[1]
|
Stoeck K, Schmitz M, Ebert E, et al. (2014) Immune responses in rapidly progressive dementia: a comparative study of neuroinflammatory markers in Creutzfeldt-Jakob disease, Alzheimer's disease and multiple sclerosis. J Neuroinflam 11: 170-178. doi: 10.1186/s12974-014-0170-y
|
[2]
|
Kojima G, Tatsuno BK, Inaba M, et al. (2013) Creutzfeldt-Jakob disease: a case report and differential diagnosis. Hawai'i J Med Public Health 72: 136-139.
|
[3]
|
Manuelidis EE, Manuelidis L (1989) A clinical series with 13% of Alzheimer's disease actually CJD. Alz Dis Assoc Disorders 3: 100-109. doi: 10.1097/00002093-198903010-00009
|
[4]
|
Bastian FO, McDermont ME, Perry AS, et al. (2005) Safe method for isolation of prion protein and diagnosis of Creutzfeldt-Jakob disease. J Virol Methods 130: 133-139. doi: 10.1016/j.jviromet.2005.06.024
|
[5]
|
Nicolson GI (2008) Chronic bacterial and viral infections in neurodegenerative and neurobehavioral diseases. Lab Med 39: 291-299. doi: 10.1309/96M3BWYP42L11BFU
|
[6]
|
Bastian FO (1991) Author, Creutzfeldt-Jakob Disease and Other Transmissible Spongiform Encephalopathies, New York, Mosby/Year Book 256 pp
|
[7]
|
Matthews WB (1978) Creutzfeldt-Jakob disease. Postgrad Med J 54: 591-594. doi: 10.1136/pgmj.54.635.591
|
[8]
|
Manuelidis EE, De Figuriredo JM, Kim JH, et al. (1988) Transmission studies from blood of Azheimer disease patients and healthy relatives. Proc Natl Acad Sci (USA) 85: 4898-4901. doi: 10.1073/pnas.85.13.4898
|
[9]
|
Manuelidis EE, Gorgacz EJ, Manuelidis L (1978) Transmission of Creutzfeldt-Jakob disease with scrapie-like syndromes to mice. Nature 271: 778-779.
|
[10]
|
Hainfellner JA, Wanschitz J, Jellinger K, et al. (1998) Coexistence of Alzheimer-type neuropathology in Creutzfeldt_Jakob disease. Acta Neuropathol 96: 116-122. doi: 10.1007/s004010050870
|
[11]
|
Solito E, Sastre M (2012) Microglia function in Alzheimer's disease. Frontiers Pharmacol 3: 1-10.
|
[12]
|
Tousseyn T, Bajsarowicz K, Sanchez H, et al. (2015) Prion disease induces Alzheimer disease-like neuropathologic changes. J Neuropathol Exp Neurol 74: 873-888.
|
[13]
|
Dheen ST, Kaur C, Ling EA (2007) Microglial activation and its implications in the brain diseases. Current Med Chem 14: 1189-1197. doi: 10.2174/092986707780597961
|
[14]
|
Mattson MP (2002) Oxidative stress, perturbed calcium homeostasis, and immune dysfunction in Alzheimer's disease. J Neurovirol 8: 539-550. doi: 10.1080/13550280290100978
|
[15]
|
Garcao P, Oliveira CR, Agostinho P (2006) Comparative study of microglia activation induced by amyloid-β and prion peptides. J Neurosci Res 84: 182-193. doi: 10.1002/jnr.20870
|
[16]
|
Lee DY, Lee J, Sugden B (2009) The unfolded protein response and autophagy: herpes viruses rule! J Virol 83: 1168-1172.
|
[17]
|
Unterberger U, Hoftberger R, Gelpi E, et al. (2006) Endoplasmic reticulum stress features are prominent in Alzheimer's disease but not in prion disease in vivo. J Neuropathol Exp Neurol 65: 348-357. doi: 10.1097/01.jnen.0000218445.30535.6f
|
[18]
|
Sorce S, Nuvolone M, Keller A, et al. (2014) The role of NADPH oxidase NOX2 in prion pathogenesis. PLoS Pathogens 10: e1004531.
|
[19]
|
Bastian FO (2014) Cross-roads in research on neurodegenerative diseases. J Alzheimer's Dis Parkinsonism 4: 141. doi:10.4172/21610460.1000141.
|
[20]
|
Moreno JA, Radford H, Peretti D, et al. (2012) Sustained translational repression of eIF2α mediates prion neurodegeneration. Nature 485: 507-511.
|
[21]
|
Greenlee JJ, Greenlee MH (2015) The transmissible spongiform encephalopathies of livestock. Ilar J 56: 7-25. doi: 10.1093/ilar/ilv008
|
[22]
|
Baker CA, Martin D, Manuelidis L (2002) Microglia from Creutzfeldt-Jakob disease-infected brains are infectious and show specific mRNA activation profiles. J Virol 76: 10905-10913. doi: 10.1128/JVI.76.21.10905-10913.2002
|
[23]
|
Murali A, Maue RA, Dolph PJ (2014) Reversible symptoms and clearance of mutant prion protein in an inducible model of a genetic prion disease in Drosophilia melanogaster. Neurobiol Dis 67: 71-78. doi: 10.1016/j.nbd.2014.03.013
|
[24]
|
Sala I, Marquie M, Sanchez-Saudinos MB, et al. (2012) Rapidy progressive dementia: experience in a tertiary care medical center. Alzheimer Dis Assoc Disorders 26: 267-271. doi: 10.1097/WAD.0b013e3182368ed4
|
[25]
|
Armitage WJ, Tullo AB, Ironside JW (2009) Risk of Creutzfeldt-Jakob disease transmission by ocular surgery and tissue transplantation. Eye 23: 1926-1930. doi: 10.1038/eye.2008.381
|
[26]
|
Wemheuer WM, Benestad SL, Wrede A, et al. (2009) Similarities between forms of sheep scrapie and Creutzfeldt-Jakob disease are encoded by distinct prion types. Amer J Pathol 175: 2566-2573. doi: 10.2353/ajpath.2009.090623
|
[27]
|
Cassard H, Torres JM, Lacroux C, et al. (2014) Evidence for zoonotic potential of ovine scrapie prions. Nature communications 5: 5821 doi:10.1038/ncomms6821.
|
[28]
|
Merz PA, Somerville RA, Wisniewski HM, et al. (1983) Scrapie-associated fibrils in Creutzfeldt-Jakob disease. Nature 306: 474-476.
|
[29]
|
Wisniewski T, Aucouturier P, Soto C, et al. (1998) The prionoses and other conformational disorders. Amyloid 5: 212-224. doi: 10.3109/13506129809003848
|
[30]
|
Serrano-Pozo A, Frosch MP, Masliah E, et al. (2011) Neuropathological alterations in Alzheimer Disease. Cold Spring Harb Perspect Med 1: a006189.
|
[31]
|
Kessels HW, Nguyen LN, Nabavi S, et al. (2010) The prion protein as a receptor for amyloid-β. Nature 466: 7308 E3-4.
|
[32]
|
Kumar A, Pate KM, Moss MA, et al. (2014) Self-propagative replication of A-β oligomers suggests potential transmissibility in Alzheimer disease. PLoS ONE 9: e111492. doi: 10.1371/journal.pone.0111492
|
[33]
|
Guo JL, Lee VM (2011) Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles. J Biol Chem 286: 15317-15331.
|
[34]
|
Liu L, Drouet V, Wu JW, et al. (2012) Trans-synaptic spread of Tau pathology in vivo. PloS ONE 7: e31302. Doi:10.1371. doi: 10.1371/journal.pone.0031302
|
[35]
|
Eisele YS, Bolmont T, Heikenwalder M, et al. (2009) Induction of cerebral β-amyloidosis: intracerebral versus systemic Aβ inoculation. PNAS 106: 12926-12931. doi: 10.1073/pnas.0903200106
|
[36]
|
Morales R, Duran-Aniotz C, Castilla J, et al. (2011) De novo induction of amyloid-β deposition in vivo. Mol Psychiatry 17: 1347-1353.
|
[37]
|
Volpicelli-Daley LA, Luk KC, Patel TP, et al. (2011) Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72: 57-71. doi: 10.1016/j.neuron.2011.08.033
|
[38]
|
Luk KC, Kehm VM, Zhang B, et al. (2012) Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J Exp Med 209: 975-986. doi: 10.1084/jem.20112457
|
[39]
|
Stöhr J, Watts JC, Mensinger ZL, et al. Purified and synthetic Alzheimer's amyloid β (Aβ) prions. PNAS 109: 11025-11030.
|
[40]
|
Ghoshal N, Cali I, Perrin RJ, et al. (2009) Co-distribution of amyloid β plaques and spongiform degeneration in familial Creutzfeldt-Jakob disease with the E200K-129M haplotype. Arch Neurol 66: 1240-1246.
|
[41]
|
Salvadores N, Shahnawaz M, Scarpini E, et al. (2014) Detection of misfolded Aβ oligonmers for sensitive biochemical diagnosis of Alzheimer's disease. Cell Reports 7: 261-268. doi: 10.1016/j.celrep.2014.02.031
|
[42]
|
Morales R, Moreno-Gonzalez I, Soto C (2013) Cross-seeding of misfolded proteins: implications for etiology and pathogenesis of protein misfolding diseases. PLOS 9: e1003537. doi: 10.1371/journal.pgen.1003537
|
[43]
|
Chi EY, Frey SL, Winans A, et al. (2010) Amyloid-β fibrillogenesis seeded by interface-induced peptide misfolding and self-assembly. Biophy J 98: 2299-2308. doi: 10.1016/j.bpj.2010.01.056
|
[44]
|
Tateishi J, Kitamoto T, Hoque MZ, et al. (1996) Experimental transmission of Creutzfeldt-Jakob disease and related diseases to rodents. Neurology 46: 532-537. doi: 10.1212/WNL.46.2.532
|
[45]
|
Kovacs GG, Seguin J, Quadrio I, et al. (2011) Genetic Creutzfeldt-Jakob disease associated with the E200K mutation: characterization of a complex proteinopathy. Acta Neuropathologica 121: 39-57. doi: 10.1007/s00401-010-0713-y
|
[46]
|
Vital A, Canron M-H, Gil R, et al. (2007) A sporadic case of Creutzfeldt-Jakob disease with β-amyloid deposits and α-synuclein inclusions. Neuropathology 27: 273-277. doi: 10.1111/j.1440-1789.2007.00755.x
|
[47]
|
Kasai T, Tokuda T, Ishii R, et al. (2014) Increased α-synuclein levels in the cerebrospinal fluid of patients with Creutzfeldt–Jakob disease. J Neurol 261: 7334-7337.
|
[48]
|
Zhang M, Hu R, Chen H, et al. (2015) Polymorphic cross-seeding amyloid assemblies of amyloid-β and human islet amyloid peptide. Phys Chem Chem Phys 17: 23245-23256. doi: 10.1039/C5CP03329B
|
[49]
|
O'Nuallain B, Williams AD, Westermark P, et al. (2004) Seeding specificity in amyloid growth induced by heterologous fibrils. J Biol Chem 279: 17490-17499. doi: 10.1074/jbc.M311300200
|
[50]
|
Westermark P, Westermark GT (2013) Seeding and cross-seeding in amyloid diseases, in Zucker M, Christen Y (eds.) Proteopathic Seeds and Neurodegenerative Diseases, Research and Perspectives in Alzheimer' Disease, Berlin, Springer-Verlag pp. 47-60.
|
[51]
|
Zhou Y, Smith D, Leong BJ, et al. (2012) Promiscuous cross-seeding between bacterial amyloids promotes interspecies biofilms. J Biol Chem 287: 35092-35103. doi: 10.1074/jbc.M112.383737
|
[52]
|
Prusiner SB (1987) Prions causing degenerative neurological diseases. Ann Rev Med 38: 381-398. doi: 10.1146/annurev.me.38.020187.002121
|
[53]
|
Vila-Vicosa D, Campos SR, Baptista AM, et al. (2012) Reversibility of prion misfolding: insights from constant –pH molecular dynamics simulations. J Physical Chem 116: 8812-8821. doi: 10.1021/jp3034837
|
[54]
|
Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148: 1188-1203. doi: 10.1016/j.cell.2012.02.022
|
[55]
|
Mayer RJ, Landon M, Laszlo L, et al. (1992) Protein processing in lysosomes: the new therapeutic target in neurodegenerative disease. Lancet 340: 156-159. doi: 10.1016/0140-6736(92)93224-B
|
[56]
|
Rigter A, Priem J, Langeveld JP, et al. (2011) Prion protein self-interaction in prion disease therapy approaches. Vet Quarterly 31: 115-128. doi: 10.1080/01652176.2011.604976
|
[57]
|
Safar JG (2012) Molecular pathogenesis of sporadic prion diseases in man. Prion 6: 108-115. doi: 10.4161/pri.18666
|
[58]
|
Tuite MF, Cox BS (2003) Propagation of yeast prions. Nature Rev Mol Cell Biol 4: 878-890. doi: 10.1038/nrm1247
|
[59]
|
Bellinger-Kawahara C, Diener TO, McKinley MP, et al. (1987) Purified scrapie prions resist inactivation by procedures that hydrolyze, modify, or shear nucleic acids. Virology 160: 271-274. doi: 10.1016/0042-6822(87)90072-9
|
[60]
|
Hearst JE (1981) Psoralen photochemistry and nucleic acid structure. J Investigative Dermatol 77: 39-44. doi: 10.1111/1523-1747.ep12479229
|
[61]
|
Miyazawa K, Kipkorir T, Tittman S, et al. (2012) Continuous production of prions after infectious particles are eliminated: implications for Alzheimer's disease. PLoS ONE 7: 1-8.
|
[62]
|
Sun R, Liu Y, Zhang H, et al. (2008) Quantitative recovery of scrapie agent with minimal protein from highly infectious cultures. Viral Immunol 21:293-302.
|
[63]
|
Soto C, Estrada L, Castilla J (2006) Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. Trends Biochem Sci 31: 150-155. doi: 10.1016/j.tibs.2006.01.002
|
[64]
|
Klingeborn M, Race B, Meade-White KD, et al. (2011) Lower specific infectivity of protease-resistant prion protein generated in cell-free reactions. PNAS 108: E1244-E1253. doi: 10.1073/pnas.1111255108
|
[65]
|
Manuelidis L (2011) Nuclease resistant circular DNAs copurify with infectivity in scrapie and CJD. J Neurovirol 17: 131-145.
|
[66]
|
Sonati T, Reimann RR, Falsig J, et al. (2013) The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature 501: 102-106.
|
[67]
|
Miyazawa K, Emmerling K, Manuelidis L (2011) Replication and spread of CJD, kuru and scrapie agents in vivo and in cell culture. Virulence 2: 188-199. doi: 10.4161/viru.2.3.15880
|
[68]
|
Watarai M, Kim S, Erdenebaatar J, et al. (2003) Cellular prion protein promotes Brucella infection into macrophages. J Exp Med 198: 5-17.
|
[69]
|
Bastian FO (2005) Spiroplasma as a candidate causal agent of transmissible spongiform encephalopathies. J Neuropathol Exp Neurol 64: 833-838.
|
[70]
|
Bastian FO (2014) The case for involvement of spiroplasma in the pathogenesis of transmissible spongiform encephalopathies. J Neuropathol Exp Neurol 73: 104-114.
|
[71]
|
Baker C, Martin D, Manuelidis L (2002) Microglia from Creutzfeldt-Jakob disease-infected brains are infectious and show specific mRNA activation profiles. J Virol 76: 10905-10913.
|
[72]
|
Marlatt MW, Bauer J, Aronica E, et al. (2014) Proliferation in the Alzheimer hippocampus is due to microglia, not astroglia, and occurs at sites of amyloid deposition. Neural Plasticity 2014: 693851 1-12.
|
[73]
|
Miklossy J, Kis A, Radenovic A, et al. (2006) Β-amyloid deposition and Alzheimer's type changes induced by Borrelia spirochetes. Neurobiol Aging 27: 228-236. doi: 10.1016/j.neurobiolaging.2005.01.018
|
[74]
|
Balin BJ, Little CS, Hammond CJ, et al. (2008) Chlamydophila pneumonia and the etiology of late-onset Alzheimer's disease. J Alzheimer's Dis 13: 371-380.
|
[75]
|
Poole S, Singhrao SK, Kesavalu L, et al. (2013) Determining the presence of peridontopathic virulence factors in short-term postmortem Alzheimer's disease brain tissue. J Alzheimer's Dis 36: 665-677.
|
[76]
|
Singhrao SK, Harding A, Poole S, et al. (2015) Porphyromonas gingivalis periodontal infection and it putative links with Alzheimer's disease. Mediators Inflam 2015: 137357.
|
[77]
|
Singhrao SK, Harding A, Simmons T, et al. (2014) Oral inflammation, tooth loss, risk factors, and association with progression of Alzheimer's disease. J Alzheimer's Dis 42: 723-737.
|
[78]
|
Miklossy J (2008) Chronic inflammation and amyloidogenesis in Alzheimer's disease- role of spirochetes. J Alzheimer's Dis 13: 381-391.
|
[79]
|
Friedland RP (2015) Mechanisms of molecular mimicry involving the microbiota in neurodegeneration. J Alzheimer's Dis 45: 349-362.
|
[80]
|
Little CS, Joyce TA, Hammond CJ, et al. (2014) Detection of bacterial antigens and Alzheimer's disease-like pathology in the central nervous system of BALB/c mice following intranasal infection with a laboratory isolate of Chlamydia pneumoniae. Frontiers Aging Neurosci 6: 304. doi: 10.3389/fnagi.2014.00304 1-9.
|
[81]
|
Goto S, Anbutsu H, Fukatsu T (2006) Asymmetrical interactions between Wolbachia and Spiroplasma endosymbionts coexisting in the same insect host. Applied Environmental Microbiol 72: 4805-4810. doi: 10.1128/AEM.00416-06
|
[82]
|
Takahashi Y, Mihara H (2004) Construction of chemically and conformationally self-replicating system of amyloid-like fibrils. Bioorg Med Chem 12: 693-699. doi: 10.1016/j.bmc.2003.11.022
|
[83]
|
Barnhart MM, Chapman MR (2006) Curli biogenesis and function. Annu Rev Microbiol 60: 131-147.
|
[84]
|
Wang X, Chapman MR (2008) Curli provide the template for understanding controlled amyloid propagation. Prion 2: 57-60. doi: 10.4161/pri.2.2.6746
|
[85]
|
Lundmark K, Westermark G, Olsen A, et al. (2005) Protein fibrils in nature can enhance amyloid protein A amyloidosis in mice: cross-seeding as a disease mechanism. PNAS 102: 6098-6102. doi: 10.1073/pnas.0501814102
|
[86]
|
Bastian FO (1979) Spiroplasma-like inclusions in Creutzfeldt-Jakob disease. Arch Pathol Lab Med 103: 665-669.
|
[87]
|
Bastian FO, Hart MN, Cancilla PA (1981) Additional evidence of spiroplasma in Creutzfeldt-Jakob disease. Lancet 1: 660.
|
[88]
|
Gray A, Francis RJ, Scholtz CL (1980) Spiroplasma and Creutzfeldt-Jakob disease. Lancet 2, 660.
|
[89]
|
Reyes JM, Hoenig EM (1981) Intracellular spiral inclusions in cerebral cell processes in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 40: 1-8. doi: 10.1097/00005072-198101000-00001
|
[90]
|
Alexeeva I, Elliott EJ, Rollins S, et al. (2006) Absence of spiroplasma or other bacterial 16s rRNA genes in brain tissue of hamsters with scrapie. J Clin Microbiol 44: 91-97. doi: 10.1128/JCM.44.1.91-97.2006
|
[91]
|
Bastian FO, Dash S, Garry RF (2004) Linking chronic wasting disease to scrapie by comparison of Spiroplasma mirum ribosomal DNA sequences. Exp Mol Pathol 77: 49-56. doi: 10.1016/j.yexmp.2004.02.002
|
[92]
|
Bastian FO, Sanders DE, Forbes WA, et al. (2007) Spiroplasma spp. from transmissible spongiform encephalopathy brains or ticks induce spongiform encephalopathy in ruminants. J Med Microbiol 56: 1235-1242.
|
[93]
|
Bastian FO, Boudreaux CM, Hagius SD, et al. (2011) Spiroplasma found in the eyes of scrapie affected sheep. Vet Ophthalmol 14: 10-17.
|
[94]
|
Bastian FO, Purnell DM, Tully JG (1984) Neuropathology of spiroplasma infection in the rat brain. Am J Pathol 114: 496-514.
|
[95]
|
Tully JG, Bastian FO, Rose DL (1984) Localization and persistence of spiroplasmas in an experimental brain infection in suckling rats. Ann Microbiol (Paris) 135A: 111-117.
|
[96]
|
Bastian FO, Jennings R, Huff C (1987) Neurotropic Response of Spiroplasma mirum following peripheral inoculation in the rat. Ann Microbiol (Inst Pasteur) 138: 651-655. doi: 10.1016/0769-2609(87)90143-8
|
[97]
|
Jeffrey M, Scott JR, Fraser H (1991) Scrapie inoculation of mice: light and electron microscopy of the superior colliculi. Acta Neuropathol 81: 562-571.
|
[98]
|
Trachtenberg S, Gilad R (2001) A bacterial linear motor: cellular and molecular organization of the contractile cytoskeleton of the helical bacterium Spiroplasma melliferum BC3. Mol Microbiol 41: 827-848.
|
[99]
|
Bastian FO, Jennings R, Gardner W (1987) Antiserum to scrapie associated fibril protein cross-reacts with Spiroplasma mirum fibril proteins. J Clin Microbiol 25: 2430-2431.
|
[100]
|
Bastian FO, Elzer PH, Wu X (2012) Spiroplasma spp. biofilm formation is instrumental for their role in the pathogenesis of plant, insect and animal diseases. Exp Mol Pathol 93: 116-128.
|
[101]
|
Forloni G, Iussich S, Awan T, et al. (2002) Tetracyclines affect prion infectivity. PNAS 99: 10849-10854.
|
[102]
|
Guo YJ, Han J, Yao HL, et al. (2007) Treatment of scrapie pathogen 263K with tetracycline partially abolishes protease-resistant activity in vitro and reduces infectivity in vivo. Biomed Environ Sci 20: 198-202.
|
[103]
|
Haig DA, Pattison IH (1967) In-vitro growth of pieces of brain from scrapie-affected mice. J Path Bact 93: 724-727. doi: 10.1002/path.1700930243
|
[104]
|
Pattison IH (1969) Scrapie- a personal view. J Clin Pathol (Supp) 6: 110-114.
|
[105]
|
Sinclair SH, Rennoll-Bankert KE, Dumier JS (2014) Effector bottleneck: microbial reprogramming of parasitized host cell transcription by epigenetic remodeling of chromatin structure. Front Genetics 5: 274. doi: 10.3389/fgene.2014.00274 1-10.
|
[106]
|
Di Francesco A, Arosio B, Falconi A, et al. (2015) Global changes in DNA methylation in Alzheimer's disease peripheral blodd mononuclear cells. Brain Behav Immun 45: 139-144.
|
[107]
|
Drury JL, Chung WO (2015) DNA methylation differentially regulates cytokine secretion in gingival epithelia in response to bacterial challengs. Pathogens Dis 73: 1-6.
|
[108]
|
Cal H, Xie Y, Hu L, et al. (2013) Prion protein (PrPc) interacts with histone H3 confirmed by affinity chromatography. J Chromat Analytical Tech Biomed Life Sci 929: 40-44. doi: 10.1016/j.jchromb.2013.04.003
|
[109]
|
Derail M, Mill J, Lunnon K (2014) The mitochondrial epigenome: a role in Alzheimer's disease? Epigenomics 6: 665-675. doi: 10.2217/epi.14.50
|
[110]
|
Choi HS, Choi YG, Shinn HY, et al. (2014) Dysfunction of mitochondrial dynamics in the brains of scrapie-infected mice. Biochem Biophys Res Comm 448: 157-162. doi: 10.1016/j.bbrc.2014.04.069
|
[111]
|
Razin S, Yogev D, Naot Y (1998) Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev 62: 1094-1156.
|
[112]
|
Nur I, Szyf M, Razin A, et al. (1985) Procaryotic and eukaryotic traits of DNA methylation in spiroplasmas. J Bacteriol 164: 19-24.
|
[113]
|
Halfmann R, Lindquist S (2010) Epigenetics in the extreme: prions and the inheritance of environmentally acquired traits. Science 330: 629-632. doi: 10.1126/science.1191081
|
[114]
|
Bastian FO (2014) Cross-roads in research on neurodegenerative diseases. J Alzheimer's Dis Parkinsonism 4: 1000141.
|
[115]
|
Bleme H, Hamon M, Cossart P (2012) Epigenetics and bacterial infections. Cold Spring Harb Perspect Med 2: a010272.
|