_{{0}}\omega_{{0}}(abh-a{k}^{2}-{h}^{3}+hkm)+ $ $ (kk_{{0}}-s_{{1}}) \omega_{{0}} ({a}^{2}b-a{h}^{2} -bkm+hkk_{{0}}) $,

    $ f_{12} = -kk_{{0}}\omega_{{0}}(abh-a{k}^{2}-{h}^{3}+hkm)+ $ $ (kk_{{0}}-s_{{1}}) \omega_{{0}} ({a}^{2}b-a{h}^{2} -bkm+hkk_{{0}}) $,

    $ f_{13} = -kk_{{0}}\omega_{{0}}(abh-a{k}^{2}-{h}^{3}+hkm)+ $ $ (kk_{{0}}-s_{{1}}) \omega_{{0}} ({a}^{2}b-a{h}^{2} -bkm+hkk_{{0}}) $,

    $ F_{2}(x_{1}, y_{1}, z_{1}, u_{1}) = $ $ -\frac{1}{\delta}z_{1}(f_{21}x_{1}+f_{22}y_{1}+f_{23}u_{1}) $,

    $ f_{21} = (-ab+{h}^{2}) (2\, {k}^{2}{k_{{0}}}^{2}-2\, kk_{{0} }s_{{1}}+{s_{{1}}}^{2}) $ $ -k (a+h) (a{k}^{2}k_{{0}}-bkmk_{{0}}-hkmk_{{0}}+ $ $ hk {k_{{0}}}^{2}+bms_{{1}}-hk_{{0}}s_{{1}}) $,

    $ f_{22} = -a\omega_{{0}}[abk(m-k_{0})-hk(ak_{0}-bm)] $ $ +abs_{{1}}-{h}^{2 }s_{{1}}] -h\omega_{{0}} [ak(ak+bk_{0}+hk-hm)-h^2k(m+k_{0})] $,

    $ f_{23} = (h^2-ab)[hkk_{{0}}(m-k_{{0}})-kk_{{0}} (ak-bm)-s_{{1}}(bm-hk_{{0}})]+k(a+h)[ak(ak-2\, hm) $ $ +bm (bm-2\, hk_{{0}}) +{h}^{2}({m}^{2}+{k_{{0}}}^{2})] $,

    $ F_{3}(x_{1}, y_{1}, z_{1}, u_{1}) = $ $ [-kk_{{0}}x_{{1}}-h\omega_{{0}}y_{{1}}+ (ak-hm) u_ {{1}}] [(kk_{{0}}-s_{{1}}) x_{{1}}-a\omega _{{0}}y_{{1}}+ (bm-hk_{{0}}) u_{{1}}] $,

    $ F_{4}(x_{1}, y_{1}, z_{1}, u_{1}) = $ $ \frac{1}{\delta}z_{1}(f_{41}x_{1}+f_{42}y_{1}+f_{43}u_{1}) $,

    $ f_{41} = kk_{{0}} $ $ (h\omega_{{0}}ka+{h}^{2}\omega_{{0}}k+{k}^{2}k_{{0}} \omega_{{0}}) - $ $ (kk_{{0}}-s_{{1}}) k\omega_{{0}} ({a}^{2}+ah-kk_{ {0}}+s_{{1}}) $,

    $ f_{42} = $ $ {a}^{3}{\omega_{{0}}}^{2}k+{a}^{2}{\omega_{{0}}}^{2}kh+{h}^{2}{\omega_ {{0}}}^{2}ka-a{k}^{2}k_{{0}}{\omega_{{0}}}^{2}+{h}^{3} $ $ {\omega_{{0}}}^{ 2}k+{k}^{2}k_{{0}}h{\omega_{{0}}}^{2}+ $ $ ak{\omega_{{0}}}^{2}s_{{1}} $,

    $ f_{43} = -{a}^{2}bkm\omega_{{0}}-{a}^{2}h{k}^{2}\omega_{{0}}+ $ $ {a}^{2}hkk_{{0}} \omega_{{0}}-abhkm\omega_{{0}}-a{h}^{2}{k}^{2} $ $ \omega_{{0}}+a{h}^{2}km \omega_{{0}}+a{h}^{2}kk_{{0}}\omega_{{0}}-a{k}^{3} $ $ k_{{0}}\omega_{{0}} $ $ +b{k}^{2}mk_{{0}}\omega_{{0}}+ $ $ {h}^{3}km\omega_{{0}}+h{k}^{2}mk_{{0}} \omega_{{0}}-h{k}^{2}{k_{{0}}}^{2}\omega_{{0}}-bkm $ $ \omega_{{0}}s_{{1}}+ $ $ hkk_{{0}}\omega_{{0}}s_{{1}} $.

    Furthermore,

    $ g_{11} = \frac{1}{4}[\frac{\partial^2F_{1}}{\partial x_{1}^2}+\frac{\partial^2F_{1}}{\partial y_{1}^2}+{ i}(\frac{\partial^2F_{2}}{\partial x_{1}^2}+\frac{\partial^2F_{2}}{\partial y_{1}^2})] = 0, $
    $ g_{02} = \frac{1}{4}[\frac{\partial^2F_{1}}{\partial x_{1}^2}-\frac{\partial^2F_{1}}{\partial y_{1}^2}-\frac{2\partial^2 F_{2}}{\partial x_{1} \partial y_{1}}+{ i}(\frac{\partial^2F_{2}}{\partial x_{1}^2}-\frac{\partial^2F_{2}}{\partial y_{1}^2}+\frac{2\partial^2 F_{1}}{\partial x_{1} \partial y_{1}})] = 0, $
    $ g_{20} = \frac{1}{4}[\frac{\partial^2F_{1}}{\partial x_{1}^2}-\frac{\partial^2F_{1}}{\partial y_{1}^2}+\frac{2\partial^2 F_{2}}{\partial x_{1} \partial y_{1}}+{ i}(\frac{\partial^2F_{2}}{\partial x_{1}^2}-\frac{\partial^2F_{2}}{\partial y_{1}^2}-\frac{2\partial^2 F_{1}}{\partial x_{1} \partial y_{1}})] = 0, $
    $ G_{21} = \frac{1}{8}[\frac{\partial^3F_{1}}{\partial x_{1}^3}+\frac{\partial^3F_{2}}{\partial y_{1}^3}+\frac{\partial^3 F_{1}}{\partial x_{1} \partial y_{1}^2}+ \frac{\partial^3 F_{2}}{\partial x_{1}^2 \partial y_{1}}+{ i}(\frac{\partial^3F_{2}}{\partial x_{1}^3}-\frac{\partial^3F_{2}}{\partial y_{1}^3}+\frac{\partial^3 F_{2}}{\partial x_{1} \partial y_{1}^2} -\frac{\partial^3 F_{1}}{\partial x_{1}^2 \partial y_{1}})] = 0. $

    By solving the following equations

    $ \left[d00(a+b)
    \right]\left[ ω111ω211
    \right] = -\left[ h111h211
    \right], \, \left[ d2iω000(a+b)2iω0
    \right]\left[ ω120ω220
    \right] = -\left[ h120h220
    \right], $

    where

    $ h_{11}^{1} = \frac{1}{2}[(kk_{{0}}+ah ) s_{{1}}-{k}^{2}{k_{{0}}}^{2 }] , $
    $ h_{11}^{2} = \frac{1}{4}(\frac{\partial^2F_{4}}{\partial x_{1}^2}+\frac{\partial^2F_{4}}{\partial y_{1}^2}) = 0, $
    $ h_{20}^{1} = \frac{1}{2}[-{k}^{2}{k_{{0}}}^{2}-hs_{{1}}a+kk_{{0}}s_{{1}}+(hkk_{{0}}\omega_{{0}}-kk_{{0}}a\omega_{{0}}-h\omega_{{0}}s_{{1}}){ i}], $
    $ h_{20}^{2} = \frac{1}{4}(\frac{\partial^2F_{4}}{\partial x_{1}^2}-\frac{\partial^2F_{4}}{\partial y_{1}^2}-2{ i}\frac{\partial^2F_{4}}{\partial x_{1}\partial y_{1}}) = 0, $

    one obtains

    $ \omega_{11}^{1} = \frac{1}{2d}[hs_{{1}}a-kk_{{0}} ( kk_{{0}}-s_{{1}} ) ] , \; \; \omega_{11}^{2} = 0 , \; \; \omega_{20}^{2} = 0, $
    $ \omega_{20}^{1} = \frac{1}{2d^2+8s_{1}}\{ 2\, \omega_{{0}} ( -kk_{{0}}a\omega_{{0}}+hkk_{{0}}\omega_{{0}}-h \omega_{{0}}s_{{1}} ) +d ( -h{\omega_{{0}}}^{2}a-{k}^{2}{k_ {{0}}}^{2}+kk_{{0}}s_{{1}} ) $
    $ \qquad \, \, \, +[d ( -kk_{{0}}a\omega_{{0}}+hkk_{{0}}\omega_{{0}} -h\omega_{{0}}s_{ {1}} ) -2\, \omega_{{0}} ( {k}^{2}{k_{{0}}}^{2}+ahs_{{1}}-kk _{{0}}s_{{1}} ) ]{ i}\} , $
    $ G_{110}^{1} = \frac{1}{2}[(\frac{\partial^2F_{1}}{\partial x_{1}\partial z_{1}}+\frac{\partial^2F_{2}}{\partial y_{1}\partial z_{1}})+{ i}(\frac{\partial^2F_{2}}{\partial x_{1}\partial z_{1}}-\frac{\partial^2F_{1}}{\partial y_{1}\partial z_{1}})] = \frac{1}{2\delta}(\delta_{01}+\delta_{02}{ i}), $

    where

    $ δ01=kω0(a2bm+a2hka2hk0+abhm+ah2kah2mah2k0+ak2k0bkmk0h3mhkmk0+hkk02+bms1hk0s1),δ02=(abh2)s12+(a3ba2h2+abh22abkk0ahk2+bhkmh4+h2km+h2kk0)s1+k2k0(a2kbma+2abk0+ahkahm+ahk0bhmh2mh2k0),G2110=12[(2F1x1u1+2F2y1u1)+i(2F2x1u12F1y1u1)]=0,G1101=12[(2F1x1z12F2y1z1)+i(2F2x1z1+2F1y1z1)]=12δ[δ03+δ04i],
    $

    where

    $ δ03=ω0(a2bkm2a2bkk0+a2hk2a2hkk0+abhkm+2abhkk0+ah2k2ah2km+ah2kk0ak3k0+bk2mk0h3km2h3kk0+hk2mk0hk2k02+2a2bs12ah2s1bkms1+hkk0s1),δ04=(ab+h2)s12+(a3ba2h2+abh22abkm+2abkk0ahk2+2ahkk0bhkmh4+h2kmh2kk0)s1a2k3k0+abk2mk02abk2k02ahk3k0+ahk2mk0ahk2k02+bhk2mk0+h2k2mk0+h2k2k02,
    $
    $ G_{101}^{2} = \frac{1}{2}[(\frac{\partial^2F_{1}}{\partial x_{1}\partial u_{1}}-\frac{\partial^2F_{2}}{\partial y_{1}\partial u_{1}})+{ i}(\frac{\partial^2F_{2}}{\partial x_{1}\partial u_{1}}+\frac{\partial^2F_{1}}{\partial y_{1}\partial u_{1}})] = 0, $
    $ g_{21} = G_{21}+\sum\limits_{j = 1}^2 (2G_{110}^{j}\omega_{11}^{j}+G_{101}^{j}\omega_{20}^{j}) = \delta_{g}^{1}+\delta_{g}^{2}{ i}, $

    where

    $ \delta_{g}^{1} = \frac{1}{4d\delta}({-{k}^{2}\delta_{{01}}{k_{{0}}}^{2}+ah\delta_{{01}}s_{{1}}+k\delta_{{01}}k _{{0}}s_{{1}}-2\, d\delta_{{03}}\delta_{{05}}+2\, d\delta_{{04}}\delta_{{06} } }), $
    $ \delta_{g}^{2} = \frac{1}{4d\delta}(-{k}^{2}\delta_{{02}}{k_{{0}}}^{2}+ah\delta_{{02}}s_{{1}}+k\delta_{{02}}k _{{0}}s_{{1}}-2\, \delta_{{03}}\delta_{{06}}d-2\, \delta_{{04}}\delta_{{05}} d ), $
    $ \delta_{05} = \frac{1}{2d^2+8s_{1}}[ 2\, \omega_{{0}} ( -kk_{{0}}a\omega_{{0}}+hkk_{{0}}\omega_{{0}}-h \omega_{{0}}s_{{1}} ) +d ( -h{\omega_{{0}}}^{2}a-{k}^{2}{k_ {{0}}}^{2}+kk_{{0}}s_{{1}} ) ], $
    $ \delta_{06} = \frac{1}{2d^2+8s_{1}}[d ( -kk_{{0}}a\omega_{{0}}+hkk_{{0}}\omega_{{0}}-h\omega_{{0}}s_{ {1}} ) -2\, \omega_{{0}} ( {k}^{2}{k_{{0}}}^{2}+ahs_{{1}}-kk _{{0}}s_{{1}} )]. $

    Based on above calculation and analysis, we get

    $ C_{1}(0) = \frac{ i}{2\omega_{0}}(g_{20}g_{11}-2|g_{11}|^2-\frac{1}{3}|g_{02}|^2)+\frac{1}{2}g_{21} = \frac{1}{2}g_{21}, $
    $ \mu_{2} = -\frac{{\rm Re}C_{1}(0)}{\alpha'(0)} = -\frac{(s_{2}^{2}+s_{1})\delta_{g}^{1}}{h(k_{0}+m)-ak_{0}-bm}, $
    $ \tau_{2*} = \frac{\delta_{g}^{2}}{\omega_{0}}-\frac{\delta_{g}^{1}( ams_{{2}}+bk_{{0}}s_{{2}}+hms_{{2}}+hk_{{0}}s_{ {2}}+ms_{{1}}+k_{{0}}s_{{1}} )}{s_{1}(h(k_{0}+m)-ak_{0}-bm)}, $

    where

    $ \omega'(0) = \frac{\, \omega_{{0}} ( ams_{{2}}+bk_{{0}}s_{{2}}+hms_{{2}}+hk_{{0}}s_{ {2}}+ms_{{1}}+k_{{0}}s_{{1}} ) }{s_{1}s_{2}^{2}+s_{1}^{2}}, $
    $ \alpha'(0) = \frac{h(k_{0}+m)-ak_{0}-bm}{2(s_{2}^2+s_{1})}, \; \; \beta_{2} = 2{\rm Re}C_{1}(0) = \delta_{g}^{1}. $

    Note $ \alpha'(0) < 0 $. From $ ab > h^{2} $ and $ k_{0}(a-h)+m(b-h) < 0 $, we obtain that if $ \delta_{g}^{1} > 0 $ (resp., $ \delta_{g}^{1} < 0 $), then $ \mu_{2} > 0 $ (resp., $ \mu_{2} < 0 $) and $ \beta_{2} > 0 $ (resp., $ \beta_{2} < 0 $), the hopf bifurcation of system (1.2) at $ (0, 0, 0, 0) $ is non-degenerate and subcritical (resp. supercritical), and the bifurcating periodic solution exists for $ k > k_{*} $ (resp., $ k < k_{*} $) and is unstable (resp., stable).

    Furthermore, the period and characteristic exponent are

    $ T = \frac{2\pi}{\omega_{0}}(1+\tau_{2*}\epsilon^2+O(\epsilon^4)), \; \; \beta = \beta_{2}\epsilon^2+O(\epsilon^4), $

    where $ \epsilon = \frac{k-k_{*}}{\mu_{2}}+O[(k-k_{*})^2] $. And the expression of the bifurcating periodic solution is (except for an arbitrary phase angle)

    $ X = (x, y, z, u)^{T} = Q( \overline{y}_{1}, \overline{y}_{2}, \overline{y}_{3}, \overline{y}_{4})^{T} = QY, $

    where

    $ \overline{y}_{1} = {\rm Re}\mu, \; \; \overline{y}_{1} = {\rm Im}\mu, \; \; (\overline{y}_{3}, \overline{y}_{4}, \overline{y}_{5})^{T} = \omega_{11}|\mu|^2+{\rm Re}(\omega_{20}\mu^2)+O(|\mu|^2), $

    and

    $ \mu = \epsilon e^{\frac{2{ i}t\pi}{T}}+\frac{{ i}\epsilon^2}{6\omega_{0}}[g_{02}e^{-\frac{4{ i}t \pi}{T}} -3g_{20}e^{\frac{4{ i}t\pi}{T}}+6g_{11}]+O(\epsilon^3) = \epsilon {e^{\frac{2{ i}t\pi}{T}}}+O(\epsilon^3). $

    By computations, we can obtain

    $ \left[ xyzu
    \right] = \left[ kk0ϵcos(2πtT)hω0ϵsin(2πtT)(kk0s1)ϵcos(2πtT)aω0ϵsin(2πtT)ϵ2[kk0(kk0s1)+hs1a2d+δ05δ06sin(4πtT)]k(a+h)ϵcos(2πtT)+kω0ϵsin(2πtT)
    \right] +O(\epsilon^{3}) . $

    Based on the above discussion, the conclusions of Theorem 4.2 are proved.

    In order to verify the above theoretical analysis, we assume

    $ d = 2, \, h = 1, \, k_{0} = 1, \, m = 2, \, b = 1.5, \, a = 0.5. $

    According to Theorem 4.1, we get $ k_{*} = 1 $. Then from Theorem 4.2, $ \mu_{2} = -4.375 $ and $ \beta_{2} = -0.074 $, which imply that the Hopf bifurcation of system (1.2) at $ (0, 0, 0, 0) $ is nondegenerate and supercritical, a bifurcation periodic solution exists for $ k < k_{*} = 1 $ and the bifurcating periodic solution is stable. Figure 10 shows the Hopf periodic solution occurs when $ k = 0.999 < k_{*} = 1 $.

    Figure 10.  Phase portraits of (2.1) with $ (d, h, k_{0}, m, b, a, k) = (2, 1, 1, 2, 1.5, 0.5, 0.999) $.

    In this paper, we present a new 4D hyperchaotic system by introducing a linear controller to the first equation and second equation of the 3D Rabinovich system, respectively. If $ k_{0} = 0 $, $ m = 1 $ and the fourth equation is changed to $ -ky $, system (1.2) will be transformed to 4D hyperchaotic Rabinovich system in [18,19]. Compared with the system in [18], the new 4D system (1.1) has two nonzero equilibrium points which are symmetric about $ z $ axis when $ m > k_{0} $ and the dynamical characteristics are more abundant. The complex dynamical behaviors, including boundedness, dissipativity and invariance, equilibria and their stability, chaos and hyperchaos of (1.2) are investigated and analyzed. Furthermore, the existence of Hopf bifurcation, the stability and expression of the Hopf bifurcation at zero-equilibrium point are studied by using the normal form theory and symbolic computations. In order to analyze and verify the complex phenomena of the system, some numerical simulations are carried out including Lyapunov exponents, bifurcations and Poincaré maps, et al. The results show that the new 4D Rabinovich system can exhibit complex dynamical behaviors, such as periodic, chaotic and hyperchaotic. In the real practice, the hyperchaotic Rabinovich system can be applied to generate key stream for the entire encryption process in image encryption scheme [27]. In some cases, hyperchaos and chaos are usually harmful and need to be suppressed such as in biochemical oscillations [8] and flexible shaft rotating-lifting system [28]. Therefore, we will investigate hyperchaos control and chaos control in further research.

    Project supported by the Doctoral Scientific Research Foundation of Hanshan Normal University (No. QD202130).

    The authors declare that they have no conflicts of interest.



    Conflict of interest



    The authors declare no conflict of interest.

    [1] Strauss DJ, Day SM, Shavelle RM, et al. (2003) Remote symptomatic epilepsy does seizure severity increase mortality. Neurology 60: 395–399. doi: 10.1212/WNL.60.3.395
    [2] Chapman AG (2000) Glutamate and epilepsy. J Nutr 130: 1043–1045. doi: 10.1093/jn/130.4.1043S
    [3] Steinlein OK (2002) Nicotinic acetylcholine receptors and epilepsy. Curr Drug Targets CNS Neurol Disord 1: 443–448. doi: 10.2174/1568007023339193
    [4] Sudha K, Rao AV, Rao A (2001) Oxidative stress and antioxidants in epilepsy. Clin Chim Acta 303: 19–24. doi: 10.1016/S0009-8981(00)00337-5
    [5] Shin EJ, Jeong JH, Chung YH, et al. (2011) Role of oxidative stress in epileptic seizures. Neurochem Int 59: 122–137. doi: 10.1016/j.neuint.2011.03.025
    [6] Wei L, Linghuo J (2006) Chemical constituents and pharmacological activities of Alpinia officinarum Hance. China Pharm 3: 10–14.
    [7] Shin JE, Han MJ, Kim DH (2003) 3-Methylethergalangin isolated from Alpinia Officinarum inhibits pancreatic lipase. Biol Pharm Bull 26: 854–857. doi: 10.1248/bpb.26.854
    [8] Köse LP, Gülçin İ, Gören AC, et al. (2015) LC–MS/MS analysis, antioxidant and anticholinergic properties of galanga (Alpinia officinarum Hance) rhizomes. Ind Crops Prod 74: 712–721. doi: 10.1016/j.indcrop.2015.05.034
    [9] Lin LY, Peng CC, Yeh XY, et al. (2015) Antihyperlipidemic bioactivity of Alpinia officinarum (Hance) Farw Zingiberaceae can be attributed to the co-existence of curcumin, polyphenolics, dietary fibers and phytosterols. Food Funct 6: 1600–1610. doi: 10.1039/C4FO00901K
    [10] Lee J, Kim KA, Jeong S, et al. (2009) Anti-inflammatory, anti-nociceptive, and anti-psychiatric effects by the rhizomes of Alpinia officinarum on complete Freund's adjuvant-induced arthritis in rats. J Ethnopharmacol 126: 258–264. doi: 10.1016/j.jep.2009.08.033
    [11] Tao L, Wang ZT, Zhu EY, et al. (2006) HPLC analysis of bioactive flavonoids from the rhizome of Alpinia officinarum. S Afr J Bot 72: 163–166. doi: 10.1016/j.sajb.2005.06.007
    [12] Velisek L, Kubova H, Pohl M, et al. (1992) Pentylenetetrazol-induced seizures in rats: an ontogenetic study. N-S Arch Pharmacol 346: 588–591. doi: 10.1007/BF00169017
    [13] Steinlein OK, Mulley JC, Propping P, et al. (1995) a missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nature Genet 11: 201–203. doi: 10.1038/ng1095-201
    [14] Potier S, Psarropoulou C (2001) Endogenous acetylcholine facilitates epileptogenesis in immature rat neocortex. Neurosci Lett 302: 25–28. doi: 10.1016/S0304-3940(01)01641-X
    [15] Guo A, Xie H, Choi R, et al. (2010) Galangin, a flavonol derived from Rhizoma Alpiniae Officinarum, inhibits acetylcholinesterase activity in vitro. Chem Biol Interact 1: 246–248.
    [16] Gupta Y, Kumar MV, Srivastava A (2003) Effect of Centella asiatica on pentylenetetrazole-induced kindling, cognition and oxidative stress in rats. Pharmacol Biochem Behav 74: 579–585. doi: 10.1016/S0091-3057(02)01044-4
    [17] MN Patel (2009) Oxidative stress, mitochondrial dysfunction, and epilepsy. Free Radical Res. 11: 1139–1146.
    [18] Kalueff AV, Lehtimaki KA, Ylinen A, et al. (2004) intranasal administration of human IL-6 increases the severity of chemically induced seizures in rats. Neurosci Lett 365: 106–110. doi: 10.1016/j.neulet.2004.04.061
    [19] Virta M, Hurme M, Helminen M (2002) Increased plasma levels of pro‐and anti‐inflammatory cytokines in patients with febrile seizures. Epilepsia 43: 920–923. doi: 10.1046/j.1528-1157.2002.02002.x
    [20] Aronica E, Crino PB (2011) Inflammation in epilepsy: clinical observations. Epilepsia 52: 26–32. doi: 10.1111/j.1528-1167.2011.03033.x
    [21] Yadav PN, Liu Z, Rafi M (2003) A diarylheptanoid from lesser galangal (Alpinia Officinarum) inhibits proinflammatory mediators via inhibition of mitogen-activated protein kinase, p44/42, and transcription factor nuclear factor-κB. J Pharmacol Exp Ther 305: 925–931. doi: 10.1124/jpet.103.049171
    [22] Grabowska-Grzyb A, Jędrzejczak J, Nagańska E, et al. (2006) Risk factors for depression in patients with epilepsy. Epilepsy Behav 8: 411–417. doi: 10.1016/j.yebeh.2005.12.005
    [23] Agarwal NB, Agarwal NN, Mediratta PK, et al. (2011) Effect of lamotrigine, oxcarbazepine and topiramate on cognitive functions and oxidative stress in PTZ-kindled mice. Seizure 20: 257–262. doi: 10.1016/j.seizure.2010.12.006
    [24] Lei Y, Chen J, Zhang W, et al. (2012) In vivo investigation on the potential of galangin, kaempferol and myricetin for protection of d-galactose-induced cognitive impairment. Food Chem 4: 2702–2707.
    [25] Kanner AM (2005) Depression in epilepsy: A neurobiologic perspective. Epilepsy Curr 5: 21–27. doi: 10.1111/j.1535-7597.2005.05106.x
  • This article has been cited by:

    1. Naied A. Nayied, Firdous A. Shah, M. A. Khanday, Mubashir Qayyum, Fibonacci Wavelet Method for the Numerical Solution of Nonlinear Reaction-Diffusion Equations of Fisher-Type, 2023, 2023, 2314-4785, 1, 10.1155/2023/1705607
    2. Kushal Dhar Dwivedi, Subir Das, Dumitru Baleanu, Numerical solution of highly non-linear fractional order reaction advection diffusion equation using the cubic B-spline collocation method, 2022, 23, 1565-1339, 1157, 10.1515/ijnsns-2020-0112
    3. A. G. Atta, W. M. Abd-Elhameed, G. M. Moatimid, Y. H. Youssri, Advanced shifted sixth-kind Chebyshev tau approach for solving linear one-dimensional hyperbolic telegraph type problem, 2022, 2008-1359, 10.1007/s40096-022-00460-6
    4. Tatiyana S. Timofeeva, Sakhayana S. Vinokurova, 2022, 2528, 0094-243X, 020038, 10.1063/5.0107070
    5. Kiran Bala, Geeta Arora, Homan Emadifar, Masoumeh Khademi, Applications of particle swarm optimization for numerical simulation of Fisher’s equation using RBF, 2023, 84, 11100168, 316, 10.1016/j.aej.2023.11.024
    6. W. M. Abd-Elhameed, Afnan Ali, Y. H. Youssri, Richard I. Avery, Newfangled Linearization Formula of Certain Nonsymmetric Jacobi Polynomials: Numerical Treatment of Nonlinear Fisher’s Equation, 2023, 2023, 2314-8888, 1, 10.1155/2023/6833404
    7. Geeta Arora, Kiran Bala, 2025, 3185, 0094-243X, 020056, 10.1063/5.0240436
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4458) PDF downloads(519) Cited by(4)

Figures and Tables

Figures(15)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog