Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

The 21st Century Cerebellum: An Evolution of Cognitive Functions, Connections, Disorders, and Pharmacotherapeutic Modulation

1 Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria;
2 Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.

Our understanding of the cerebellum’s role in health and disease has evolved considerably in the past few decades; largely due to the availability of newer and better modalities for studying the relationships between the cerebellum and other segments of the brain, and how these impact behavioural responses like motor function, emotionality, memory and more recently, cognition. In this review, we discuss the evolution of our understanding of the structure and function of the cerebellum; where we were, and how we got here. We also examine the important roles of the cerebellum in neuro-cognitive processing, cognition and cognitive disorders; and ponder on how targeting cerebellar cognition may open a new chapter in the quest for the development and identification of newer cognition-modulating agents.
  Article Metrics


1. Buckner RL (2013) The Cerebellum and Cognitive Function: 25 Years of Insight from Anatomy and Neuroimaging. Neuron 80: 807-815.

2. Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32: 413-434.

3. Leiner HC (2010) Solving the mystery of the human cerebellum. Neuropsychol Rev 20: 229-235.

4. Schmahmann JD (2010) The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev 20: 236-260.    

5. Manto M, Haines D (2012) Cerebellar research: two centuries of discoveries. Cerebellum 11: 446-448.    

6. Buckner RL, Krienen FM, Castellanos A, et al. (2011) The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol 106: 2322-2345.    

7. Sokolov AA, Erb M, Grodd W, et al. (2014) Structural loop between the cerebellum and the superior temporal sulcus: evidence from diffusion tensor imaging. Cereb Cortex 24, :626-32.

8. Leiner HC, Leiner AL (1997) How fibers subserve computing capabilities: similarities between brains and machines. Int Rev Neurobiol 41: 535-553.

9. Finger S (1994) Origins of neuroscience: A history of explorations into brain function. Oxford and New York, Oxford University Press: 1-480.

10. Mayr E (1982) The growth of biological thought: Diversity, evolution, and inheritance. Cambridge: Harvard University Press.

11. Larsell O (1970) The comparative anatomy and histology of the cerebellum from monotremes through apes. Minneapolis: University of Minnesota Press.

12. Larsell O, Jansen (1972) The comparative anatomy and histology of the cerebellum, Vol. 3. Minneapolis: University of Minnesota Press

13. White DD (2005) Size and shape of the cerebellum in catarrhine primates and plio-pleistocene fossil hominins: A paleoneurological analysis of endocranial casts. Ph.D Thesis, Department of Anthropology, College of Arts and Science, University at Albany, State University of New York.

14. Clarke E, O'Malley E (1968) The human brain and spinal cord. University of California Press.

15. Glickstein M, Yeo C (1990) The cerebellum and Motor learning. J Cognitive Neurosci 2: 206-210.

16. Holmes G (1917) The symptoms of acute cerebellar injuries due to gunshot injuries. Brain 40: 461-535.    

17. Glickstein M, Voogd J (1995) Lodewijk Bolk and the comparative anatomy of the cerebellum. Trends Neurosci 18: 206-210.    

18. Strata P, Scelfo B, Sacchetti B (2011) Involvement of cerebellum in emotional behaviour. Physiol Res 60: S39-S48.

19. Ohki M, Kitazawa H, Hiramatsu T, et al. (2009) Role of primate cerebellar hemisphere in voluntary eye movement control revealed by lesion effects. J Neurophysiol 101: 934-947.

20. Hiramatsu T, Ohki M, Kitazawa H, et al. (2008) Role of primate cerebellar lobulus petrosus of paraflocculus in smooth pursuit eye movement control revealed by chemical lesion. Neurosci Res 60: 250-258.

21. Marr D (1969) A theory of cerebellar cortex. J Physiol 202: 437-470.

22. Albus JS (1971) A theory of cerebellar function. Math Biosc 10: 25-61.    

23. Habas C, Kamdar N, Nguyen D (2009) Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci 29: 8586-8594.

24. Krienen FM, Buckner RL (2009) Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex 19: 2485-2497.    

25. O'Reilly JX, Beckmann CF, Tomassini V, (2010) Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex 20: 953-965.    

26. Leiner HC, Leiner AL, Dow RS (1986) Does the cerebellum contribute to mental skills? Behav Neurosci 100: 443-454.

27. Schmahmann JD (2004) Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 16: 367-378.

28. Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78: 272-303.    

29. Schmahmann JD, Caplan D (2006) Cognition, emotion and the cerebellum. Brain 129: 290-292.    

30. Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44: 489-501.    

31. Holloway RL (1996). Handbook of Human Symbolic Evolution. Lock A, Peters CR eds. Oxford: Clarendon: 74-108.

32. Weaver AH (2005) Reciprocal evolution of the cerebellum and neocortex in fossil humans. Proc Natl Acad Sci U S A 102: 3576-3580.    

33. Ramnani N (2006) The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 7: 511-522.    

34. Petersen SE, Fox PT, Posner MI, et al. (1989) Positron emission tomographic studies of the processing of singe words. J Cogn Neurosci 1: 153-170.

35. Kim SG, Uğurbil K, Strick PL (1994) Activation of a cerebellar output nucleus during cognitive processing. Science 265: 949-951.    

36. Schmahmann JD, Pandya DN (1997) The cerebrocerebellar system. Int Rev Neurobiol 41: 31-60.    

37. Middleton FA, Strick PL (2001) Cerebellar projections to the prefrontal cortex of the primate. J Neurosci 21: 700-712.

38. Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23: 8432-8444.

39. Fiez JA, Petersen SE, Cheney MK, et al. (1992) Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. Brain 115: 155-178.

40. Moulton EA, Elman I, Becerra LR, et al. (2014) The cerebellum and addiction: insights gained from neuroimaging research. Addict Biol 19: 317-331.

41. Miquel M, Vazquez-Sanroman D, Carbo-Gas M, et al. (2016) Have we been ignoring the elephant in the room? Seven arguments for considering the cerebellum as part of addiction circuitry. Neurosci Biobehav Rev 60: 1-11.

42. Arriada-Mendicoa N, Otero-Silceo E, Corona-Vazquez T (1999) Current concepts regarding the cerebellum and cognition. Rev Neurol 29: 1075-1082.

43. Ito M (1993) Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci 16: 448-454.    

44. Lent R, Azevedo FA, Andrade-Moraes CH, et al. (2012) How many neurons do you have? Some dogmas of quantitative neuroscience under revision. Eur J Neurosci 35: 1-9.

45. Donkelaar HJT, Lammens M, Wesseling P, et al. (2003) Development and developmental disorders of the human cerebellum. J Neurol 250: 1025-1036.

46. Carletti B, Rossi F (2008) Neurogenesis in the cerebellum. Neuroscientist 14: 91-100.    

47. Volpe JJ (2009) Cerebellum of the Premature Infant: Rapidly Developing, Vulnerable, Clinically Important. J Child Neurol 24: 1085-1104.    

48. Singh I (1997) Gross Anatomy of the Cerebellum, Chapter 7 in Textbook of Human Neuroanatomy, Fifth Edition ed. Singh I, Jaypee Brothers Medical Publishers Ltd New Delhi: 60-65.

49. Andersen BB, Korbo L, Pakkenberg B (1992) A quantitative study of the human cerebellum with unbiased stereological techniques. J Comp Neurol 326: 549-560.

50. Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Sunderland (MA): Sinauer Associates; 2001.

51. Patestas MA, Gartner LP, (2016) Chapter 6 Gross anatomy of the brain: A Textbook of Neuroanatomy; Wiley-Blackwell.

52. Simat M, Parpan P, Fritschy JM (2006) Heterogeneity of glycinergic and gabaergic interneurons in the granule cell layer of mouse cerebellum. J Comp Neurol 500: 71-83.

53. Larsell O (1947) The development of the cerebellum in man in relation to its comparative anatomy. J Comp Neurol 87: 85-129.    

54. Larsell O (1958) Lobules of the mammalian and human cerebellum. Anat Rec 130: 329-330.

55. Grimaldi G, Manto M (2012) Topography of cerebellar deficits in humans. Cerebellum 11: 336-351.

56. Manto M, Mariën P (2015) Schmahmann's syndrome - identification of the third cornerstone of clinical ataxiology. Cerebellum Ataxias 2: 2.    

57. Cerminara NL, Apps R (2011) Behavioural Significance of Cerebellar Modules. Cerebellum 10: 484-494.

58. White JJ, Arancillo M, Stay TR, et al. (2014) Cerebellar Zonal Patterning Relies on Purkinje Cell Neurotransmission. J Neurosci 34: 8231-8245.    

59. Snider RS, Stowell A (1944) Receiving areas of the tactile, auditory and visual systems in the cerebellum. J Neurophysiol 7: 331-357.

60. Grodd W, Hülsmann E, Lotze M, et al. (2001) Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp 13: 55-73.

61. Wiestler T, McGonigle DJ, Diedrichsen J (2011) Integration of sensory and motor representations of single fingers in the human cerebellum. J Neurophysiol 105: 3042-3053.

62. Schlerf JE, Verstynen TD, Ivry RB, et al. (2010) Evidence of a novel somatopic map in the human neocerebellum during complex actions. J Neurophysiol 103: 3330-3336.    

63. Ivry R (1997) Cerebellar timing systems. Int Rev Neurobiol 41: 555-573.

64. Apps R, Hawkes R (2009) Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci 10: 670-681.

65. Horn KM, Pong M, Gibson AR (2010) Functional relations of cerebellar modules of the cat. J Neurosci 30: 9411-9423.    

66. White JJ, Sillitoe RV (2013) Postnatal development of cerebellar zones revealed by neurofilament heavy chain protein expression. Front Neuroanat 7: 9.

67. Uusisaari M, De Schutter E (2001) The mysterious microcircuitry of the cerebellar nuclei. J Physiol 589, 3441-3457.

68. Voogd J, Bigare F (1980) Topographical distribution of olivary and corticonuclear fibers in the cerebellum. In: The inferior olivary nucleus. (eds) Courville J, DeMontigny C, Lamarre Y, New York: Raven: 207-234.

69. Voogd J, Glickstein M (1998) The anatomy of the cerebellum. Trends Neurosci 21: 370-375.    

70. Glickstein M, Sultan F, Voogd J (2011) Functional localization in the cerebellum. Cortex 47: 59-80.

71. Chaumont J, Guyon N, Valera AM, et al. (2013) Clusters of cerebellar Purkinje cells control their afferent climbing fiber discharge. Proc Natl Acad Sci U S A 110: 16223-16228.    

72. Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci 6: 297-311.    

73. Ebner TJ, Wang X, Gao W, et al. (2012) Parasagittal zones in the cerebellar cortex differ in excitability, information processing, and synaptic plasticity. Cerebellum 11: 418-419.    

74. Azevedo FA, Carvalho LR, Grinberg LT, et al. (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513: 532-541.

75. Hoxha E, Tempia F, Lippiello P, et al. (2016) Modulation, Plasticity and Pathophysiology of the Parallel Fiber-Purkinje Cell Synapse. Front Synaptic Neurosci 8: 35.

76. Miyakawa H, Lev-Ram V, Lasser-Ross N et al. (1992) Calcium transients evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig cerebellar Purkinje neurons. J Neurophysiol 68: 1178-1189.

77. Person AL, Raman IM (2012) Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature 481: 502-505.

78. Pedroarena CM, Schwarz C (2003) Efficacy and short-term plasticity at GABAergic synapses between Purkinje and cerebellar nuclei neurons. J Neurophysiol 89: 704-715.

79. Pugh JR, Raman IM (2005) GABAA receptor kinetics in the cerebellar nuclei: evidence for detection of transmitter from distant release sites. Biophys J 88: 1740-1754.    

80. Sugihara I, Fujita H, Na J, et al. (2009) Projection of reconstructed single Purkinje cell axons in relation to the cortical and nuclear aldolase C compartments of the rat cerebellum. J Comp Neurol 512: 282-304.    

81. Sugihara I (2011) Compartmentalization of the deep cerebellar nuclei based on afferent projections and aldolase C expression. Cerebellum 10: 449-463.

82. Bengtsson F, Svensson P, Hesslow G (2004) Feedback control of Purkinje cell activity by the cerebello-olivary pathway. Eur J Neurosci 20: 2999-3005.    

83. Witter L, Canto CB, Hoogland TM, et al. (2013) Strength and timing of motor responses mediated by rebound firing in the cerebellar nuclei after Purkinje cell activation. Front Neural Circuits 7: 133.

84. Orduz D, Llano I (2007) Recurrent axon collaterals underlie facilitating synapses between cerebellar Purkinje cells. Proc Natl Acad Sci U S A 104: 17831-17836.    

85. Wadiche JI, Jahr CE (2005) Patterned expression of Purkinje cell glutamate transporters controls synaptic plasticity. Nat Neurosci 8: 1329-1334.

86. Watt AJ, Cuntz H, Mori M, et al. (2009). Travelling waves in developing cerebellar cortex mediated by asymmetrical Purkinje cell connectivity. Nat Neurosci 12: 463-473.

87. Augustine GJ, Fitzpatrick D, Katz LC, et al. (2004) Chapter 18: Modulation of Movement by the Cerebellum, Circuits within the cerebellum, In Neuroscience 3rd Edition, Sinauer Associates, Sunderland (MA).

88. Gao W, Chen G, Reinert KC, et al. (2006) Cerebellar cortical molecular layer inhibition is organized in parasagittal zones. J Neurosci 26: 8377-8387.

89. Dizon MJ, Khodakhah K (2011) The role of interneurons in shaping Purkinje cell responses in the cerebellar cortex. J Neurosci 231: 10463-10473.

90. Booth J, Wood L, Lu D, et al. (2007) The role of the basal ganglia and cerebellum in language processing. Brain Res 1133: 136-144.    

91. Kellermann T, Regenbogen C, De Vos M, et al. (2012). Effective connectivity of the human cerebellum during visual attention. J Neurosci 32: 11453-11460.

92. Sokolov AA, Erb M, Gharabaghi A, et al. (2012). Biological motion processing: the left cerebellum communicates with the right superior temporal sulcus. Neuroimage 59: 2824-2830.    

93. Jack A, Pelphrey KA (2015). Neural correlates of animacy attribution include neocerebellum in healthy adults. Cereb Cortex 25: 4240-4247.    

94. Schweighofer N, Doya K, Kuroda S (2004) Cerebellar aminergic neuromodulation: towards a functional understanding. Brain Res Rev 44: 103-116.    

95. Wamsley JK, Palacios JM (1984) Amino acid and benzodiazepine receptors. In Handbook of Chemical Neuroanatomy. In: Bjorklund A, Hiikfelt T, Kuhar MJ eds. Classical Transmitters and Transmitter Receptors in the CNS. Amsterdam: Elsevier: 352-385.

96. Somogyi P, Takagi H, Richards JG (1989) Subcellular localization of benzodiazepine/GABAA receptors in the cerebellum of rat, cat, and monkey using monoclonal antibodies. J Neurosci 9: 2197-2209.

97. Kuhar MJ, De Souza EB, Unnerstall JR (1986) Neurotransmitter receptor mapping by autoradiography and other methods. Annu Rev Neurosci 9: 27-59.    

98. De Blas AL, Vitorica J, Friedrich P (1988) Localization of the GABA-A receptor in the rat brain with a monoclonal antibody to the 57,000 Mr peptide of the GABA-A receptor/benzodiazepine receptor/Cl- channel complex. J Neurosci 8: 602-614.

99. Kulik A, Nakadate K, Nyiri G, et al. (2002) Distinct localization of GABA(B) receptors relative to synaptic sites in the rat cerebellum and ventrobasal thalamus. Eur J Neurosci 15: 291-307.    

100. Llansola M, Sanchez-Perez A, Cauli O, et al. (2005) Modulation of NMDA receptors in the cerebellum. 1. Properties of the NMDA receptor that modulate its function. Cerebellum 4: 154-161.

101. Garyfallou VT, Kohama SG, Urbanski HF (1996) Distribution of NMDA and AMPA receptors in the cerebellar cortex of Rhesus macaques. Brain Res 716: 22-28.

102. Knöpfel T, Grandes P (2002). Metabotropic glutamate receptors in the cerebellum with a focus on their function in Purkinje cells. Cerebellum 1: 19-26.

103. Crepel F, Hemart H, Jaillard D, et al. (1996) Cellular mechanism of long-term depression in the cerebellum. Behav Brain Sci 19: 347-353.    

104. Kano M, Kato M (1987) Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature 325: 276-279.

105. Yamazaki M, Araki K, Shibata A, et al. (1992) Molecular cloning of a cDNA encoding a novel member of the mouse glutamate receptor channel family. Biochem Biophys Res Commun 183: 886-892.

106. Araki K, Meguro H, Kushiya E, et al. (1993) Selective expression of the glutamate receptor channel delta 2 subunit in cerebellar Purkinje cells. Biochem Biophys Res Commun 197: 1267-1276.

107. Landsend AS, Amiry-Moghaddam M, Matsubara A, et al. (1997) Differential localization of delta glutamate receptors in the rat cerebellum: co-expression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J Neurosci 17: 834-842.

108. Ikai S, Takada Y, Shinonaga M (1992) Dopaminergic and non-dopaminergic neurons in the ventral tegmental area of the rat project, respectively, to the cerebellar cortex and deep cerebellar nuclei. Neurosci 51: 719-728.

109. Barili P, Bronzetti E, Ricci A, et al. (2000) Microanatomical localization of dopamine receptor protein immunoreactivity in the rat cerebellar cortex. Brain Res 854: 130-138.    

110. Alder R, Barbas H (1995) Complementary distribution of the phosphoproteins DARPP-32 and I-1 in the cerebellar system. Neuroreport 6: 2368-2372.    

111. Kawaguchi Y, Hirano T (2002) Signalling cascade regulating long-term potentiation of GABA (A) receptor responsiveness in cerebellar Purkinje neurons. J Neurosci 22: 3969-3976.

112. Kerr CW, Bishop GA (1992) The physiological effects of serotonin are mediated by the 5HT1A receptor in the cat's cerebellar cortex. Brain Res 591: 253-260.    

113. Geurts FJ, De Schutter E, Timmermans JP (2002) Localization of 5-HT2A, 5-HT3, 5-HT5A and 5-HT7 receptor-like immunoreactivity in the rat cerebellum. J Chem Neuroanat 24: 65-74.

114. Bishop GA, Ho RH (1985) The distribution and origin of serotonin immunoreactivity in the rat cerebellum. Brain Res 331: 195-207.

115. Kerr CW, Bishop GA (1991) Topographical organization in the origin of serotoninergic projections to different regions of the cat cerebellar cortex. J Comp Neurol 304: 502-515.    

116. Weiss M, Pellet J (1982) Raphe–cerebellum interactions: I. Effects of cerebellar stimulation and harmaline administration on single unit activity of midbrain raphe neurons in the rat. Exp Brain Res 48: 163-170.

117. Weiss M, Pellet J (1982) Raphe-cerebellum interactions: II. Effects of midbrain raphe stimulation and harmaline administration on single unit activity of cerebellar cortical cells in the rat. Exp Brain Res 48: 171-176.

118. Maura G, Ricchetti A, Raiteri M (1986) Serotonin inhibits the depolarization-evoked release of endogenous glutamate from rat cerebellar nerve endings. Neurosci Lett 67: 218-222.    

119. Mitoma H, Konishi S (1999) Monoaminergic long-term facilitation of GABA-mediated inhibitory transmission at cerebellar synapses. Neurosci 88: 871-883.

120. Lippiello P, Hoxha E, Speranza L, et al. (2016) The 5-HT7 receptor triggers cerebellar long-term synaptic depression via PKC-MAPK. Neuropharmacol 101: 426-438.    

121. Kimoto Y, Satoh K, SakumotoT et al. (1978) Afferent fibre connections from the lower brain stem to the rat cerebellum by the horseradish peroxidase method combined with MAO staining, with special reference to noradrenergic neurons. J Hirnforsch 19: 85-100.

122. Mitoma H, Konishi S (1996) Long-lasting facilitation of inhibitory transmission by monoaminergic and cAMP-dependent mechanism in rat cerebellar GABAergic synapses. Neurosci Lett 217: 141-144.

123. Saitow F, Satake S, Yamada J, et al. (2000) Beta-adrenergic receptor mediated presynaptic facilitation of inhibitory GABAergic transmission at cerebellar interneuron-Purkinje cell synapses. J Neurophysiol 84: 2016-2025.

124. Cheun JJ, Yeh HH (1996) Noradrenergic potentiation of cerebellar Purkinje cell responses to GABA: cyclic AMP as intracellular intermediary. Neurosci 74: 835-844.

125. Gould TJ, Adams CE, Bickford PC (1997) Beta-adrenergic modulation of GABAergic inhibition in the deep cerebellar nuclei of F344 rats. Neuropharmacol 36: 75-81.

126. Watson M, McElligott JG (1984) Cerebellar norepinephrine depletion and impaired acquisition of specific locomotor tasks in rats. Brain Res 296: 129-138.    

127. Bickford P (1993) Motor learning deficits in aged rats are correlated with loss of cerebellar noradrenergic function. Brain Res 620: 133-138.

128. Schambra UB, Mackensen GB, Stafford-Smith M, et al. (2005). Neuron specific alpha-adrenergic receptor expression in human cerebellum: implications for emerging cerebellar roles in neurologic disease. Neurosci 135: 507-523.

129. Papay R, Gaivin R, Jha A, et al. (2006) Localization of the mouse alpha1A-adrenergic receptor (AR) in the brain: alpha1AAR is expressed in neurons, GABAergic interneurons, and NG2 oligodendrocyte progenitors. J Comp Neurol 497: 209-222.    

130. Hirono M, Matsunaga W, Chimura T, et al. (2008) Developmental enhancement of alpha2-adrenoceptor-mediated suppression of inhibitory synaptic transmission onto mouse cerebellar Purkinje cells. Neurosci 156: 143-154.

131. Lippiello P, Hoxha E, Volpicelli F, et al. (2015) Noradrenergic modulation of the parallel fiber-Purkinje cell synapse in mouse cerebellum. Neuropharmacol 89: 33-42.    

132. Siggins GR, Hoffer BJ, Oliver AP, et al. (1971) Activation of a central noradrenergic projection to cerebellum. Nature 233: 481-483.    

133. Hoffer BJ, Siggins GR, Bloom FE (1971) Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. II. Sensitivity of Purkinje cells to norepinephrine and related substances administered by microiontophoresis. Brain Res 25: 523-534.

134. Saitow F, Konishi S (2000) Excitability increase induced by beta-adrenergic receptor-mediated activation of hyperpolarization-activated cation channels in rat cerebellar basket cells. J Neurophysiol 84: 2026-2034.

135. Carey MR, Regehr WG (2009) Noradrenergic control of associative synaptic plasticity by selective modulation of instructive signals. Neuron 62: 112-122.    

136. Jaarsma D, Ruigrok TJ, Caffe R, et al. (1997) Cholinergic innervation and receptors in the cerebellum. Prog Brain Res 114: 67-96.

137. Turner JR, Kellar KJ (2005) Nicotinic cholinergic receptors in the rat cerebellum: multiple heteromeric subtypes. J Neurosci 25: 9258-9265.

138. Andre P, Pompeiano O, White SR (1993) Activation of muscarinic receptors induces a long-lasting enhancement of Purkinje cell responses to glutamate. Brain Res 617: 28-36.

139. Graham A, Court JA, Martin-Ruiz CM, et al. (2000) Immunohistochemical localisation of nicotinic acetylcholine receptor subunits in human cerebellum. Neurosci 113: 493-507.

140. Glickstein M (2007) What does the cerebellum really do? Curr Biol 17: R824-827.    

141. Baillieux H, Smet HJ, Paquier PF, et al. (2008) Cerebellar neurocognition: Insights into the bottom of the brain. Clin Neurol Neurosurg 11:763-773.

142. Dean P, Porrill J (2008) Oculomotor anatomy and the motor-error problem: the role of the paramedian tract nuclei. Prog Brain Res 171: 177-186.

143. Haith A, Vijayakumar S (2009) Implications of different classes of sensorimotor disturbance for cerebellar based motor learning models. Biol Cybern 100: 81-95.

144. Ohyama T, Medina JF, Nores WL, et al. (2002) Trying to understand the cerebellum well enough to build one. Ann NY Acad Sci 978, 425-438.

145. Ito M (2008) Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 9: 304-313.    

146. Koziol LF, Budding DE, Chidekel D (2012) From movement to thought: executive function, embodied cognition, and the cerebellum. Cerebellum 11: 505-525.    

147. Paulin MG (2005) Evolution of the cerebellum as a neuronal machine for Bayesian state estimation. J Neural Eng 2: S219-234

148. Miall RC, Weir DJ, Wolpert DM, et al. (1993) Is the cerebellum a Smith predictor? J Motor Behav 25: 203-216.    

149. Kurtaj L, Limani I, Shatri V, et al. (2013) The cerebellum: new computational model that reveals its primary function to calculate multibody dynamics conform to Lagrange-Euler formulation. Int J Computer Sci 10: 1-18.

150. Fujita M (1982) Adaptive filter model of the cerebellum. Biol Cybern 45: 195-206.    

151. Dean P, Porrill J, Ekerot CF, et al. (2010) The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat Rev Neurosci 11: 30-43.

152. Rosenblatt F (1962) Principles of neurodynamics. Spartan Books; Washington.

153. Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9: 718-727.    

154. Barlow JS (2002) The cerebellum and adaptive control. Cambridge University Press; Cambridge, UK.

155. Farber NB, Newcomer JW, Olney JW (2000) Are glycine sites saturated In vivo? Arch Gen Psychiatry 57: 1181-1183.

156. Mariën P, Ackermann H, Adamaszek M, et al. (2014) Consensus Paper: Language and the Cerebellum: an ongoing Enigma. Cerebellum 13: 386-410.

157. Baddeley A (2003) Working memory: looking back and looking forward. Nat Rev Neurosci 4: 829-839.

158. Ben-Yehudah G, Fiez JA (2008) Impact of cerebellar lesions on reading and phonological processing. Ann NY Acad Sci 1145: 260-274.

159. Leggio MG, Chiricozzi FR, Clausi S (2011) The neuropsychological profile of cerebellar damage: the sequencing hypothesis. Cortex 47: 137-144.    

160. Kirschen MP, Davis-Ratner MS, Milner MW, et al. (2008) Verbal memory impairments in children after cerebellar tumor resection. Behav Neurol 20: 39-53.    

161. Law N, Bouffet E, Laughlin S, et al. (2011) Cerebello-thalamo-cerebral connections in pediatric brain tumor patients: impact on working memory. NeuroImage 56: 2238-2248.    

162. Justus T, Ravizza SM, Fiez JA, et al. (2005) Reduced phonological similarity effects in patients with damage to the cerebellum. Brain Lang 95: 304-318.    

163. Cooper FE, Grube M, Von Kriegstein K, et al. (2012) Distinct critical cerebellar subregions for components of verbal working memory. Neuropsychologia 50: 189-197.

164. Boyden ES, Katoh A, Pyle JL, et al. (2006) Selective engagement of plasticity mechanisms for motor memory storage. Neuron 51: 823-834.    

165. Medina JF, Nores WL, Ohyama T, et al. (2000) Mechanisms of cerebellar learning suggested by eyelid conditioning. Curr Opin Neurobiol 10: 717-724.    

166. Schonewille M, Gao Z, Boele HJ, et al. (2011) Reevaluating the role of LTD in cerebellar motor learning. Neuron 70: 43-50.

167. Grasselli G, Hansel C (2014) Cerebellar long-term potentiation: cellular mechanisms and role in learning. Int Rev Neurobiol 117: 39-51.    

168. Hansel C, Linden DJ (2000) Long-term depression of the cerebellar climbing fiber--Purkinje neuron synapse. Neuron 26: 473-482.

169. Kawaguchi S, Hirano T (2000) Suppression of inhibitory synaptic potentiation by presynaptic activity through postsynaptic GABA(B) receptors in a Purkinje neuron. Neuron 27: 339-347.

170. Jörntell H, Hansel C (2006) Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses. Neuron 52: 227-238.    

171. Wang DJ, Su LD, Wang YN, et al. (2014) Long-term potentiation at cerebellar parallel fiber-Purkinje cell synapses requires presynaptic and postsynaptic signalling cascades. J Neurosci 534: 2355-2364.

172. Lev-Ram V, Mehta SB, Kleinfeld D, et al. (2003) Reversing cerebellar long-term depression. Proc Natl Acad Sci U S A 100: 15989-15993.    

173. Van Overwalle F, Mariën P (2016) Functional connectivity between the cerebrum and cerebellum in social cognition: A multi-study analysis. NeuroImage 124: 248-255.    

174. Hoche F, Guell X, Sherman JC, et al. (2016) Cerebellar Contribution to Social Cognition. Cerebellum 15: 732-743.

175. Schurz M, Radua J, Aichhorn M, et al. (2014) Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neurosci Biobehav Rev 42: 9-34.    

176. Trope Y, Liberman N (2010) Construal-level theory of psychological distance. Psychol Rev 117: 440-463.    

177. Van Overwalle F, Baetens K, Mariën P, et al. (2014) Social cognition and the cerebellum: a meta-analysis of over 350 fMRI studies. NeuroImage 86: 554-572.    

178. Van Overwalle F, D'aes T, Mariën P (2015) Social Cognition and the Cerebellum: A Meta-analytic Connectivity Analysis. Hum Brain Map 36: 5137-5154.    

179. Van Overwalle F, Baetens K, Mariën P, et al. (2015) Cerebellar areas dedicated to social cognition? A comparison of meta-analytic and connectivity results. Soc Neurosci 10: 337-344.

180. Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121: 561-579.

181. Chheda M, Sherman J, Schmahmann JD (2002) Neurologic, psychiatric and cognitive manifestations in cerebellar agenesis. Neurology 58: 356.

182. Tavano A, Grasso R, Gagliardi C, et al. (2007) Disorders of cognitive and affective development in cerebellar malformations. Brain 130: 2646-2660.    

183. Kim YH, Kim KW (2006) Effects of single-dose methylphenidate on cognitive performance in patients with traumatic brain injury: a double-blind placebo controlled study. Clin Rehabil 20: 24-30.    

184. Yap JL, Wachtel LE, Ahn ES, et al. (2012) Treatment of cerebellar cognitive affective syndrome with aripiprazole. J Pediatric Rehab Med 5: 233-238.

185. Chang C, Siao SW (2016) Cerebellar cognitive affective syndrome: Attention deficite hyperactivity disorder episode of adolescent with cerebellar atrophy in a psychiatric ward. Kaohsiung J Med Sci 32: 52-54.    

186. Faraone SV, Biederman J, Spencer T, et al. (2005) Atomoxetine and stroop task performance in adult attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 15: 664-670.    

187. Foster DJ, Good DC, Fowlkes A, et al. (2006) Atomoxetine enhances a short-term model of plasticity in humans. Arch Phys Med Rehabil 87: 216-221.    

188. Borchert RJ, Rittman T, Passamonti L, et al. (2016) Atomoxetine Enhances Connectivity of Prefrontal Networks in Parkinson's Disease. Neuropsychopharmacol 41: 2171-2177.    

189. Doody RS

Copyright Info: © 2017, A. Y. Onaolapo, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved