Review Special Issues

The Cerebellum in Emotional Processing: Evidence from Human and Non-Human Animals

  • The notion that the cerebellum is a central regulator of motor function is undisputed. There exists, however, considerable literature to document a similarly vital role for the cerebellum in the regulation of various non-motor domains, including emotion. Research from numerous avenues of investigation (i.e., neurophysiological, behavioural, electrophysiological, imagining, lesion, and clinical studies) have documented the importance of the cerebellum, in particular, the vermis, in affective processing that appears preserved across species. The cerebellum possesses a distinct laminar arrangement and highly organized neuronal circuitry. Moreover, the cerebellum forms reciprocal connections with several brain regions implicated in diverse functional domains, including motor, sensory, and emotional processing. It has been argued that these unique neuroanatomical features afford the cerebellum with the capacity to integrate information about an organism, its environment, and its place within the environment such that it can respond in an appropriate, coordinated fashion, with such theories extending to the regulation of emotion. This review puts our current understanding of the cerebellum and its role in behaviour in historical perspective, presents an overview of the neuroanatomical and functional organization of the cerebellum, and reviews the literature describing the involvement of the cerebellum in emotional regulation in both humans and non-human animals. In summary, this review discusses the importance of the functional connectivity of the cerebellum with various brain regions in the ability of the cerebellum to effectively regulate emotional behaviour.

    Citation: Wanda M. Snow, Brenda M. Stoesz, Judy E. Anderson. The Cerebellum in Emotional Processing: Evidence from Human and Non-Human Animals[J]. AIMS Neuroscience, 2014, 1(1): 96-119. doi: 10.3934/Neuroscience.2014.1.96

    Related Papers:

    [1] Muhammad Akram, Sumera Naz, Gustavo Santos-García, Muhammad Ramzan Saeed . Extended CODAS method for MAGDM with $ 2 $-tuple linguistic $ T $-spherical fuzzy sets. AIMS Mathematics, 2023, 8(2): 3428-3468. doi: 10.3934/math.2023176
    [2] Sumera Naz, Muhammad Akram, Afia Sattar, Mohammed M. Ali Al-Shamiri . 2-tuple linguistic $ q $-rung orthopair fuzzy CODAS approach and its application in arc welding robot selection. AIMS Mathematics, 2022, 7(9): 17529-17569. doi: 10.3934/math.2022966
    [3] Muhammad Akram, Sumera Naz, Feng Feng, Ghada Ali, Aqsa Shafiq . Extended MABAC method based on 2-tuple linguistic $ T $-spherical fuzzy sets and Heronian mean operators: An application to alternative fuel selection. AIMS Mathematics, 2023, 8(5): 10619-10653. doi: 10.3934/math.2023539
    [4] Attaullah, Shahzaib Ashraf, Noor Rehman, Asghar Khan, Muhammad Naeem, Choonkil Park . Improved VIKOR methodology based on $ q $-rung orthopair hesitant fuzzy rough aggregation information: application in multi expert decision making. AIMS Mathematics, 2022, 7(5): 9524-9548. doi: 10.3934/math.2022530
    [5] Muhammad Saqlain, Xiao Long Xin, Rana Muhammad Zulqarnain, Imran Siddique, Sameh Askar, Ahmad M. Alshamrani . Energy supplier selection using Einstein aggregation operators in an interval-valued q-rung orthopair fuzzy hypersoft structure. AIMS Mathematics, 2024, 9(11): 31317-31365. doi: 10.3934/math.20241510
    [6] Sumbal Ali, Asad Ali, Ahmad Bin Azim, Abdul Samad Khan, Fuad A. Awwad, Emad A. A. Ismail . TOPSIS method based on q-rung orthopair picture fuzzy soft environment and its application in the context of green supply chain management. AIMS Mathematics, 2024, 9(6): 15149-15171. doi: 10.3934/math.2024735
    [7] Attaullah, Asghar Khan, Noor Rehman, Fuad S. Al-Duais, Afrah Al-Bossly, Laila A. Al-Essa, Elsayed M Tag-eldin . A novel decision model with Einstein aggregation approach for garbage disposal plant site selection under $ q $-rung orthopair hesitant fuzzy rough information. AIMS Mathematics, 2023, 8(10): 22830-22874. doi: 10.3934/math.20231163
    [8] Ghous Ali, Kholood Alsager, Asad Ali . Novel linguistic $ q $-rung orthopair fuzzy Aczel-Alsina aggregation operators for group decision-making with applications. AIMS Mathematics, 2024, 9(11): 32328-32365. doi: 10.3934/math.20241551
    [9] Jia-Bao Liu, Rashad Ismail, Muhammad Kamran, Esmail Hassan Abdullatif Al-Sabri, Shahzaib Ashraf, Ismail Naci Cangul . An optimization strategy with SV-neutrosophic quaternion information and probabilistic hesitant fuzzy rough Einstein aggregation operator. AIMS Mathematics, 2023, 8(9): 20612-20653. doi: 10.3934/math.20231051
    [10] Yasir Yasin, Muhammad Riaz, Kholood Alsager . Synergy of machine learning and the Einstein Choquet integral with LOPCOW and fuzzy measures for sustainable solid waste management. AIMS Mathematics, 2025, 10(1): 460-498. doi: 10.3934/math.2025022
  • The notion that the cerebellum is a central regulator of motor function is undisputed. There exists, however, considerable literature to document a similarly vital role for the cerebellum in the regulation of various non-motor domains, including emotion. Research from numerous avenues of investigation (i.e., neurophysiological, behavioural, electrophysiological, imagining, lesion, and clinical studies) have documented the importance of the cerebellum, in particular, the vermis, in affective processing that appears preserved across species. The cerebellum possesses a distinct laminar arrangement and highly organized neuronal circuitry. Moreover, the cerebellum forms reciprocal connections with several brain regions implicated in diverse functional domains, including motor, sensory, and emotional processing. It has been argued that these unique neuroanatomical features afford the cerebellum with the capacity to integrate information about an organism, its environment, and its place within the environment such that it can respond in an appropriate, coordinated fashion, with such theories extending to the regulation of emotion. This review puts our current understanding of the cerebellum and its role in behaviour in historical perspective, presents an overview of the neuroanatomical and functional organization of the cerebellum, and reviews the literature describing the involvement of the cerebellum in emotional regulation in both humans and non-human animals. In summary, this review discusses the importance of the functional connectivity of the cerebellum with various brain regions in the ability of the cerebellum to effectively regulate emotional behaviour.



    The benefits and consequences of the digital transformation of vehicle technology for sustainability are becoming obvious, but the literature on the issue is still scarce. Increased traffic safety and efficiency are among the benefits of autonomous vehicles (AVs). Infrastructures must be upgraded as AV technology progresses to truly enjoy these benefits [1]. Technologies such as vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V), and 5G-enabled AVs can communicate and receive data from other cars and infrastructure. AVs with such technology have been called "connected autonomous vehicles" (CAVs). According to Molnar et al. [2], the application of V2X (vehicle-to-everything) technology and CAVs for traffic management problems has the ability to minimize growing congestion and offer energy efficiency. Traditional control methods, like traffic lights, can occasionally cause bottlenecks, according to Azadi [3]. Moreover, deploying CAVs in traffic flow decreases expenses by eliminating the requirement for sensors because the data transmission characteristic of CAVs assume sensor duties [4]. As a consequence, the expense of placing sensors on infrastructure is avoided. Fuzzy systems have been effectively implemented into a variety of issues by the researchers [5,6]. In order to better represent the viewpoints of experts when presented with confusing and imprecise information, Zadeh [7] provided the framework for an astonishing theory called fuzzy set (FS) theory (specified by a membership function $ \mu $). Eventually, researchers created certain FS extensions that are quite useful for dealing with multi-criteria group decision-making (MCGDM) challenges. For example, Atanassov [8] offered the concept of intuitionistic FS (IFS), Yager [9,10] introduced the idea of Pythagorean FS (PyFS), Senapati and Yager [11] created the notion of Fermatean FS (FFS), and Yager [12] proposed $ q $-rung orthopair FS ($ q $-ROFS) by introducing a negative membership grade ($ \nu $) having the conditions, $ \mu+\nu\leq 1, $ $ \mu^{2}+\nu^{2}\leq 1, $ $ \mu^{3}+\nu^{3}\leq 1, $ and $ \mu^{q}+\nu^{q}\leq 1 $ ($ q\geq 1 $), respectively. Cuong and Kreinovich [13] created Picture FS (PFS) to collect more accurate assessment data by taking into consideration a neutral membership grade ($ \gamma $). With the condition $ \mu+\nu+\gamma\leq 1, $ a PFS can accept three membership degrees: positive membership (PM), neutral membership (NM), and negative membership ($ N_{e} $M). G$ \ddot{u} $ndo$ \breve{g} $du and Kahraman [14], and Mahmood et al. [15] proposed the idea of spherical FS (SFS), where ($ \mu^{2}+\nu^{2}+\gamma^{2}\leq1 $) is the condition. Li et al. [16] introduced the $ q $-rung PFS ($ q $-RPFS), which employs Yager's $ q $-ROFS ($ \mu^q+\nu^q+\gamma^q\leq 1, q\geq 1 $). Gurmani et al. [17] presented some Dombi operations on linguistic $ T $-spherical fuzzy numbers along with an application. Gurmani et al. [18] extended various decision-making methodologies and implemented them on different problems.

    Real-time traffic control systems are often employed to significantly reduce congestion. There are various studies in the literature on the efficiency of traffic management systems. Variable speed limit (VSL) is one of the most extensively used real-time traffic control technique. Research on the enhancements given by VSL found that sometimes decreasing speed limits during problematic traffic situations reduced incident risk by 5%-17% ([19]). In a separate work, Hegyi et al. [20] offer a model predictive control (MPC) to optimally coordinate VSL for highway traffic, and advantages connected to the use of this technique are examined. The results reveal less congestion, more outflow, and shorter travel times. Another real-time traffic control strategy is ramp metering. The findings of simulations in several studies on the traffic efficiency benefits of ramp metering management systems reveal that ramp metering improves traffic flow by improving travel speeds, lowering travel times, and increasing volumes. Various research presents conclusions relating to safety improvements in ramp metering [21]. Dynamic route guidance is one form of real-time traffic management. The benefits of dynamic route guiding are studied in separate research, in addition to efficiency gains, pollution reduction, and fuel economy [22]. With the newest advancements in autonomous and communication technology over the last decade, the focus of traffic management has changed towards integrating linked autonomous cars into traditional traffic control approaches. The use of CAVs in traffic management approaches appears to be improving control system efficiency. Many recent studies in the literature corroborate this efficiency boost. An evaluation of bottleneck discharge rates and system delay reductions is undertaken in research concerning the integration of CAVs with VSL [23]. Wang et al. [24] examined the merging CAVs and dynamic route guiding systems in a separate research. A simulated analysis of the subject reveals that the capacity of CAVs to acquire and send data permits the discovery of shorter routes in terms of journey durations. In a separate research, the impact of deploying CAVs on lane control signals (LCS) traffic management approaches is explored [25,26,27]. A simulation research is carried out in an environment that has been calibrated using real-world traffic data. The results reveal that the CAV-enabled LCS management technique beats real-world LCS applications by an average of 12.8% in throughput. Apart from combining traditional traffic management approaches and CAVs, another study topic is the use of CAVs alone to enhance traffic conditions. While there is less research on this issue in the literature, current studies demonstrate that this sort of traffic management is also beneficial ([28]). Gokasar et al. [30] used rough fuzzy numbers to expand the MACBETH (Measuring Attractiveness by a Categorical Based Evaluation Method). In this study, the benefits of RTTM strategies with and without CAVs are prioritized by comparing these approaches using the criteria. The most advantageous option is picked based on the comparative findings.

    In this paper, we use Einstein aggregation operators (AOs) to build the $ 2 $TL$ q $-RPF-CODAS approach. The motivations for using the $ 2 $TL$ q $-RPFSs, extending CODAS method and Einstein AOs, and implementing the proposed methodology to an application are stated as follows:

    ● In DM circumstances, professionals frequently utilize language words such as "good", "bad", "great", and "poor" to appraise the options. Zadeh [31] proposed the concept of linguistic variables as a technique to more effectively transmit human viewpoints in DM. He established the notion of linguistic variables and stressed that linguistic terms may effectively describe linguistic information. Experts can communicate their views more precisely thanks to linguistic variables. Herrera and Martínez [32,33] developed the $ 2 $-tuple linguistic term set ($ 2 $TLTS) to better transmit judgement and evaluation information in MCGDM settings. $ 2 $TLTS is a promising approach for more efficiently conveying evaluation information in DM situations. Because of these traits, the researchers concentrated their efforts on them. Many studies have focused on the $ 2 $TLRM, and it has emerged as an important technique for treating linguistic DM difficulties. Researchers have used this idea, including Zhang [34] and Garg [35]. Lin et al. [36] introduced the idea of linguistic $ q $-ROFS (L$ q $-ROFS). More information can be found by reading some related researches ([37]). Many AOs have been developed by researchers and are presently in use in linguistic contexts. Akram et al. [38] recently proposed the notion of $ 2 $TL$ q $-RPFSs and applied it to solve an MCGDM problem. The aforementioned research inspired us to present our work in the context of the $ 2 $TL$ q $-RPFSs.

    ● TOPSIS [39], MABAC [40], VIKOR [41], and other decision-making approaches were invented and expanded by researchers. Lihong et al. [42] presented an improved version of VIKOR method for the selection of thermal power enterprise's coal suppliers. The fundamental goal of these methodologies is to solve DM difficulties. These strategies were initially created using crisp data. First, Bellman and Zadeh [43] developed a DM technique for dealing with ambiguity in real-world issues in a fuzzy environment. The combinative distance-based assessment (CODAS) approach was pioneered by Ghorabaee et al. [44]. Moreover, Lei et al. [45] offered a combined assessment of objective criteria weights method. Simic et al. [46] created a picture fuzzy expansion of the CODAS algorithm. Wang [47] provided an interval-valued IF extension of the CODAS approach and evaluated a college's teaching quality. He et al. [48] proposed a $ 2 $TLPyF-COADS approach to tackle a financial management performance evaluation challenge. Naz et al. [49] demonstrated an issue related to arc welding robot selection by providing a unique extension of the CODAS technique. Vinodh et al. [50] integrated the DEMATEL (Decision-Making Trial and Evaluation Laboratory) method with the CODAS method and addressed a case study. An interval-valued IF CODAS method was presented by Deveci et al. [51], in which an example for the selection of renewable energy alternatives in Turkey was discussed. Aydogmus et al. [52] presented an enterprise resource planning (ERP) problem in picture fuzzy environment. Researchers proposed various extensions of the CODAS method [53,54] and implemented them to tackle various real-world problems. Akram et al. [55,56,57] discussed the CODAS method and MABAC method in a 2-tuple linguistic setting. We choose the CODAS technique because of its simplicity and dependability in dealing with actual MCGDM difficulties. Moreover, an extension of the CODAS approach in a $ 2 $TL$ q $-RPF context is still lacking. To fill the research gap, this work introduces a novel CODAS technique based on Einstein AOs for prioritizing connected autonomous cars in real-time traffic management (RTTM) systems.

    ● To get at the final findings, it is critical to synthesize data received from multiple perspectives during the decision-making process. The researchers used AOs to aggregate information during the MCGDM process. Peng and Yang [58] showed several characteristics of interval-valued PyF AOs. Yager [59] created ordered weighted average AOs for multi-criteria DM. Gassert [60] presented the operators on FSs. The AOs on IFSs were proposed by Xu [61]. $ t $-norms and $ t $-conorms on IFSs were created by Deschrijver et al. [62]. Garg [63] created generalized IF AOs for decision-making utilizing Einstein $ t $-norm and $ t $-conorm. Wang and Liu [64] presented several Einstein AOs against the backdrop of IFS. Researchers and intellectuals created and used many AOs and their expansions [65,66,67]. Some picture fuzzy AOs for DM were proposed by Wei [68]. Akram et al. [69] used L$ q $-ROFSs as a background for their work on Einstein AOs. Readers are directed to [70,71,72,73] for more study on Einstein AOs. According to earlier research, there is a requirement to establish Einstein AOs against the backdrop of $ 2 $TL$ q $-RPFSs. As a result, we want to build two AOs: $ 2 $-tuple linguistic $ q $-rung picture fuzzy Einstein weighted average ($ 2 $TL$ q $-RPFEWA) and $ 2 $-tuple linguistic $ q $-rung picture fuzzy Einstein ordered weighted average ($ 2 $TL$ q $-RPFEOWA).

    ● The implementation of RTTM systems has a wide range of applications, ranging from traffic safety and efficiency to economic, employment, and energy-related concerns. Conventional traffic management approaches rely heavily on information systems, such as electronic traffic boards, to instruct vehicles on how to adjust their speeds and change lanes. Researchers focus has shifted to the benefits of autonomous vehicle traffic management and incorporating autonomous cars into traffic management approaches due to advancements in autonomous vehicles and communication technology. Although it is an important and intriguing subject of research, there are numerous studies on the efficiency of traffic management systems in the literature. As a result of these investigations, we choose the example of a RTTM system with three options: 1) RTTM; 2) RTTM combined with linked autonomous cars; and 3) RTTM employing connected autonomous vehicles.

    The following are the contributions of this research:

    ● Our goal in this paper is to build some Einstein AOs against the backdrop of $ 2 $TL$ q $-RPFSs. We achieve our aim by creating two Einstein AOs, notably the $ 2 $TL$ q $-RPFEWA operator and the $ 2 $TL$ q $-RPFEOWA operator, and studying their features.

    ● Our next goal is to develop a more comprehensive CODAS approach to address MCGDM problems. We create the CODAS technique in a $ 2 $TL$ q $-RPF environment and use the AOs indicated above for aggregation. Based on the generalized properties of $ 2 $TL$ q $-RPFS, we develop the $ 2 $TL$ q $-RPF-CODAS approach. To calculate the weights of the criterion, we used the entropy measure. The suggested CODAS technique extension may be used to solve difficult MCGDM issues.

    ● The provided technique is applied to the problem of selecting the optimal alternative for a real-time traffic control system, demonstrating its applicability. Apart from that, the impact of parameters on the final findings is examined.

    ● To illustrate the validity of the established method, we conduct a comparison analysis of the provided methodology with other recent techniques.

    This article is organized into seven sections. Section 2 goes over some key principles related to the $ 2 $TL$ q $-RPFSs. Section 3 introduces the $ 2 $TL$ q $-RPFEWA and $ 2 $TL$ q $-RPFEOWA AOs. Section 4 describes the $ 2 $TL$ q $-RPF-CODAS method technique. Section 5 applies the current technique to a problem. Section 6 compares the provided technique with two previously published research. Section 7 concludes with closing comments. The acronyms used in this paper are described in Table 1.

    Table 1.  Acronyms and their descriptions.
    Acronym Description Acronym Description
    FS Fuzzy set $ 2 $TL$ q $-RPFS $ 2 $-Tuple linguistic $ q $-RPFS
    IFS Intuitionistic FS $ 2 $TL$ q $-RPFEWA $ 2 $TL$ q $-RPF Einstein weighted average
    PyFS Pythagorean FS $ 2 $TL$ q $-RPFEOWA $ 2 $TL$ q $-RPF Einstein ordered weighted average
    $ q $-ROFS $ q $-Rung orthopair FS SWARA Stepwise weight assessment ratio analysis
    FFS Fermatean FS IDOCRIW Integrated determination of objective criteria weights
    PFS Picture FS MCGDM Multi-criteria group decision-making
    $ q $-RPFS $ q $-Rung PFS PROMETHEE Preference ranking organization method
    SFS Spherical FS for enrichment evaluation
    $ 2 $TLTS $ 2 $-Tuple linguistic term set ELECTRE Elimination and choice expressing reality
    AOs Aggregation operators RTTM Real time traffic management
    L$ q $-ROFS Linguistic $ q $-ROFS WASPAS Weighted aggregated sum product assessment
    $ 2 $TLPyS $ 2 $-Tuple linguistic PyFS CODAS Combinative distance-based assessment
    $ 2 $TLFFS $ 2 $-Tuple linguistic FFS MACBETH Measuring Attractiveness by a Categorical
    PM Positive membership Based Evaluation Method
    NM Neutral membership MULTIMOORA Multi-objective optimization ratio analysis
    $ N_{e} $M Negative membership plus full multiplicative form
    CAVs Connected autonomous vehicles TOPSIS Technique for order preference by
    VSL Variable speed limit similarity to an ideal solution
    AHP Analytical hierarchy process VIKOR VlseKriterijumska Optimizacija I Kompromisno Resenje
    DEMATEL Decision-making trial and MABAC Multi-attributive border approximation
    evaluation laboratory area comparison method

     | Show Table
    DownLoad: CSV

    This section goes through a few fundamental $ 2 $TL$ q $-RPFSs concepts to help readers comprehend the recommended method. First, we review the definition of $ 2 $TL$ q $-RPFS and its related introductory concepts.

    The notion of $ 2 $TL$ q $-RPFSs proposed by Akram et al. [38] is described in the following definition.

    Definition 2.1. [38] A $ 2 $TL$ q $-RPFS $ A $ ($ q\geq1 $) is defined as:

    $ A={(g,((α(g),E(g)),(β(g),F(g)),(γ(g),G(g)))):gK},
    $
    (2.1)

    where $ (\wp_{\alpha}(g), E(g)), $ $ (\wp_{\beta}(g), F(g)) $ and $ (\wp_{\gamma}(g), G(g)) $ are the degrees of $ PM $, $ NM $ and $ N_{e}M $, respectively. A $ 2 $TL$ q $-RPFS should satisfy the following conditions:

    $ α(g),β(g),γ(g)A,E(g),F(g),G(g)[0.5,0.5),
    $
    $ 0Λ1(α(g),E(g))Θ+1,0Λ1(β(g),F(g))Θ+1,0Λ1(γ(g),G(g))Θ+1,
    $
    $ 0(Λ1(α(g),E(g)))q+(Λ1(β(g),F(g)))q+(Λ1(γ(g),G(g)))q(Θ+1)q.
    $

    For simplicity, we call $ A = \big((\wp_{\alpha}, E), (\wp_{\beta}, F), (\wp_{\gamma}, G)\big), $ a $ 2 $TL$ q $-RPF number ($ 2 $TL$ q $-RPFN) with $ 0\leq\Lambda^{-1}(\wp_{\alpha}, E)\leq \Theta+1, 0\leq\Lambda^{-1}(\wp_{\beta}, F)\leq \Theta+1, 0\leq\Lambda^{-1}(\wp_{\gamma}, G)\leq \Theta+1, $ $ 0\leq\big(\Lambda^{-1}(\wp_{\alpha}, E\big))^{q}+\big(\Lambda^{-1}(\wp_{\beta}, F)\big)^{q}+\big(\Lambda^{-1}(\wp_{\gamma}, G)\big)^{q}\leq(\Theta+1)^{q}. $

    Definition 2.2. [38] Let $ a, b, c $ denote the values obtained after performing an operation on the LTs' indices in a LTS $ S $ with $ a, b, c \in [0, \Theta]. $ In addition, suppose that

    $ α=round(a),β=round(b),γ=round(c),and
    $
    $ E=aα,F=bβ,G=cγ,
    $

    where, $ E, F, G \in [-0.5, 0.5), $ then $ E, F, G $ are the values of symbolic translation.

    The following definition is used to transform a numerical value into a $ 2 $-tuple.

    Definition 2.3. [38] Let $ S = \{\wp_{k}:k = 0, 1, 2, \ldots, \Theta\} $ represents a LTS and $ a, b, c \in [0, \Theta]. $ Then the function $ \Lambda:[0, \Theta]\rightarrow S \times [-0.5, 0.5) $ to acquire the $ 2 $TL information (equivalent to $ a, b, c $) can be defined as:

    $\Lambda(a) = \left\{ α,α=round(a)E=aα,E[0.5,0.5),
    \right.$
    $\Lambda(b) = \left\{ β,β=round(b)F=bβ,F[0.5,0.5),
    \right.$
    $\Lambda(c) = \left\{ γ,γ=round(c)G=cγ,G[0.5,0.5),
    \right.$

    The following definition converts a $ 2 $-tuple into its equivalent numerical value.

    Definition 2.4. [38] Let $ S = \{\wp_{k}:k = 0, 1, 2, \ldots, \Theta\} $ represents a LTS and consider a $ 2 $TL$ q $-RPFN

    $ A=((α,E),(β,F),(γ,G)),
    $

    then, each $ 2 $TL$ q $-RPFN is restored to its equivalent numerical value $ a, b, c\in[0, \Theta], $ using the function $ \Lambda^{-1}:S \times[-0.5, 0.5) \rightarrow [0, \Theta] $, where

    $ Λ1(α,E)=α+E=a,Λ1(β,F)=β+F=b,Λ1(γ,G)=γ+G=c.
    $

    Some basic operational laws between two $ 2 $TL$ q $-RPFNs are presented in the following definition.

    Definition 2.5. [38] Let $ A = \big((\wp_{\alpha}, E), (\wp_{\beta}, F), (\wp_{\gamma}, G)\big), $ $ A_{1} = ((\wp_{\alpha_{1}}, E_{1}), (\wp_{\beta_{1}}, F_{1}), (\wp_{\gamma_{1}}, G_{1})) $ and $ A_{2} = ((\wp_{\alpha_{2}}, E_{2}), (\wp_{\beta_{2}}, F_{2}), (\wp_{\gamma_{2}}, G_{2})) $ are three $ 2 $TL$ q $-RPFNs with $ q\geq 1 $ and $ \rho > 0. $ Then

    $ 1)A1A2=(Λ(Θ(1(1(Λ1(α1,E1)Θ)q)(1(Λ1(α2,E2)Θ)q))1q),Λ(Θ(Λ1(β1,F1)Θ)(Λ1(β2,F2)Θ)),Λ(Θ(Λ1(γ1,G1)Θ)(Λ1(γ2,G2)Θ))).2)A1A2=(Λ(Θ(Λ1(α1,E1)Θ)(Λ1(α2,E2)Θ)),Λ(Θ(1(1(Λ1(β1,F1)Θ)q)(1(Λ1(β2,F2)Θ)q))1q),Λ(Θ(1(1(Λ1(γ1,G1)Θ)q)(1(Λ1(γ2,G2)Θ)q))1q)).3)ρA=(Λ(Θ(1(1(Λ1(α,E)Θ)q)ρ)1q),Λ(Θ(Λ1(β,F)Θ)ρ),Λ(Θ(Λ1(γ,G)Θ)ρ)).4)Aρ=(Λ(Θ(Λ1(α,E)Θ)ρ),Λ(Θ(1(1(Λ1(β,F)Θ)q)ρ)1q),Λ(Θ(1(1(Λ1(γ,G)Θ)q)ρ)1q)).
    $

    In this section, we present the Einstein aggregation operators for $ 2 $TL$ q $-RPFNs. First, we present the basic Einstein operational laws between two $ 2 $TL$ q $-RPFNs in the following definition.

    Definition 3.1. Consider three $ 2 $TL$ q $-RPFNs $ L = \big((\wp_{\alpha}, E), (\wp_{\beta}, F), (\wp_{\gamma}, G)\big) $, $ L_{1} = \big((\wp_{\alpha_{1}}, E_{1}), (\wp_{\beta_{1}}, F_{1}), (\wp_{\gamma_{1}}, G_{1})\big) $ and $ L_{2} = \big((\wp_{\alpha_{2}}, E_{2}), (\wp_{\beta_{2}}, F_{2}), (\wp_{\gamma_{2}}, G_{2})\big) $ with $ q\geq1 $ and $ \rho > 0 $. Then the $ 2 $TL$ q $-RPF Einstein operations between $ L_{1} $ and $ L_{2} $ are:

    $ 1)L1L2=(Λ(Θ(q(Λ1(α1,E1)Θ)q+(Λ1(α2,E2)Θ)q1+(Λ1(α1,E1)Θ)q(Λ1(α2,E2)Θ)q)),Λ(Θ((Λ1(β1,F1)Θ)(Λ1(β2,F2)Θ)q1+(1(Λ1(β1,F1)Θ)q)(1(Λ1(β2,F2)Θ)q))),Λ(Θ((Λ1(γ1,G1)Θ)(Λ1(γ2,G2)Θ)q1+(1(Λ1(γ1,G1)Θ)q)(1(Λ1(γ2,G2)Θ)q)))).2)L1L2=(Λ(Θ((Λ1(α1,E1)Θ)(Λ1(α2,E2)Θ)q1+(1(Λ1(α1,E1)Θ)q)(1(Λ1(α2,E2)Θ)q))),Λ(Θ(q(Λ1(β1,F1)Θ)q+(Λ1(β2,F2)Θ)q1+(Λ1(β1,F1)Θ)q(Λ1(β2,F2)Θ)q)),Λ(Θ(q(Λ1(γ1,G1)Θ)q+(Λ1(γ2,G2)Θ)q1+(Λ1(γ1,G1)Θ)q(Λ1(γ2,G2)Θ)q)),).3)ρL=(Λ(Θ(q(1+Λ1(α,E)Θ)ρ(1Λ1(α,E)Θ)ρ(1+Λ1(α,E)Θ)ρ+(1Λ1(α,E)Θ)ρ)),Λ(Θ(q2(Λ1(β,F)Θ)ρq(2(Λ1(β,F)Θ)q)ρ+((Λ1(β,F)Θ)q)ρ)),Λ(Θ(q2(Λ1(γ,G)Θ)ρq(2(Λ1(γ,G)Θ)q)ρ+((Λ1(γ,G)Θ)q)ρ))).4)Lρ=(Λ(Θ(q2(Λ1(α,E)Θ)ρq(2(Λ1(α,E)Θ)q)ρ+((Λ1(α,E)Θ)q)ρ)),Λ(Θ(q(1+Λ1(β,F)Θ)ρ(1Λ1(β,F)Θ)ρ(1+Λ1(β,F)Θ)ρ+(1Λ1(β,F)Θ)ρ)),Λ(Θ(q(1+Λ1(γ,G)Θ)ρ(1Λ1(γ,G)Θ)ρ(1+Λ1(γ,G)Θ)ρ+(1Λ1(γ,G)Θ)ρ))).
    $

    Now we present the $ 2 $TL$ q $-RPFEWA operator and its related fundamental properties:

    Definition 3.2. The $ 2 $TL$ q $-RPFEWA operator is a mapping $ H^{n}\to H $ such that: for each collection of $ 2 $TL$ q $-RPFNs $ M_{k} = \big((\wp_{\alpha_{k}}, E_{k}), (\wp_{\beta_{k}}, F_{k}), (\wp_{\gamma_{k}}, G_{k})\big) $ $ (k = 1, 2, \ldots, n), $

    $ 2TLqRPFEWA(M1,M2,,Mn)=nk=1WkMk,
    $
    (3.1)

    where $ \mathcal{W} = (\mathcal{W}_{1}, \mathcal{W}_{2}, \ldots, \mathcal{W}_{n})^{T} $ is the weight vector of $ M_{k} $ $ (k = 1, 2, \ldots, n) $ with $ \mathcal{W}_{k}\in[0, 1] $ and $ \mathop {\mathop \sum \limits^n }\limits_{k = 1} \mathcal{W}_{k} = 1. $

    Theorem 3.1. Consider a collection of $ 2 $TL$ q $-RPFNs $ M_{k} = \big((\wp_{\alpha_{k}}, E_{k}), (\wp_{\beta_{k}}, F_{k}), (\wp_{\gamma_{k}}, G_{k})\big) $ $ (k = 1, 2, \ldots, n) $ having weight vector $ \mathcal{W} = (\mathcal{W}_{1}, \mathcal{W}_{2}, \ldots, \mathcal{W}_{n})^{T} $ with $ \mathcal{W}_{k}\in[0, 1] $ and $ \mathop {\mathop \sum \limits^n }\limits_{k = 1} \mathcal{W}_{k} = 1. $ Then

    $ 2TLqRPFEWA(M1,M2,,Mn)=
    $
    $ (Λ(Θ(qnk=1(1+Λ1(αk,Ek)Θ)Wknk=1(1Λ1(αk,Ek)Θ)Wknk=1(1+Λ1(αk,Ek)Θ)Wk+nk=1(1Λ1(αk,Ek)Θ)Wk)),Λ(Θ(q2nk=1(Λ1(βk,Fk)Θ)Wkqnk=1(2(Λ1(βk,Fk)Θ)q)Wk+nk=1((Λ1(βk,Fk)Θ)q)Wk)),Λ(Θ(q2nk=1(Λ1(γk,Gk)Θ)Wkqnk=1(2(Λ1(γk,Gk)Θ)q)Wk+nk=1((Λ1(γk,Gk)Θ)q)Wk))).
    $
    (3.2)

    Proof. We use induction method and Definition 3.1 to prove this theorem. For $ n = 2, $ we have

    $ W1M1W2M2=
    $
    $ (Λ(Θ(q(1+Λ1(α1,E1)Θ)W1(1Λ1(α1,E1)Θ)W1(1+Λ1(α1,E1)Θ)W1+(1Λ1(α1,E1)Θ)W1)),Λ(Θ(q2(Λ1(β1,F1)Θ)W1q(2(Λ1(β1,F1)Θ)q)W1+((Λ1(β1,F1)Θ)q)W1)),Λ(Θ(q2(Λ1(γ1,G1)Θ)W1q(2(Λ1(γ1,G1)Θ)q)W1+((Λ1(γ1,G1)Θ)q)W1)))
    $
    $ (Λ(Θ(q(1+Λ1(α2,E2)Θ)W2(1Λ1(α2,E2)Θ)W2(1+Λ1(α2,E2)Θ)W2+(1Λ1(α2,E2)Θ)W2)),Λ(Θ(q2(Λ1(β2,F2)Θ)W2q(2(Λ1(β2,F2)Θ)q)W2+((Λ1(β2,F2)Θ)q)W2)),Λ(Θ(q2(Λ1(γ2,G2)Θ)W2q(2(Λ1(γ2,G2)Θ)q)W2+((Λ1(γ2,G2)Θ)q)W2))).
    $
    $ =(Λ(Θ(q2k=1(1+Λ1(αk,Ek)Θ)Wk2k=1(1Λ1(αk,Ek)Θ)Wk2k=1(1+Λ1(αk,Ek)Θ)Wk+2k=1(1Λ1(αk,Ek)Θ)Wk)),Λ(Θ(q22k=1(Λ1(βk,Fk)Θ)Wkq2k=1(2(Λ1(βk,Fk)Θ)q)Wk+2k=1((Λ1(βk,Fk)Θ)q)Wk)),Λ(Θ(q22k=1(Λ1(γk,Gk)Θ)Wkq2k=1(2(Λ1(γk,Gk)Θ)q)Wk+2k=1((Λ1(γk,Gk)Θ)q)Wk))).
    $

    Equation 3.2 holds for $ n = 2. $ Assume that Eq (3.2) holds for $ n = m. $

    $ 2TLqRPFEWA(M1,M2,,Mm)=
    $
    $ (Λ(Θ(qmk=1(1+Λ1(αk,Ek)Θ)Wkmk=1(1Λ1(αk,Ek)Θ)Wkmk=1(1+Λ1(αk,Ek)Θ)Wk+mk=1(1Λ1(αk,Ek)Θ)Wk)),Λ(Θ(q2mk=1(Λ1(βk,Fk)Θ)Wkqmk=1(2(Λ1(βk,Fk)Θ)q)Wk+mk=1((Λ1(βk,Fk)Θ)q)Wk)),Λ(Θ(q2mk=1(Λ1(γk,Gk)Θ)Wkqmk=1(2(Λ1(γk,Gk)Θ)q)Wk+mk=1((Λ1(γk,Gk)Θ)q)Wk))).
    $

    For $ n = m+1 $ by the induction hypothesis, we have

    $ 2TLqRPFEWA(M1,M2,,Mm,Mm+1)=2TLqRPFEWA(M1,M2,,Mm)Wm+1Mm+1
    $
    $ =(Λ(Θ(qmk=1(1+Λ1(αk,Ek)Θ)Wkmk=1(1Λ1(αk,Ek)Θ)Wkmk=1(1+Λ1(αk,Ek)Θ)Wk+mk=1(1Λ1(αk,Ek)Θ)Wk)),Λ(Θ(q2mk=1(Λ1(βk,Fk)Θ)Wkqmk=1(2(Λ1(βk,Fk)Θ)q)Wk+mk=1((Λ1(βk,Fk)Θ)q)Wk)),Λ(Θ(q2mk=1(Λ1(γk,Gk)Θ)Wkqmk=1(2(Λ1(γk,Gk)Θ)q)Wk+mk=1((Λ1(γk,Gk)Θ)q)Wk)))
    $
    $ (Λ(Θ(q(1+Λ1(αm+1,Em+1)Θ)Wm+1(1Λ1(αm+1,Em+1)Θ)Wm+1(1+Λ1(αm+1,Em+1)Θ)Wm+1+(1Λ1(αm+1,Em+1)Θ)Wm+1)),Λ(Θ(q2(Λ1(βm+1,Fm+1)Θ)Wm+1q(2(Λ1(βm+1,Fm+1)Θ)q)Wm+1+((Λ1(βm+1,Fm+1)Θ)q)Wm+1)),Λ(Θ(q2(Λ1(γm+1,Gm+1)Θ)Wm+1q(2(Λ1(γm+1,Gm+1)Θ)q)Wm+1+((Λ1(γm+1,Gm+1)Θ)q)Wm+1))).
    $
    $ =(Λ(Θ(qm+1k=1(1+Λ1(αk,Ek)Θ)Wkm+1k=1(1Λ1(αk,Ek)Θ)Wkm+1k=1(1+Λ1(αk,Ek)Θ)Wk+m+1k=1(1Λ1(αk,Ek)Θ)Wk)),Λ(Θ(q2m+1k=1(Λ1(βk,Fk)Θ)Wkqm+1k=1(2(Λ1(βk,Fk)Θ)q)Wk+m+1k=1((Λ1(βk,Fk)Θ)q)Wk)),Λ(Θ(q2m+1k=1(Λ1(γk,Gk)Θ)Wkqm+1k=1(2(Λ1(γk,Gk)Θ)q)Wk+m+1k=1((Λ1(γk,Gk)Θ)q)Wk))).
    $

    Hence, Eq (3.2) holds for all positive integers $ n\geq 1. $

    Proposition 3.1. Consider two collections of $ 2 $TL$ q $-RPFNs $ M_{a_{k}} = \big((\wp_{\alpha_{a_{k}}}, E_{a_{k}}), (\wp_{\beta_{a_{k}}}, F_{a_{k}}), (\wp_{\gamma_{a_{k}}}, G_{a_{k}})\big) $ $ (k = 1, 2, \ldots, n) $ and $ M_{b_{k}} = \big((\wp_{\alpha_{b_{k}}}, E_{b_{k}}), (\wp_{\beta_{b_{k}}}, F_{b_{k}}), (\wp_{\gamma_{b_{k}}}, G_{b_{k}})\big) $ $ (k = 1, 2, \ldots, n). $ Then the $ 2 $TL$ q $-RPFEWA operator has the following properties:

    1) (Idempotency) If $ M_{k} = \big((\wp_{\alpha_{k}}, E_{k}), (\wp_{\beta_{k}}, F_{k}), (\wp_{\gamma_{k}}, G_{k})\big) = M $ for all $ (k = 1, 2, \ldots, n), $ then

    $ 2TLqRPFEWA(M1,M2,,Mn)=M.
    $
    (3.3)

    Proof. Suppose $ M_{k} = \big((\wp_{\alpha_{k}}, E_{k}), (\wp_{\beta_{k}}, F_{k}), (\wp_{\gamma_{k}}, G_{k})\big) $ is a collection of $ 2 $TL$ q $-RPFNs such that $ M_{k} = M $ for all $ (k = 1, 2, \ldots, n), $ $ \mathcal{W}_{k}\in[0, 1] $ and $ \mathop {\mathop \sum \limits^n }\limits_{k = 1} \mathcal{W}_{k} = 1. $ From Eq 3.2, we get

    $ 2TLqRPFEWA(M1,M2,,Mn)=
    $
    $ (Λ(Θ(qnk=1(1+Λ1(αk,Ek)Θ)Wknk=1(1Λ1(αk,Ek)Θ)Wknk=1(1+Λ1(αk,Ek)Θ)Wk+nk=1(1Λ1(αk,Ek)Θ)Wk)),Λ(Θ(q2nk=1(Λ1(βk,Fk)Θ)Wkqnk=1(2(Λ1(βk,Fk)Θ)q)Wk+nk=1((Λ1(βk,Fk)Θ)q)Wk)),Λ(Θ(q2nk=1(Λ1(γk,Gk)Θ)Wkqnk=1(2(Λ1(γk,Gk)Θ)q)Wk+nk=1((Λ1(γk,Gk)Θ)q)Wk)))
    $
    $ =(Λ(Θ(q(1+Λ1(α,E)Θ)(1Λ1(α,E)Θ)(1+Λ1(α,E)Θ)+(1Λ1(α,E)Θ))),Λ(Θ(q2(Λ1(β,F)Θ)q(2(Λ1(β,F)Θ)q)+((Λ1(β,F)Θ)q))),Λ(Θ(q2(Λ1(γ,G)Θ)q(2(Λ1(γ,G)Θ)q)+((Λ1(γ,Gk)Θ)q))))
    $
    $ =(Λ(Θ(Λ1(α,E)Θ)),Λ(Θ(Λ1(β,F)Θ)),Λ(Θ(Λ1(γ,G)Θ)))=((α,E),(β,F),(γ,G))=M.
    $

    2) (Monotonicity) If $ M_{a_{k}}\leq M_{b_{k}}, $ for all $ (k = 1, 2, \ldots, n), $ then

    $ 2TLqRPFEWA(Ma1,Ma2,,Man)2TLqRPFEWA(Mb1,Mb2,,Mbn).
    $
    (3.4)

    3) (Boundedness) Consider a collection of 2TL$ q $-RPFNs:

    $ Mak=((αak,Eak),(βak,Fak),(γak,Gak))(k=1,2,,n)
    $

    with

    $ M+ak=(maxak(αak,Eak),minak(βak,Fak),minak(γak,Gak))
    $

    and

    $ Mak=(minak(αak,Eak),maxak(βak,Fak),maxak(γak,Gak)),
    $

    then

    $ M2TLqRPFEWA(M1,M2,,Mn)M+.
    $
    (3.5)

    Now we extend the Einstein order weighted average operator to $ 2 $TL$ q $-RPFEOWA operator. Further, we state the elementary properties of $ 2 $TL$ q $-RPFEOWA operator.

    Definition 3.3. The $ 2 $TL$ q $-RPFEOWA operator is a mapping $ H^{n}\to H $ such that: for each collection of $ 2 $TL$ q $-RPFNs $ M_{k} = \big((\wp_{\alpha_{k}}, E_{k}), (\wp_{\beta_{k}}, F_{k}), (\wp_{\gamma_{k}}, G_{k})\big) $ $ (k = 1, 2, \ldots, n), $

    $ 2TLqRPFEOWA(M1,M2,,Mn)=nk=1WkMμ(k),
    $
    (3.6)

    where $ \mu(k) $ is such that $ M_{\mu(k-1)}\geq M_{\mu(k)} $ for all k, $ \mathcal{W} = (\mathcal{W}_{1}, \mathcal{W}_{2}, \ldots, \mathcal{W}_{n})^{T} $ is the weight vector of $ M_{k}(k = 1, 2, \ldots, n) $ with $ \mathcal{W}_{k}\in[0, 1] $ and $ \mathop {\mathop \sum \limits^n }\limits_{k = 1} \mathcal{W}_{k} = 1. $

    Theorem 3.2. Consider a collection of $ 2 $TL$ q $-RPFNs $ M_{k} = \big((\wp_{\alpha_{k}}, E_{k}), (\wp_{\beta_{k}}, F_{k}), (\wp_{\gamma_{k}}, G_{k})\big) $ $ (k = 1, 2, \ldots, n) $ having weight vector $ \mathcal{W} = (\mathcal{W}_{1}, \mathcal{W}_{2}, \ldots, \mathcal{W}_{n})^{T} $ with $ \mathcal{W}_{k}\in[0, 1] $ and $ \mathop {\mathop \sum \limits^n }\limits_{k = 1} \mathcal{W}_{k} = 1. $ Then

    $ 2TLqRPFEOWA(M1,M2,,Mn)=
    $
    $ (Λ(Θ(qnk=1(1+Λ1(αμ(k),Eμ(k))Θ)Wknk=1(1Λ1(αμ(k),Eμ(k))Θ)Wknk=1(1+Λ1(αμ(k),Eμ(k))Θ)Wk+nk=1(1Λ1(αμ(k),Eμ(k))Θ)Wk)),Λ(Θ(q2nk=1(Λ1(βμ(k),Fμ(k))Θ)Wkqnk=1(2(Λ1(βμ(k),Fμ(k))Θ)q)Wk+nk=1((Λ1(βμ(k),Fμ(k))Θ)q)Wk)),Λ(Θ(q2nk=1(Λ1(γμ(k),Gμ(k))Θ)Wkqnk=1(2(Λ1(γμ(k),Gμ(k))Θ)q)Wk+nk=1((Λ1(γμ(k),Gμ(k))Θ)q)Wk))).
    $
    (3.7)

    Proof. This proof is similar to the proof of Theorem 3.1.

    Proposition 3.2. Consider two collections of $ 2 $TL$ q $-RPFNs $ M_{a_{k}} = \big((\wp_{\alpha_{a_{k}}}, E_{a_{k}}), (\wp_{\beta_{a_{k}}}, F_{a_{k}}), (\wp_{\gamma_{a_{k}}}, G_{a_{k}})\big) $ $ (k = 1, 2, \ldots, n) $ and $ M_{b_{k}} = \big((\wp_{\alpha_{b_{k}}}, E_{b_{k}}), (\wp_{\beta_{b_{k}}}, F_{b_{k}}), (\wp_{\gamma_{b_{k}}}, G_{b_{k}})\big) $ $ (k = 1, 2, \ldots, n). $ Then the $ 2 $TL$ q $-RPFEOWA operator has the following properties:

    1) (Idempotency) If $ M_{k} = \big((\wp_{\alpha_{k}}, E_{k}), (\wp_{\beta_{k}}, F_{k}), (\wp_{\gamma_{k}}, G_{k})\big) = M $ for all $ (k = 1, 2, \ldots, n), $ then

    $ 2TLqRPFEOWA(M1,M2,,Mn)=M.
    $
    (3.8)

    2) (Monotonicity) If $ M_{a_{k}}\leq M_{b_{k}}, $ for all $ (k = 1, 2, \ldots, n), $ then

    $ 2TLqRPFEOWA(Ma1,Ma2,,Man)2TLqRPFEOWA(Mb1,Mb2,,Mbn).
    $
    (3.9)

    3) (Boundedness) Consider a collection of $ 2 $TL$ q $-RPFNs:

    $ Mak=((αak,Eak),(βak,Fak),(γak,Gak))(k=1,2,,n)
    $

    with

    $ M+ak=(maxak(αak,Eak),minak(βak,Fak),minak(γak,Gak))
    $

    and

    $ Mak=(minak(αak,Eak),maxak(βak,Fak),maxak(γak,Gak)),
    $

    then

    $ M2TLqRPFEOWA(M1,M2,,Mn)M+.
    $
    (3.10)

    This section will develop the CODAS approach for the $ 2 $TL$ q $-RPF environment in order to address MCGDM challenges. Our objective is to find the best alternative by employing the terminology of CODAS method in a $ 2 $TL$ q $-RPF background. The extended Einstein aggregation operators are utilized to fuse the judgements. Furthermore, the entropy measure is used to generate the weights for the criterion. The $ 2 $TL$ q $-RPF-CODAS technique is capable of addressing the challenging MCGDM problems.

    The selection of decision data, choice of practicable actions, performance assessments, and environment are the most frequent deciding elements. Each MCGDM challenge includes a panel of experts, a collection of realistic options, and a set of criteria. To choose the best option from a list of $ m $ possible options or alternatives $ \mathbb{A} = \{ \mathbb{A}_1, \mathbb{A}_2, \mathbb{A}_3, \ldots, \mathbb{A}_m\} $ that are to be reviewed based on $ n $ criteria $ \mathbb{C} = \{ \mathbb{C}_{1}, \mathbb{C}_{2}, \mathbb{C}_{3}, \ldots, \mathbb{C}_{n}\} $, a group of $ l $ decision-making professionals $ \mathbf{E} = \{\mathbf{E}_{1}, \mathbf{E}_{2}, \mathbf{E}_{3}, \ldots, \mathbf{E}_{l}\} $, for the purpose of judging the various options are invited. The steps of the proposed method are also shown in Figure 1. The recommended strategy's steps fall under the following steps:

    Figure 1.  Steps of the proposed methodology.

    Step 1: Formation of linguistic terms. The right linguistic expressions must be used to explain how alternate possibilities behave during the DM process. Decision experts frequently employ linguistic terms to evaluate the options or alternatives presented in MCGDM issues. The experts in this methodology first identify the linguistic expressions and their associated $ 2 $TL$ q $-RPFNs for the MCGDM procedure. The seven point linguistic scale used in this study is presented in Table 2.

    Table 2.  LTs and their corresponding $ 2 $TL$ q $-RPFNs.
    $ 2 $TL$ q $-RPFNs LTs
    $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $ Very poor (VP)
    $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ Poor (P)
    $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ Medium poor (MP)
    $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ Medium (M)
    $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ Medium good (MG)
    $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ Good (G)
    $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $ Very good (VG)

     | Show Table
    DownLoad: CSV

    Step 2: Construction of individual matrices by the experts. During this stage, each expert creates an assessment matrix and delivers evaluation data in the form of $ 2 $TL$ q $-RPFNs. Let $ \mathbb{J} = (\mathbb{A}_{ij}^{k})_{m\times n} $ be the evaluation matrices presented by the experts'. The judgement matrix of the $ k $th expert can be represented as follows:

    $\mathbb{J} = (\mathbb{A}_{ij}^{k})_{m\times n}\left[ ak11ak12ak1nak21ak22ak2n............akm1akm2akmn
    \right].$

    Each term of the evaluation matrix $ \mathbb{J} = (\mathbb{A}_{ij}^{k})_{m\times n} $ $ (k = 1, 2, \ldots, l) $ represents a $ 2 $TL$ q $-RPFN as $ a^{k}_{ij} = ((\wp^{k}_{\alpha_{ij}}, E^{k}_{ij}), (\wp^{k}_{\beta_{ij}}, F^{k}_{ij}), (\wp^{k}_{\gamma_{ij}}, G^{k}_{ij})), $ where $ (\wp^{k}_{\alpha_{ij}}, E^{k}_{ij}), $ $ (\wp^{k}_{\beta_{ij}}, F^{k}_{ij}) $ and $ (\wp^{k}_{\gamma_{ij}}, G^{k}_{ij}) $ are the degrees of membership, abstinence and non-membership, respectively.

    Step 3: Normalization of individual matrices. Each individual matrix is normalized on the basis of following rule:

    $ aij={((αij,Eij),(βij,Fij),(γij,Gij)),forbenefittypecriteria;((γij,Gij),(βij,Fij),(αij,Eij)),forcosttypecriteria.
    $
    (4.1)

    Step 4: Computation of combined aggregated matrix. To create an aggregated evaluation matrix $ \mathbb{G} = (\mathbb{A}_{ij})_{m\times n} $, the individual evaluation matrices of the experts must be added together. The $ 2 $TL$ q $-RPFEWA operator, which is provided in (4.2), is utilized for this purpose.

    $ cij=2TLqRPFEWA(a1ij,a2ij,,alij)=
    $
    $ (Λ(Θ(qlk=1(1+Λ1(αkij,Ekij)Θ)lk=1(1Λ1(αkij,Ekij)Θ)lk=1(1+Λ1(αkij,Ekij)Θ)+lk=1(1Λ1(αkij,Ekij)Θ))),Λ(Θ(q2lk=1(Λ1(βkij,Fkij)Θ)qlk=1(2(Λ1(βkij,Fkij)Θ)q)+lk=1((Λ1(βkij,Fkij)Θ)q))),Λ(Θ(q2lk=1(Λ1(γkij,Gkij)Θ)qlk=1(2(Λ1(γkij,Gkij)Θ)q)+lk=1((Λ1(γkij,Gkij)Θ)q)))).
    $
    (4.2)

    Step 5: Calculation of criteria weights. By using the entropy measure, the criterion weights are determined. The following are the key steps:

    Step $ 1* $: Find scores of aggregated matrix. The combined aggregated matrix $ \mathbb{G} $ scores that were obtained in Step 4 should be calculated. Equation 4.3 provides the scoring formula.

    $ S(aij)=Λ((Θ+(Λ1(α,E)Θ)q(Λ1(β,F)Θ)q(Λ1(γ,G)Θ)q)).
    $
    (4.3)

    Step $ 2* $: Calculate projection values. In this step, the projection values $ \mathcal{P}_{ij} $ of each criteria are computed based on Eq 4.4:

    $ Pij=S(aij)mi=1S(aij).
    $
    (4.4)

    Step $ 3* $: Compute entropy values. The projection values are used in the following way to calculate the entropy value $ \mathcal{E}_{j} $ for each attribute:

    $ Ej=1log(m)mi=1Pijlog(Pij).
    $
    (4.5)

    Step $ 4* $: Find divergence values. Now, using the entropy values, the following formula is used to get the degree of divergence $ \mathcal{d}_{j} $ for each attribute as the inherent contrast intensity of the attribute:

    $ dj=1Ej.
    $
    (4.6)

    Step $ 5* $: Determine weights. The criteria weights are computed based on Eq 4.7:

    $ Wj=djnj=1dj,
    $
    (4.7)

    where $ \mathop {\mathop \sum \limits^n }\limits_{j = 1} \mathcal{W}_{j} = 1. $

    Step 6: Computation of weighted aggregated matrix. Weighted aggregated matrix is established by using the criteria weights $ \mathcal{W}_{j} $ and the matrix $ \mathbb{G} $ by applying Eq 4.8.

    $ bij=WjG=(Λ(Θ(1(1(Λ1(α,E)Θ)q)Wj)1q),Λ(Θ(Λ1(β,F)Θ)Wj),Λ(Θ(Λ1(γ,G)Θ)Wj)).
    $
    (4.8)

    Step 7: Calculation of scores and identification of NIS. The scores of weighted aggregated matrix are calculated and the values of negative ideal solution (NIS) corresponding to each criteria are determined based on score values. The NIS is identified on the following fact:

    $ NIS=[NISj]1×n;
    $
    (4.9)
    $ NISj=miniS(bij).
    $
    (4.10)

    Step 8: Determination of Euclidean distance and Hamming distance. In this step, the Hamming distances $ \mathcal{HD}_{i} $ and Euclidean distances $ \mathcal{ED}_{i} $ between the values of the weighted aggregated matrix and the NIS are computed based on the following Equations:

    $ HDi=nj=1HD(bij,NISj),
    $
    (4.11)
    $ EDi=nj=1ED(bij,NISj).
    $
    (4.12)

    Let $ A_{1} = ((\wp_{\alpha_{1}}, E_{1}), (\wp_{\beta_{1}}, F_{1}), (\wp_{\gamma_{1}}, G_{1})) $ and $ A_{2} = ((\wp_{\alpha_{2}}, E_{2}), (\wp_{\beta_{2}}, F_{2}), (\wp_{\gamma_{2}}, G_{2})) $ be two $ 2 $TL$ q $-RPFNs. Then the values of $ \mathcal{HD} $ and $ \mathcal{ED} $ between two $ 2 $TL$ q $-RPFNs $ A_{1} $ and $ A_{2} $ can be computed as:

    $ HD(A1,A2)=Λ(12Θ(|Λ1(α1,E1)Λ1(α2,E2)|+|Λ1(β1,F1)Λ1(β2,F2)|+|Λ1(sγ1,G1)Λ1(γ2,G2)|)),
    $
    (4.13)
    $ ED(A1,A2)=Λ(Θ2(|(Λ1(α1,E1)Λ1(α2,E2)Θ)q|+|(Λ1(β1,F1)Λ1(β2,F2)Θ)q|+|(Λ1(γ1,G1)Λ1(γ2,G2)Θ)q|)).
    $
    (4.14)

    Step 9: Finding of $ \mathcal{RA} $ matrix. In this step, the relative assessment $ \mathcal{RA} $ matrix is constructed:

    $ RA=[cik]m×n;
    $
    (4.15)
    $ cik=(EDiEDk)+(g(EDiEDk)×(HDiHDk));k=1,2,3,,m.
    $
    (4.16)

    Here $ g $ represents a function which could be defined as:

    $ g(ξ)={1,|ξ|τ;0,|ξ|<τ,
    $
    (4.17)

    where $ \tau\in[0.01, 0.05] $ which is given by the experts. In current study, $ \tau = 0.02. $

    Step 10: Final rank of alternatives. The average solution is computed based on Eq 4.18:

    $ ASi=mk=1cik.
    $
    (4.18)

    Finally, the alternatives are arranged based on the $ AS_{i} $ values. The alternative having highest $ AS_{i} $ value will be regarded the best one.

    This section presents a numerical example that is related to the prioritization of autonomous vehicles in RTTM. In the first subsection, we provided the problem description along with the definitions of alternatives and criteria. In the second subsection, we presented the necessary numerical steps along with the calculations. At the end, we discussed the impact of parameter $ q $ on ranking results.

    Although improving traffic conditions and reducing congestion through RTTM is a very effective method, it has several drawbacks, such as the inability to place sensors at all strategically important locations for data collection. The tendency is to look for methods to either employ CAVs to control traffic in real-time or combine them with RTTM systems as connectivity technologies and CAVs advance. For real-time management systems, this study defines three basic options. The experts use the CODAS approach to prioritization of the system's economics, public support, energy consumption, traffic safety and order, and traffic management elements. RTTM techniques can reduce congestion, but they can also lengthen travel times and cause delays in traffic. The use of traffic management systems is crucial for ensuring safer traffic flow, in addition to improving traffic efficiency and drivers' quality of life. Numerous real-time traffic control techniques have been used for years with great success in the real world. However, because studies pertaining to this integration reveal incredibly positive and effective outcomes, the usage of CAVs and/or AVs in RTTM approaches has grown to be an attractive issue for researchers. The option of deploying CAVs and/or AVs just for in-the-moment traffic management exists as well. For the prioritizing of CAVs in a RTTM system, we took into consideration an issue that has been adopted from [30]. The ambiguous information is handled by the $ 2 $TL$ q $-RPFNs. A panel of four experts $ \{E_{1}, E_{2}, E_{3}, E_{4}\} $ evaluates the three alternatives $ \{ \mathbb{A}_{1}, \mathbb{A}_{2}, \mathbb{A}_{3}\} $ on the basis of five major criteria $ \{EA, PF, EC, TS, TM\} $ each having different sub criteria. Suppose, $ S = \{\wp_{0}, \wp_{1}, \wp_{2}, \wp_{3}, \wp_{4}, \wp_{5}, \wp_{6}, \wp_{7}, \wp_{8}\} $ be the set of nine linguistic terms. At first, the experts' panel form the linguistic terms (see Table 2) to judge the alternatives in the form of $ 2 $TL$ q $-RPFNs. After that, the experts' are requested to make evaluation to judge the most optimal alternative in the form of $ 2 $TL$ q $-RPFNs. In this paper, the initial data presented in Table 2 and Table 3 has been taken from the paper [30], i.e, we have considered the linguistic terms and assigned them their corresponding $ 2 $TL$ q $-RPFNs. The considered alternatives are briefly described as follows:

    Table 3.  Assessments of experts in the form of $ 2 $TL$ q $-RPFNs.
    Criteria $ \mathbb{A}_{1} $ $ \mathbb{A}_{2} $ $ \mathbb{A}_{3} $
    $ \mathbf{E}_{1} $ $ Im $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $
    $ Pe $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $
    $ Tr $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $
    $ Em $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Te $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Qu $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Fu $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Ob $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Un $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Fa $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $
    $ Tc $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $
    $ Co $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Ne $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Cm $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $
    $ Ta $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Ch $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ \mathbf{E}_{2} $ $ Im $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $
    $ Pe $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $
    $ Tr $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $
    $ Em $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Te $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Qu $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Fu $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Ob $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Un $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Fa $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $
    $ Tc $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $
    $ Co $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Ne $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Cm $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $
    $ Ta $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Ch $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ \mathbf{E}_{3} $ $ Im $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $
    $ Pe $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $
    $ Tr $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Em $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Te $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Qu $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Fu $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Ob $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Un $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Fa $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $
    $ Tc $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{5}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Co $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Ne $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Cm $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $
    $ Ta $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Ch $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{3}, 0)) $
    $ \mathbf{E}_{4} $ $ Im $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $
    $ Pe $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $
    $ Tr $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $
    $ Em $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Te $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Qu $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Fu $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Ob $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Un $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Fa $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $
    $ Tc $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $
    $ Co $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Ne $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Cm $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $
    $ Ta $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Ch $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $

     | Show Table
    DownLoad: CSV

    $ \mathbb{A}_{1}: $ RTTM. Real-time traffic management's main objective is to enhance traffic flow while reducing congestion and increasing safety. However, there are restrictions, such as driver compliance rates with the system's regulations and the inability to collect data for effective management from crucial areas. But with connecting technologies, this procedure may be carried out more precisely and successfully. A couple of the often employed traffic control strategies include ramp metering and variable speed limits (VSL).

    $ \mathbb{A}_{2}: $ RTTM integrated with connected autonomous vehicles. The performance of real-time traffic control systems can be considerably enhanced by the addition of networked autonomous vehicles. Findings show that connection and collaboration will be essential elements of future transportation systems, in addition to automation, which can remove driver mistakes. The benefits of RTTM systems might greatly increase, leading to significantly improved traffic conditions if linked autonomous cars outperform human-driven vehicles in terms of performance and adherence to the laws of the road. Examples of conventional RTTM techniques include variable speed limits (VSL) and lane control signals (LCS). These techniques have been shown to work; however, adding CAVs to existing traffic management techniques or developing a brand-new technique that just employs CAVs may be more efficient.

    $ \mathbb{A}_{3}: $ RTTM using connected autonomous vehicles. According to research published in the literature, linked autonomous vehicles can act as traffic enforcers by using V2I connections to connect to traffic control centers and receive instructions and information ([29]). RTTM restrictions, such as not being able to deploy sensors everywhere, can also be removed by using linked autonomous cars.

    A model is constructed by asking experts questions and utilizing their answers as inputs to determine the importance of various factors such as the economy, public opinion, energy consumption, traffic safety, order, and traffic management. Each criteria, their corresponding sub-criterion along with their types are shown in Figure 2. In Figure 2, C stands for cost-type criteria, and B stands for benefit-type criteria. The definition of each criteria is given as follows:

    Figure 2.  Criteria and their corresponding sub criteria.

    1) $ EA: $ Economic aspect. This component primarily addresses the RTTM alternative's financial characteristics.

    $ Im: $ Implementation. A specific budget must be set out for the implementation of RTTM. As a result, the method becomes more appealing by lowering the necessary budget amount.

    $ Pe: $ Personnel. The operation and maintenance of a few RTTM techniques need the employment of human resources. Personnel must assess the traffic situation in order to show the relevant signs on electronic traffic boards when using RTTM techniques, such as Lane Control Signals (LCS). This approach is more appealing due to the cost reduction.

    $ Tr: $ Traffic equipment. This feature shows the overall cost of the machinery needed to put the management system in place, such as the sensors and traffic lights. That method will become more appealing due to lower equipment prices.

    2) $ PF: $ Public favor. It focuses on how the RTTM option is perceived and supported by the general population.

    $ Em: $ Employment. Qualified professionals and human resources are needed for creating, running, and maintaining RTTM systems. That system gains allure as more work possibilities are produced by it.

    $ Te: $ Technological improvement. Technology advancements can lead to a better optimal system with fewer operating and maintenance costs and more advantages. Therefore, using technology-based approaches for traffic management will make that process more appealing than constructing new facilities or acquiring extra equipment.

    $ Qu: $ Quality of life. The RTTM system will help the city's residents enjoy a better quality of life as traffic conditions improve.

    3) $ EC: $ Energy consumption aspect. This component focuses on the energy savings that are offered for the RTTM solution under consideration.

    $ Fu: $ Fuel efficiency. Road traffic may be made more uniform with RTTM, which enables cars to travel at steady speeds and with high levels of fuel economy. When real-time management offers greater levels of fuel economy, it becomes more appealing.

    $ TS: $ Traffic safety and order aspect. This element primarily addresses the advantages of RTTM and the significance of abiding by the system's regulations in terms of traffic safety.

    $ Ob: $ Obedience of the vehicles. Traffic conditions and safety get better as a result of drivers following the management's guidelines more frequently. The system's regulations are perfectly followed by autonomous cars. This has a significant benefit for traffic safety since it prevents drivers from making the mistake of breaking the regulations.

    $ Un: $ Uniform traffic speeds. Significant speed variations lead to unstable traffic situations and more overtaking movements. Accident risk declines when traffic speeds are more consistently maintained. Autonomous cars are anticipated to have significantly superior driving skills than human drivers and to adhere to prescribed speed restrictions much more successfully.

    $ Fa: $ Fatal accidents. In the United States (US), one of the leading causes of mortality is traffic accidents. RTTM technologies can improve traffic safety while providing a major advantage in areas like health.

    4) $ TM: $ Traffic management aspect. The advantages of traffic management, such as decreased congestion and enhanced traffic stability and system features, are the main focus of this component.

    $ Tc: $ Traffic congestion. All traffic management strategies aim to increase traffic while preventing the development of additional road infrastructure. The public will profit from the implementation of these systems.

    $ Co: $ Compliance rate to the methods. The potential benefits of traffic management are anticipated to rise as more drivers adhere to the regulations set out by the traffic management systems.

    $ Ne: $ Network-wide control. The efficacy of the traffic management system is anticipated to improve if additional data from the whole road network can be collected.

    $ Cm: $ Complexity. Effective calibration is necessary for some traffic control systems, such as ramp metering, to work satisfactorily. The level of motorist adherence is a key factor in how well other traffic management methods operate. The complexity of the traffic management systems is increased by these elements, and as the complexity levels rise, the system loses appeal. The strict adherence to the law that autonomous cars are projected to exhibit will also reduce the complexity of traffic control systems.

    $ Ta: $ Taking actions against incidents pro actively. By establishing traffic management systems, it is crucial to lower the chance of an incident. Proactive systems allow for the prediction of hazardous traffic flow conditions and the implementation of safety measures. CAVs may be employed as dynamic sensors in the future. This constant data flow from the deployment of these cars enables event detection algorithms to anticipate traffic accidents and congestion before they happen.

    $ Ch: $ Changing drivers habits. The elimination of driver mistakes via strict adherence to traffic laws and the decrease in traffic accidents brought on by these errors are two of the anticipated advantages of autonomous cars. Drivers are also obliged to adhere to the laws in order to adapt the changing traffic circumstances brought about by the increased market penetration of autonomous cars in traffic.

    Assume that $ \Theta = 8 $ and $ q = 2 $. The stages involved in carrying out the suggested approach are listed below:

    Step 1. Table 2 lists the seven-point linguistic term scale together with the $ 2 $TL$ q $-RPFNs that the experts assigned to each term.

    Step 2. The four experts' evaluations of the alternatives corresponding to criteria they supplied in the form of $ 2 $TL$ q $-RPFNs are collected in Table 3.

    Step 3. Table 4 contains the alternatives' normalized assessment values based on the 4.1.

    Table 4.  Normalized assessments of experts in the form of $ 2 $TL$ q $-RPFNs.
    Criteria $ \mathbb{A}_{1} $ $ \mathbb{A}_{2} $ $ \mathbb{A}_{3} $
    $ \mathbf{E}_{1} $ $ Im $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $
    $ Pe $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $
    $ Tr $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Em $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Te $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Qu $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Fu $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Ob $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Un $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Fa $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Tc $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Co $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Ne $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Cm $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $
    $ Ta $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Ch $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ \mathbf{E}_{2} $ $ Im $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $
    $ Pe $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Tr $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Em $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Te $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Qu $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Fu $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Ob $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Un $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Fa $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Tc $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Co $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Ne $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Cm $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $
    $ Ta $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Ch $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ \mathbf{E}_{3} $ $ Im $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $
    $ Pe $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Tr $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $
    $ Em $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Te $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Qu $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Fu $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Ob $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Un $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Fa $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Tc $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{5}, 0)) $
    $ Co $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Ne $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Cm $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $
    $ Ta $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Ch $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ \mathbf{E}_{4} $ $ Im $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Pe $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $
    $ Tr $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $
    $ Em $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Te $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Qu $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Fu $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Ob $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $
    $ Un $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Fa $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $
    $ Tc $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $
    $ Co $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Ne $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $ $ ((\wp_{4}, 0), (\wp_{1}, 0), (\wp_{4}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Cm $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{2}, 0), (\wp_{3}, 0), (\wp_{6}, 0)) $
    $ Ta $ $ ((\wp_{3}, 0), (\wp_{2}, 0), (\wp_{5}, 0)) $ $ ((\wp_{6}, 0), (\wp_{3}, 0), (\wp_{2}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $
    $ Ch $ $ ((\wp_{1}, 0), (\wp_{4}, 0), (\wp_{7}, 0)) $ $ ((\wp_{5}, 0), (\wp_{2}, 0), (\wp_{3}, 0)) $ $ ((\wp_{7}, 0), (\wp_{4}, 0), (\wp_{1}, 0)) $

     | Show Table
    DownLoad: CSV

    Step 4. To create an aggregated matrix, the individual ratings need to be integrated. Equation 4.2 is used to do this. The values of the options that correspond to each criterion are shown in Table 5 as an aggregate.

    Table 5.  Aggregated decision matrix in the form of $ 2 $TL$ q $-RPFNs.
    Criteria $ \mathbb{A}_{1} $ $ \mathbb{A}_{2} $ $ \mathbb{A}_{3} $
    $ Im $ $ ((\wp_{8}, -0.036400), (\wp_{0}, 0.058085), (\wp_{0}, 0.008906)) $ $ ((\wp_{8}, -0.283031), (\wp_{0}, 0.006047), (\wp_{0}, 0.070656)) $ $ ((\wp_{8}, -0.097574), (\wp_{0}, 0.037935), (\wp_{0}, 0.024430)) $
    $ Pe $ $ ((\wp_{8}, -0.076589), (\wp_{0}, 0.042263), (\wp_{0}, 0.018026)) $ $ ((\wp_{7}, 0.275450), (\wp_{0}, 0.001420), (\wp_{0}, 0.167980)) $ $ ((\wp_{8}, -0.278678), (\wp_{0}, 0.013637), (\wp_{0}, 0.067958)) $
    $ Tr $ $ ((\wp_{8}, -0.056894), (\wp_{0}, 0.037935), (\wp_{0}, 0.013637)) $ $ ((\wp_{8}, -0.345896), (\wp_{0}, 0.004400), (\wp_{0}, 0.079829)) $ $ ((\wp_{8}, -0.214266), (\wp_{0}, 0.079829), (\wp_{0}, 0.069960)) $
    $ Em $ $ ((\wp_{7}, -0.499937), (\wp_{0}, 0.013637), (\wp_{0}, 0.459790)) $ $ ((\wp_{8}, -0.345896), (\wp_{0}, 0.004400), (\wp_{0}, 0.079829)) $ $ ((\wp_{8}, -0.005238), (\wp_{0}, 0.167980), (\wp_{0}, 0.001420)) $
    $ Te $ $ ((\wp_{6}, 0.150333), (\wp_{0}, 0.027602), (\wp_{1}, -0.401024)) $ $ ((\wp_{8}, -0.077800), (\wp_{0}, 0.018742), (\wp_{0}, 0.018742)) $ $ ((\wp_{8}, -0.002484), (\wp_{0}, 0.230844), (\wp_{0}, 0.000701)) $
    $ Qu $ $ ((\wp_{7}, -0.250790), (\wp_{0}, 0.008906), (\wp_{0}, 0.362234)) $ $ ((\wp_{8}, -0.163239), (\wp_{0}, 0.013637), (\wp_{0}, 0.037935)) $ $ ((\wp_{8}, -0.005238), (\wp_{0}, 0.167980), (\wp_{0}, 0.001420)) $
    $ Fu $ $ ((\wp_{6}, -0.001802), (\wp_{0}, 0.006737), (\wp_{0}, 0.631457)) $ $ ((\wp_{7}, 0.464836), (\wp_{0}, 0.002874), (\wp_{0}, 0.122230)) $ $ ((\wp_{8}, -0.011044), (\wp_{0}, 0.122230), (\wp_{0}, 0.002874)) $
    $ Ob $ $ ((\wp_{6}, -0.132958), (\wp_{0}, 0.008906), (\wp_{1}, 0.351810)) $ $ ((\wp_{8}, -0.077800), (\wp_{0}, 0.018742), (\wp_{0}, 0.018742)) $ $ ((\wp_{8}, -0.011044), (\wp_{0}, 0.122230), (\wp_{0}, 0.002874)) $
    $ Un $ $ ((\wp_{6}, -0.322617), (\wp_{0}, 0.012240), (\wp_{0}, 0.815291)) $ $ ((\wp_{8}, -0.163239), (\wp_{0}, 0.013637), (\wp_{0}, 0.037935)) $ $ ((\wp_{8}, -0.011044), (\wp_{0}, 0.122230), (\wp_{0}, 0.002874)) $
    $ Fa $ $ ((\wp_{8}, -0.023647), (\wp_{0}, 0.039441), (\wp_{0}, 0.006047)) $ $ ((\wp_{8}, -0.204460), (\wp_{0}, 0.027602), (\wp_{0}, 0.049447)) $ $ ((\wp_{8}, -0.104685), (\wp_{0}, 0.020881), (\wp_{0}, 0.024775)) $
    $ Tc $ $ ((\wp_{8}, -0.114154), (\wp_{0}, 0.058085), (\wp_{0}, 0.031019)) $ $ ((\wp_{8}, -0.317763), (\wp_{0}, 0.018026), (\wp_{0}, 0.075711)) $ $ ((\wp_{8}, -0.155899), (\wp_{0}, 0.028698), (\wp_{0}, 0.042631)) $
    $ Co $ $ ((\wp_{6}, -0.374006), (\wp_{0}, 0.012726), (\wp_{1}, -0.001432)) $ $ ((\wp_{8}, -0.152188), (\wp_{0}, 0.024775), (\wp_{0}, 0.037407)) $ $ ((\wp_{8}, -0.005238), (\wp_{0}, 0.167980), (\wp_{0}, 0.001420)) $
    $ Ne $ $ ((\wp_{5}, -0.089963), (\wp_{0}, 0.028698), (\wp_{1}, 0.308967)) $ $ ((\wp_{7}, 0.272545), (\wp_{0}, 0.001420), (\wp_{0}, 0.167980)) $ $ ((\wp_{8}, -0.002484), (\wp_{0}, 0.230844), (\wp_{0}, 0.000701)) $
    $ Cm $ $ ((\wp_{7}, 0.269041), (\wp_{0}, 0.042263), (\wp_{0}, 0.218628)) $ $ ((\wp_{8}, -0.165807), (\wp_{0}, 0.006047), (\wp_{0}, 0.039441)) $ $ ((\wp_{8}, -0.049799), (\wp_{0}, 0.028698), (\wp_{0}, 0.012240)) $
    $ Ta $ $ ((\wp_{5}, 0.320921), (\wp_{0}, 0.018742), (\wp_{1}, 0.033545)) $ $ ((\wp_{8}, -0.056894), (\wp_{0}, 0.037935), (\wp_{0}, 0.013637)) $ $ ((\wp_{8}, -0.005238), (\wp_{0}, 0.167980), (\wp_{0}, 0.001420)) $
    $ Ch $ $ ((\wp_{5}, -0.364778), (\wp_{0}, 0.039441), (\wp_{2}, -0.358421)) $ $ ((\wp_{8}, -0.121428), (\wp_{0}, 0.012240), (\wp_{0}, 0.028698)) $ $ ((\wp_{8}, -0.011044), (\wp_{0}, 0.122230), (\wp_{0}, 0.002874)) $

     | Show Table
    DownLoad: CSV

    Step 5. At this stage, the entropy measure is used to determine the criterion weights.

    Step 1*. Using Eq 4.3 and the results shown in Table 6, the scores of the combined aggregated matrix are first calculated.

    Table 6.  Scores of Table 5.
    Criteria $ \mathbb{A}_{1} $ $ \mathbb{A}_{2} $ $ \mathbb{A}_{3} $
    $ Im $ $ (\wp_{9}, -0.009133) $ $ (\wp_{9}, -0.069585) $ $ (\wp_{9}, -0.024277) $
    $ Pe $ $ (\wp_{9}, -0.019089) $ $ (\wp_{9}, -0.173376) $ $ (\wp_{9}, -0.068531) $
    $ Tr $ $ (\wp_{9}, -0.014198) $ $ (\wp_{9}, -0.084704) $ $ (\wp_{9}, -0.053025) $
    $ Em $ $ (\wp_{9}, -0.343137) $ $ (\wp_{9}, -0.084704) $ $ (\wp_{9}, -0.001750) $
    $ Te $ $ (\wp_{9}, -0.414577) $ $ (\wp_{9}, -0.019366) $ $ (\wp_{9}, -0.001454) $
    $ Qu $ $ (\wp_{9}, -0.299614) $ $ (\wp_{9}, -0.040419) $ $ (\wp_{9}, -0.001750) $
    $ Fu $ $ (\wp_{9}, -0.444069) $ $ (\wp_{9}, -0.129550) $ $ (\wp_{9}, -0.002993) $
    $ Ob $ $ (\wp_{9}, -0.468719) $ $ (\wp_{9}, -0.019366) $ $ (\wp_{9}, -0.002993) $
    $ Un $ $ (\wp_{8}, 0.493247) $ $ (\wp_{9}, -0.040419) $ $ (\wp_{9}, -0.002993) $
    $ Fa $ $ (\wp_{9}, -0.005928) $ $ (\wp_{9}, -0.050512) $ $ (\wp_{9}, -0.026016) $
    $ Tc $ $ (\wp_{9}, -0.028403) $ $ (\wp_{9}, -0.077958) $ $ (\wp_{9}, -0.038636) $
    $ Co $ $ (\wp_{8}, 0.478977) $ $ (\wp_{9}, -0.037717) $ $ (\wp_{9}, -0.001750) $
    $ Ne $ $ (\wp_{8}, 0.349910) $ $ (\wp_{9}, -0.173376) $ $ (\wp_{9}, -0.001454) $
    $ Cm $ $ (\wp_{9}, -0.175166) $ $ (\wp_{9}, -0.041047) $ $ (\wp_{9}, -0.012426) $
    $ Ta $ $ (\wp_{8}, 0.425682) $ $ (\wp_{9}, -0.014198) $ $ (\wp_{9}, -0.001750) $
    $ Ch $ $ (\wp_{8}, 0.293577) $ $ (\wp_{9}, -0.030142) $ $ (\wp_{9}, -0.002993) $

     | Show Table
    DownLoad: CSV

    Step 2*. Now, using Eq 4.4 and the values listed in Table 7, the projection values are determined.

    Table 7.  Projection values, entropy values, divergence values and weights.
    Criteria $ \mathbb{A}_{1} $ $ \mathbb{A}_{2} $ $ \mathbb{A}_{3} $ Entropy values Divergence values Weights
    $ Im $ 0.334270 0.332023 0.333707 0.999996 0.000004 0.001278
    $ Pe $ 0.335873 0.330103 0.334024 0.999976 0.000024 0.007670
    $ Tr $ 0.334691 0.332065 0.333245 0.999995 0.000005 0.001598
    $ Em $ 0.325808 0.335535 0.338657 0.999877 0.000123 0.039310
    $ Te $ 0.323190 0.338068 0.338742 0.999788 0.000212 0.067753
    $ Qu $ 0.326368 0.336091 0.337541 0.999899 0.000101 0.032279
    $ Fu $ 0.323801 0.335704 0.340494 0.999797 0.000203 0.064877
    $ Ob $ 0.321827 0.338778 0.339395 0.999727 0.000273 0.087248
    $ Un $ 0.321108 0.338739 0.340154 0.999691 0.000309 0.098754
    $ Fa $ 0.334134 0.332478 0.333388 0.999998 0.000002 0.000639
    $ Tc $ 0.334075 0.33223 0.333694 0.999997 0.000003 0.000959
    $ Co $ 0.320693 0.338973 0.340333 0.999669 0.000331 0.105785
    $ Ne $ 0.319002 0.337215 0.343783 0.999547 0.000453 0.144775
    $ Cm $ 0.329637 0.334647 0.335716 0.999971 0.000029 0.009268
    $ Ta $ 0.319037 0.340246 0.340717 0.999578 0.000422 0.134867
    $ Ch $ 0.31582 0.341573 0.342607 0.999365 0.000635 0.202940

     | Show Table
    DownLoad: CSV

    Step 3*. The entropy values by employing Eq 4.5 are summarized in Table 7.

    Step 4*. In Table 7, the divergence values of the criteria based on Eq 4.6 are also shown.

    Step 5*. The criteria weights are also determined in Table 7 using Eq 4.7.

    Step 6. Table 8 contains the terms of the weighted aggregated matrix based on Eq 4.8.

    Table 8.  Weighted aggregated decision matrix in the form of $ 2 $TL$ q $-RPFNs.
    Criteria $ \mathbb{A}_{1} $ $ \mathbb{A}_{2} $ $ \mathbb{A}_{3} $
    $ Im $ $ ((\wp_{1}, -0.380796), (\wp_{8}, -0.050198), (\wp_{8}, -0.069227)) $ $ ((\wp_{0}, 0.466599), (\wp_{8}, -0.07315), (\wp_{8}, -0.048207)) $ $ ((\wp_{1}, -0.449084), (\wp_{8}, -0.054525), (\wp_{8}, -0.058993)) $
    $ Pe $ $ ((\wp_{1}, 0.383780), (\wp_{8}, -0.315345), (\wp_{8}, -0.365404)) $ $ ((\wp_{1}, -0.074989), (\wp_{7}, 0.487233), (\wp_{8}, -0.233578)) $ $ ((\wp_{1}, 0.141438), (\wp_{8}, -0.381726), (\wp_{8}, -0.287298)) $
    $ Tr $ $ ((\wp_{1}, -0.341338), (\wp_{8}, -0.068120), (\wp_{8}, -0.081077)) $ $ ((\wp_{1}, -0.497914), (\wp_{8}, -0.095378), (\wp_{8}, -0.058684)) $ $ ((\wp_{1}, -0.452272), (\wp_{8}, -0.058684), (\wp_{8}, -0.060358)) $
    $ Em $ $ ((\wp_{2}, -0.369489), (\wp_{6}, 0.226806), (\wp_{7}, 0.150308)) $ $ ((\wp_{2}, 0.433401), (\wp_{6}, -0.044014), (\wp_{7}, -0.325274)) $ $ ((\wp_{4}, -0.165955), (\wp_{7}, -0.127189), (\wp_{6}, -0.303003)) $
    $ Te $ $ ((\wp_{2}, -0.060398), (\wp_{5}, 0.448438), (\wp_{7}, -0.288467)) $ $ ((\wp_{4}, -0.125701), (\wp_{5}, 0.307390), (\wp_{5}, 0.307390)) $ $ ((\wp_{5}, 0.019373), (\wp_{6}, 0.291669), (\wp_{4}, 0.248062)) $
    $ Qu $ $ ((\wp_{2}, -0.432923), (\wp_{6}, 0.423281), (\wp_{7}, 0.239420)) $ $ ((\wp_{3}, -0.490477), (\wp_{7}, -0.487770), (\wp_{7}, -0.269118)) $ $ ((\wp_{4}, -0.486557), (\wp_{7}, 0.062057), (\wp_{6}, 0.053658)) $
    $ Fu $ $ ((\wp_{2}, -0.172703), (\wp_{5}, 0.053795), (\wp_{7}, -0.215043)) $ $ ((\wp_{3}, -0.179762), (\wp_{5}, -0.217946), (\wp_{6}, 0.099287)) $ $ ((\wp_{5}, -0.490689), (\wp_{6}, 0.099287), (\wp_{5}, -0.217946)) $
    $ Ob $ $ ((\wp_{2}, 0.041578), (\wp_{4}, 0.419886), (\wp_{6}, 0.424933)) $ $ ((\wp_{4}, 0.316997), (\wp_{5}, -0.283674), (\wp_{5}, -0.283674)) $ $ ((\wp_{5}, 0.072184), (\wp_{6}, -0.445368), (\wp_{4}, 0.004564)) $
    $ Un $ $ ((\wp_{2}, 0.068176), (\wp_{4}, 0.217616), (\wp_{6}, 0.384810)) $ $ ((\wp_{4}, 0.169251), (\wp_{4}, 0.262872), (\wp_{5}, -0.283924)) $ $ ((\wp_{5}, 0.313761), (\wp_{5}, 0.293725), (\wp_{4}, -0.344712)) $
    $ Fa $ $ ((\wp_{0}, 0.457762), (\wp_{8}, -0.027111), (\wp_{8}, -0.036659)) $ $ ((\wp_{0}, 0.349315), (\wp_{8}, -0.028929), (\wp_{8}, -0.025959)) $ $ ((\wp_{0}, 0.386112), (\wp_{8}, -0.030350), (\wp_{8}, -0.029479)) $
    $ Tc $ $ ((\wp_{0}, 0.467279), (\wp_{8}, -0.037698), (\wp_{8}, -0.042486)) $ $ ((\wp_{0}, 0.395587), (\wp_{8}, -0.046627), (\wp_{8}, -0.035674)) $ $ ((\wp_{0}, 0.446593), (\wp_{8}, -0.043008), (\wp_{8}, -0.040059)) $
    $ Co $ $ ((\wp_{2}, 0.111096), (\wp_{4}, 0.046331), (\wp_{6}, 0.419346)) $ $ ((\wp_{4}, 0.330831), (\wp_{4}, 0.341775), (\wp_{5}, -0.4648)) $ $ ((\wp_{6}, -0.317582), (\wp_{5}, 0.31619), (\wp_{3}, 0.208569)) $
    $ Ne $ $ ((\wp_{2}, 0.057549), (\wp_{4}, -0.459370), (\wp_{6}, 0.155644)) $ $ ((\wp_{4}, -0.210731), (\wp_{2}, 0.291225), (\wp_{5}, -0.427204)) $ $ ((\wp_{6}, 0.482821), (\wp_{5}, -0.21183), (\wp_{2}, 0.068635)) $
    $ Cm $ $ ((\wp_{1}, 0.013693), (\wp_{8}, -0.379463), (\wp_{8}, -0.262502)) $ $ ((\wp_{1}, 0.366219), (\wp_{7}, 0.484443), (\wp_{8}, -0.384343)) $ $ ((\wp_{2}, -0.402751), (\wp_{8}, -0.406753), (\wp_{8}, -0.466484)) $
    $ Ta $ $ ((\wp_{2}, 0.201813), (\wp_{4}, -0.465298), (\wp_{6}, 0.070515)) $ $ ((\wp_{5}, 0.287030), (\wp_{4}, -0.112662), (\wp_{3}, 0.386321)) $ $ ((\wp_{6}, 0.152814), (\wp_{5}, -0.248773), (\wp_{2}, 0.495920)) $
    $ Ch $ $ ((\wp_{2}, 0.257889), (\wp_{3}, -0.278060), (\wp_{6}, -0.199010)) $ $ ((\wp_{6}, -0.293962), (\wp_{2}, 0.146601), (\wp_{3}, -0.448161)) $ $ ((\wp_{7}, -0.318362), (\wp_{3}, 0.424276), (\wp_{2}, -0.400287)) $

     | Show Table
    DownLoad: CSV

    Step 7. To identify the NIS, first the scores of Table 8 are calculated. Further, the values of NIS are identified based on 4.9 and 4.10, given in Table 9.

    Table 9.  Scores of Table 8 and NIS.
    Criteria $ \mathbb{A}_{1} $ $ \mathbb{A}_{2} $ $ \mathbb{A}_{3} $ NIS
    $ Im $ $ (\wp_{6}, 0.035733) $ $ (\wp_{6}, 0.033621) $ $ (\wp_{6}, 0.033021) $ $ ((\wp_{1}, -0.449084), (\wp_{8}, -0.054525), (\wp_{8}, -0.058993)) $
    $ Pe $ $ (\wp_{6}, 0.196467) $ $ (\wp_{6}, 0.194995) $ $ (\wp_{6}, 0.184047) $ $ ((\wp_{1}, 0.141438), (\wp_{8}, -0.381726), (\wp_{8}, -0.287298)) $
    $ Tr $ $ (\wp_{6}, 0.043903) $ $ (\wp_{6}, 0.042258) $ $ (\wp_{6}, 0.034337) $ $ ((\wp_{1}, -0.452272), (\wp_{8}, -0.058684), (\wp_{8}, -0.060358)) $
    $ Em $ $ (\wp_{7}, -0.363148) $ $ (\wp_{7}, -0.15788) $ $ (\wp_{7}, -0.015491) $ $ ((\wp_{2}, -0.369489), (\wp_{6}, 0.226806), (\wp_{7}, 0.150308)) $
    $ Te $ $ (\wp_{7}, -0.108876) $ $ (\wp_{7}, 0.354272) $ $ (\wp_{7}, 0.493171) $ $ ((\wp_{2}, -0.060398), (\wp_{5}, 0.448438), (\wp_{7}, -0.288467)) $
    $ Qu $ $ (\wp_{7}, -0.425188) $ $ (\wp_{7}, -0.272128) $ $ (\wp_{7}, -0.158987) $ $ ((\wp_{2}, -0.432923), (\wp_{6}, 0.423281), (\wp_{7}, 0.23942)) $
    $ Fu $ $ (\wp_{7}, -0.06621) $ $ (\wp_{7}, 0.185694) $ $ (\wp_{7}, 0.379133) $ $ ((\wp_{2}, -0.172703), (\wp_{5}, 0.053795), (\wp_{7}, -0.215043)) $
    $ Ob $ $ (\wp_{7}, 0.114889) $ $ (\wp_{8}, -0.403922) $ $ (\wp_{8}, -0.330678) $ $ ((\wp_{2}, 0.041578), (\wp_{4}, 0.419886), (\wp_{6}, 0.424933)) $
    $ Un $ $ (\wp_{7}, 0.151926) $ $ (\wp_{8}, -0.359856) $ $ (\wp_{8}, -0.205447) $ $ ((\wp_{2}, 0.068176), (\wp_{4}, 0.217616), (\wp_{6}, 0.384810)) $
    $ Fa $ $ (\wp_{6}, 0.019184) $ $ (\wp_{6}, 0.015605) $ $ (\wp_{6}, 0.017259) $ $ ((\wp_{0}, 0.349315), (\wp_{8}, -0.028929), (\wp_{8}, -0.025959)) $
    $ Tc $ $ (\wp_{6}, 0.023407) $ $ (\wp_{6}, 0.022967) $ $ (\wp_{6}, 0.023847) $ $ ((\wp_{0}, 0.395587), (\wp_{8}, -0.046627), (\wp_{8}, -0.035674)) $
    $ Co $ $ (\wp_{7}, 0.169936) $ $ (\wp_{8}, -0.322859) $ $ (\wp_{8}, -0.097921) $ $ ((\wp_{2}, 0.111096), (\wp_{4}, 0.046331), (\wp_{6}, 0.419346)) $
    $ Ne $ $ (\wp_{7}, 0.278211) $ $ (\wp_{8}, -0.184400) $ $ (\wp_{8}, 0.231580) $ $ ((\wp_{2}, 0.057549), (\wp_{4}, -0.459370), (\wp_{6}, 0.155644)) $
    $ Cm $ $ (\wp_{6}, 0.173221) $ $ (\wp_{6}, 0.247679) $ $ (\wp_{6}, 0.252187) $ $ ((\wp_{1}, 0.013693), (\wp_{8}, -0.379463), (\wp_{8}, -0.262502)) $
    $ Ta $ $ (\wp_{7}, 0.304730) $ $ (\wp_{8}, 0.021471) $ $ (\wp_{8}, 0.141459) $ $ ((\wp_{2}, 0.201813), (\wp_{4}, -0.465298), (\wp_{6}, 0.070515)) $
    $ Ch $ $ (\wp_{7}, 0.438088) $ $ (\wp_{8}, 0.334986) $ $ (\wp_{8}, 0.474368) $ $ ((\wp_{2}, 0.257889), (\wp_{3}, -0.278060), (\wp_{6}, -0.199010)) $

     | Show Table
    DownLoad: CSV

    Step 8. The values of $ \mathcal{HD}_{i} $ (4.11) and $ \mathcal{ED}_{i} $ (4.12) are computed as given below:

    $ ED1=0.039050,ED2=1.655277,ED3=2.780990.HD1=0.049313,HD2=2.512104,HD3=4.415909.
    $

    Step 9. The values of $ \mathcal{RA} $ matrix with their sum are given in Table 10.

    Table 10.  $ \mathcal{RA} $ matrix with sum and ranks.
    $ \mathcal{RA} $ $ \mathbb{A}_{1} $ $ \mathbb{A}_{2} $ $ \mathbb{A}_{3} $ Sum Rank
    $ \mathbb{A}_{1} $ 0 2.364202 9.231004 11.595206 2
    $ \mathbb{A}_{2} $ 5.596656 0 1.017425 6.614081 3
    $ \mathbb{A}_{3} $ 14.714884 3.268851 0 17.983735 1

     | Show Table
    DownLoad: CSV

    Step 10. The best option is shown in Table 10 as $ \mathbb{A}_3 $.

    By adjusting seven distinct parameter values, we can solve this numerical case, i.e., $ q = 2, $ $ q = 3, $ $ q = 4, $ $ q = 5, $ $ q = 8, $ $ q = 9 $ and $ q = 15, $ in order to see the effects of modifying parameter $ q $ values on the outcomes of decision-making. With the change in value of $ q $, the ranking order of the alternatives can be effected. Therefore, we show a sensitivity analysis using various parameter values in proposed strategy. The values of the ranking orders of the three options are shown in Table 11. Table 11 demonstrates that, given a range of feasible choices, alternative $ \mathbb{A}_3 $ is always the best choice. Also, alternative $ \mathbb{A}_{1} $ is in the second slot, whereas $ \mathbb{A}_2 $ is the worst option. The value of the parameter $ q $ has no bearing on the veracity of the findings. As it retains accuracy beyond the bounds of the current sets, the adjustable $ q' $s major goal is to broaden the range of applications for the recommended approach. As a result, it is concluded that the suggested methodology has good stability with all parameters. Hence the stability and reliability of designed $ 2 $TL$ q $-RPF-CODAS method for MCGDM problems is verified through evaluation of sensitive analysis for the prioritization of CAVs in a RTTM system. Figure 3 also displays the ranking places obtained by using various $ q $ values.

    Table 11.  Results using different values of $ q $.
    Alternatives $ q=2 $ $ q=3 $ $ q=4 $ $ q=5 $ $ q=8 $ $ q=9 $ $ q=15 $
    $ \mathbb{A}_{1} $ 2 2 2 2 2 2 2
    $ \mathbb{A}_{2} $ 3 3 3 3 3 3 3
    $ \mathbb{A}_{3} $ 1 1 1 1 1 1 1

     | Show Table
    DownLoad: CSV
    Figure 3.  Ranking positions by using distinct values of $ q $.

    This section offers a few studies that compare the suggested methodology with the previous approaches in an effort to demonstrate the usefulness, underline the significance, and emphasize the advantages of the suggested procedures over the existing. In order to address the numerical problem, we emphasized the key components of each of the previous strategies. We use the $ 2 $TLPyF-CODAS [48] and $ 2 $TLFF-CODAS [55] methods.

    Using the $ 2 $TLPyF-CODAS approach, we solved the numerical example in this subsection. The neutral membership grade has not been taken into account. First, Table 4 compiles the $ 2 $TLPyFNs representing the normalized expert evaluations (ignore neutral part). The combined decision matrix is shown in Table 12. The score degrees of Table 12 are shown in Table 13. The authors explicitly gave the weights to the criterion in the $ 2 $TLPyF-CODAS technique. In computing the criterion weights, we use the entropy measure. After calculating the projection values, entropy values and divergence values the criteria weights are presented as follows:

    $ W1=0.0010,W2=0.0100,W3=0.0030,W4=0.0400,W5=0.0650,W6=0.0340,W7=0.0640,W8=0.0850,W9=0.0930,W10=0.0010,W11=0.0020,W12=0.0980,W13=0.1420,W14=0.0100,W15=0.1270,W16=0.1910.
    $
    Table 12.  Aggregated decision matrix in the form of $ 2 $TLPyFNs.
    Criteria $ \mathbb{A}_{1} $ $ \mathbb{A}_{2} $ $ \mathbb{A}_{3} $
    $ Im $ $ ((\wp_{8}, -0.1101), (\wp_{0}, 0.0234)) $ $ ((\wp_{8}, -0.3281), (\wp_{0}, 0.1563)) $ $ ((\wp_{8}, -0.2178), (\wp_{0}, 0.0586)) $
    $ Pe $ $ ((\wp_{8}, -0.2068), (\wp_{0}, 0.0469)) $ $ ((\wp_{7}, -0.1046), (\wp_{0}, 0.3750)) $ $ ((\wp_{7}, 0.4903), (\wp_{0}, 0.1563)) $
    $ Tr $ $ ((\wp_{8}, -0.1538), (\wp_{0}, 0.0352)) $ $ ((\wp_{7}, 0.3758), (\wp_{0}, 0.1875)) $ $ ((\wp_{8}, -0.3548), (\wp_{0}, 0.1367)) $
    $ Em $ $ ((\wp_{6}, 0.1881), (\wp_{1}, -0.1562)) $ $ ((\wp_{7}, 0.3758), (\wp_{0}, 0.1875)) $ $ ((\wp_{8}, -0.0226), (\wp_{0}, 0.0039)) $
    $ Te $ $ ((\wp_{6}, -0.1227), (\wp_{1}, 0.0547)) $ $ ((\wp_{8}, -0.1897), (\wp_{0}, 0.0469)) $ $ ((\wp_{8}, -0.0121), (\wp_{0}, 0.0020)) $
    $ Qu $ $ ((\wp_{6}, 0.3588), (\wp_{1}, -0.2969)) $ $ ((\wp_{8}, -0.3579), (\wp_{0}, 0.0938)) $ $ ((\wp_{8}, -0.0226), (\wp_{0}, 0.0039)) $
    $ Fu $ $ ((\wp_{6}, -0.3115), (\wp_{1}, 0.1250)) $ $ ((\wp_{7}, 0.1156), (\wp_{0}, 0.2813)) $ $ ((\wp_{8}, -0.0422), (\wp_{0}, 0.0078)) $
    $ Ob $ $ ((\wp_{6}, -0.4533), (\wp_{1}, 0.1719)) $ $ ((\wp_{8}, -0.1897), (\wp_{0}, 0.0469)) $ $ ((\wp_{8}, -0.0422), (\wp_{0}, 0.0078)) $
    $ Un $ $ ((\wp_{5}, 0.3949), (\wp_{1}, 0.3672)) $ $ ((\wp_{8}, -0.3579), (\wp_{0}, 0.0938)) $ $ ((\wp_{8}, -0.0422), (\wp_{0}, 0.0078)) $
    $ Fa $ $ ((\wp_{8}, -0.0724), (\wp_{0}, 0.0156)) $ $ ((\wp_{8}, -0.4115), (\wp_{0}, 0.1172)) $ $ ((\wp_{8}, -0.2553), (\wp_{0}, 0.0625)) $
    $ Tc $ $ ((\wp_{8}, -0.2379), (\wp_{0}, 0.0703)) $ $ ((\wp_{7}, 0.4206), (\wp_{0}, 0.1758)) $ $ ((\wp_{8}, -0.2938), (\wp_{0}, 0.0938)) $
    $ Co $ $ ((\wp_{5}, 0.3959), (\wp_{2}, -0.4687)) $ $ ((\wp_{8}, -0.3050), (\wp_{0}, 0.0879)) $ $ ((\wp_{8}, -0.0226), (\wp_{0}, 0.0039)) $
    $ Ne $ $ ((\wp_{5}, -0.2596), (\wp_{2}, -0.0312)) $ $ ((\wp_{7}, -0.1046), (\wp_{0}, 0.3750)) $ $ ((\wp_{8}, -0.0121), (\wp_{0}, 0.0020)) $
    $ Cm $ $ ((\wp_{7}, 0.0003), (\wp_{0}, 0.4219)) $ $ ((\wp_{8}, -0.3281), (\wp_{0}, 0.0938)) $ $ ((\wp_{8}, -0.1357), (\wp_{0}, 0.0313)) $
    $ Ta $ $ ((\wp_{5}, 0.0924), (\wp_{2}, -0.3594)) $ $ ((\wp_{8}, -0.1538), (\wp_{0}, 0.0352)) $ $ ((\wp_{8}, -0.0226), (\wp_{0}, 0.0039)) $
    $ Ch $ $ ((\wp_{5}, -0.4839), (\wp_{2}, 0.2969)) $ $ ((\wp_{8}, -0.2655), (\wp_{0}, 0.0703)) $ $ ((\wp_{8}, -0.0422), (\wp_{0}, 0.0117)) $

     | Show Table
    DownLoad: CSV
    Table 13.  Scores of Table 12.
    Criteria $ \mathbb{A}_{1} $ $ \mathbb{A}_{2} $ $ \mathbb{A}_{3} $
    $ Im $ $ (\wp_{8}, -0.1094) $ $ (\wp_{8}, -0.3229) $ $ (\wp_{8}, -0.2150) $
    $ Pe $ $ (\wp_{8}, -0.2043) $ $ (\wp_{7}, -0.0371) $ $ (\wp_{8}, -0.4950) $
    $ Tr $ $ (\wp_{8}, -0.1524) $ $ (\wp_{7}, 0.3980) $ $ (\wp_{8}, -0.3481) $
    $ Em $ $ (\wp_{6}, 0.3488) $ $ (\wp_{7}, 0.3980) $ $ (\wp_{8}, -0.0226) $
    $ Te $ $ (\wp_{6}, 0.0894) $ $ (\wp_{8}, -0.1876) $ $ (\wp_{8}, -0.0121) $
    $ Qu $ $ (\wp_{6}, 0.4962) $ $ (\wp_{8}, -0.3504) $ $ (\wp_{8}, -0.0226) $
    $ Fu $ $ (\wp_{6}, -0.0567) $ $ (\wp_{7}, 0.1595) $ $ (\wp_{8}, -0.0421) $
    $ Ob $ $ (\wp_{6}, -0.1630) $ $ (\wp_{8}, -0.1876) $ $ (\wp_{8}, -0.0421) $
    $ Un $ $ (\wp_{6}, -0.2978) $ $ (\wp_{8}, -0.3504) $ $ (\wp_{8}, -0.0421) $
    $ Fa $ $ (\wp_{8}, -0.0721) $ $ (\wp_{8}, -0.4018) $ $ (\wp_{8}, -0.2515) $
    $ Tc $ $ (\wp_{8}, -0.2347) $ $ (\wp_{7}, 0.4396) $ $ (\wp_{8}, -0.2890) $
    $ Co $ $ (\wp_{6}, -0.3268) $ $ (\wp_{8}, -0.2997) $ $ (\wp_{8}, -0.0226) $
    $ Ne $ $ (\wp_{5}, 0.1622) $ $ (\wp_{7}, -0.0371) $ $ (\wp_{8}, -0.0121) $
    $ Cm $ $ (\wp_{7}, 0.0516) $ $ (\wp_{8}, -0.3219) $ $ (\wp_{8}, -0.1346) $
    $ Ta $ $ (\wp_{5}, 0.4526) $ $ (\wp_{8}, -0.1524) $ $ (\wp_{8}, -0.0226) $
    $ Ch $ $ (\wp_{5}, -0.0550) $ $ (\wp_{8}, -0.2614) $ $ (\wp_{8}, -0.0421) $

     | Show Table
    DownLoad: CSV

    The weighted aggregated matrix's values are shown in Table 14. Score values of Table 14 and the values of NIS are demonstrated in Table 15. The values of $ \mathcal{ED}_{i} $ and $ \mathcal{HD}_{i} $ are given as follows:

    $ ED1=0.1297,ED2=0.8914,ED3=1.7877.HD1=0.1703,HD2=1.1769,HD3=2.4228.
    $
    Table 14.  Weighted aggregated decision matrix in the form of $ 2 $TLPyFNs.
    Criteria $ \mathbb{A}_{1} $ $ \mathbb{A}_{2} $ $ \mathbb{A}_{3} $
    $ Im $ $ ((\wp_{8}, -0.0144), (\wp_{8}, -0.0465)) $ $ ((\wp_{8}, -0.0101), (\wp_{8}, -0.0314)) $ $ ((\wp_{8}, -0.0117), (\wp_{8}, -0.0392)) $
    $ Pe $ $ ((\wp_{8}, -0.1181), (\wp_{8}, -0.4007)) $ $ ((\wp_{8}, -0.0541), (\wp_{8}, -0.2411)) $ $ ((\wp_{8}, -0.0833), (\wp_{8}, -0.3087)) $
    $ Tr $ $ ((\wp_{8}, -0.0391), (\wp_{8}, -0.1292)) $ $ ((\wp_{8}, -0.0227), (\wp_{8}, -0.0896)) $ $ ((\wp_{8}, -0.0293), (\wp_{8}, -0.0971)) $
    $ Em $ $ ((\wp_{8}, -0.1446), (\wp_{7}, 0.3117)) $ $ ((\wp_{8}, -0.2979), (\wp_{7}, -0.1153)) $ $ ((\wp_{7}, 0.2130), (\wp_{6}, -0.1033)) $
    $ Te $ $ ((\wp_{8}, -0.1992), (\wp_{7}, 0.0128)) $ $ ((\wp_{7}, 0.2426), (\wp_{6}, -0.2718)) $ $ ((\wp_{7}, -0.3747), (\wp_{5}, -0.3339)) $
    $ Qu $ $ ((\wp_{8}, -0.1347), (\wp_{7}, 0.3652)) $ $ ((\wp_{8}, -0.3246), (\wp_{7}, -0.1224)) $ $ ((\wp_{7}, 0.3260), (\wp_{6}, 0.1728)) $
    $ Fu $ $ ((\wp_{8}, -0.1783), (\wp_{7}, 0.0561)) $ $ ((\wp_{8}, -0.3910), (\wp_{6}, 0.4571)) $ $ ((\wp_{7}, -0.0849), (\wp_{5}, 0.1332)) $
    $ Ob $ $ ((\wp_{8}, -0.2197), (\wp_{7}, -0.2051)) $ $ ((\wp_{7}, 0.0243), (\wp_{5}, 0.1686)) $ $ ((\wp_{7}, -0.4078), (\wp_{4}, 0.4377)) $
    $ Un $ $ ((\wp_{8}, -0.2225), (\wp_{7}, -0.2121)) $ $ ((\wp_{7}, 0.1431), (\wp_{5}, 0.2908)) $ $ ((\wp_{6}, 0.4732), (\wp_{4}, 0.1982)) $
    $ Fa $ $ ((\wp_{8}, -0.0160), (\wp_{8}, -0.0498)) $ $ ((\wp_{8}, -0.0092), (\wp_{8}, -0.0337)) $ $ ((\wp_{8}, -0.0111), (\wp_{8}, -0.0387)) $
    $ Tc $ $ ((\wp_{8}, -0.0227), (\wp_{8}, -0.0754)) $ $ ((\wp_{8}, -0.0157), (\wp_{8}, -0.0609)) $ $ ((\wp_{8}, -0.0210), (\wp_{8}, -0.0708)) $
    $ Co $ $ ((\wp_{8}, -0.2344), (\wp_{7}, -0.1966)) $ $ ((\wp_{7}, 0.0455), (\wp_{5}, 0.1416)) $ $ ((\wp_{6}, 0.2074), (\wp_{4}, -0.2111)) $
    $ Ne $ $ ((\wp_{8}, -0.2419), (\wp_{7}, -0.4442)) $ $ ((\wp_{7}, 0.2645), (\wp_{5}, 0.1804)) $ $ ((\wp_{5}, 0.2991), (\wp_{2}, 0.4638)) $
    $ Cm $ $ ((\wp_{8}, -0.0578), (\wp_{8}, -0.2320)) $ $ ((\wp_{8}, -0.1002), (\wp_{8}, -0.3479)) $ $ ((\wp_{8}, -0.1345), (\wp_{8}, -0.4314)) $
    $ Ta $ $ ((\wp_{8}, -0.2596), (\wp_{7}, -0.4581)) $ $ ((\wp_{7}, -0.4992), (\wp_{4}, 0.0161)) $ $ ((\wp_{6}, -0.2415), (\wp_{3}, 0.0371)) $
    $ Ch $ $ ((\wp_{8}, -0.2879), (\wp_{6}, 0.3034)) $ $ ((\wp_{6}, 0.1645), (\wp_{3}, 0.2387)) $ $ ((\wp_{5}, 0.1785), (\wp_{2}, 0.2994)) $

     | Show Table
    DownLoad: CSV
    Table 15.  Scores of Table 14 and NIS.
    Criteria $ \mathbb{A}_{1} $ $ \mathbb{A}_{2} $ $ \mathbb{A}_{3} $ NIS
    $ Im $ $ (\wp_{4}, 0.0320) $ $ (\wp_{4}, 0.0212) $ $ (\wp_{4}, 0.0274) $ $ ((\wp_{8}, -0.0101), (\wp_{8}, -0.0314)) $
    $ Pe $ $ (\wp_{4}, 0.2734) $ $ (\wp_{4}, 0.1835) $ $ (\wp_{4}, 0.2199) $ $ ((\wp_{8}, -0.0541), (\wp_{8}, -0.2411)) $
    $ Tr $ $ (\wp_{4}, 0.0892) $ $ (\wp_{4}, 0.0664) $ $ (\wp_{4}, 0.0673) $ $ ((\wp_{8}, -0.0227), (\wp_{8}, -0.0896)) $
    $ Em $ $ (\wp_{5}, -0.4846) $ $ (\wp_{5}, -0.2548) $ $ (\wp_{5}, 0.0785) $ $ ((\wp_{8}, -0.1446), (\wp_{7}, 0.3117)) $
    $ Te $ $ (\wp_{5}, -0.2704) $ $ (\wp_{5}, 0.2277) $ $ (\wp_{5}, 0.3826) $ $ ((\wp_{8}, -0.1992), (\wp_{7}, 0.0128)) $
    $ Qu $ $ (\wp_{4}, 0.4760) $ $ (\wp_{5}, -0.2744) $ $ (\wp_{5}, -0.0271) $ $ ((\wp_{8}, -0.1347), (\wp_{7}, 0.3652)) $
    $ Fu $ $ (\wp_{5}, -0.2881) $ $ (\wp_{5}, 0.0127) $ $ (\wp_{5}, 0.3418) $ $ ((\wp_{8}, -0.1783), (\wp_{7}, 0.0561)) $
    $ Ob $ $ (\wp_{5}, -0.1023) $ $ (\wp_{5}, 0.4141) $ $ (\wp_{5}, 0.4852) $ $ ((\wp_{8}, -0.2197), (\wp_{7}, -0.2051)) $
    $ Un $ $ (\wp_{5}, -0.0991) $ $ (\wp_{5}, 0.4395) $ $ (\wp_{6}, -0.4827) $ $ ((\wp_{8}, -0.2225), (\wp_{7}, -0.2121)) $
    $ Fa $ $ (\wp_{4}, 0.0337) $ $ (\wp_{4}, 0.0244) $ $ (\wp_{4}, 0.0275) $ $ ((\wp_{8}, -0.0092), (\wp_{8}, -0.0337)) $
    $ Tc $ $ (\wp_{4}, 0.0524) $ $ (\wp_{4}, 0.0450) $ $ (\wp_{4}, 0.0495) $ $ ((\wp_{8}, -0.0227), (\wp_{8}, -0.0754)) $
    $ Co $ $ (\wp_{5}, -0.1239) $ $ (\wp_{5}, 0.4502) $ $ (\wp_{6}, -0.4890) $ $ ((\wp_{7}, 0.0455), (\wp_{5}, 0.1416)) $
    $ Ne $ $ (\wp_{5}, 0.0756) $ $ (\wp_{6}, -0.3790) $ $ (\wp_{5}, 0.3756) $ $ ((\wp_{8}, -0.2419), (\wp_{7}, -0.4442)) $
    $ Cm $ $ (\wp_{4}, 0.1710) $ $ (\wp_{4}, 0.2408) $ $ (\wp_{4}, 0.2864) $ $ ((\wp_{8}, -0.0578), (\wp_{8}, -0.2320)) $
    $ Ta $ $ (\wp_{5}, 0.0698) $ $ (\wp_{6}, -0.3668) $ $ (\wp_{5}, 0.4960) $ $ ((\wp_{8}, -0.2596), (\wp_{7}, -0.4581)) $
    $ Ch $ $ (\wp_{5}, 0.2340) $ $ (\wp_{6}, -0.2805) $ $ (\wp_{5}, 0.3456) $ $ ((\wp_{8}, -0.2879), (\wp_{6}, 0.3034)) $

     | Show Table
    DownLoad: CSV

    The $ \mathcal{RA} $ matrix is shown in Table 16 together with the related options sum and rankings.

    Table 16.  $ \mathcal{RA} $ matrix with sum and ranks.
    $ \mathcal{RA} $ $ \mathbb{A}_{1} $ $ \mathbb{A}_{2} $ $ \mathbb{A}_{3} $ Sum Rank
    $ \mathbb{A}_{1} $ 0 0.0050 2.0766 2.0816 2
    $ \mathbb{A}_{2} $ 1.5284 0 0.2204 1.7488 3
    $ \mathbb{A}_{3} $ 5.3926 2.0130 0 7.4056 1

     | Show Table
    DownLoad: CSV

    Applying the $ 2 $TLFF-CODAS method, we solved the numerical example in this subsection. We did not take into account the neutral membership grade. First, the normalized assessments of the experts are compiled in Table 4 (ignore neutral part). Additionally, Table 17 presents the aggregated decision matrix. Table 18 shows the scores of Table 17. The weights for the criteria were directly assigned by the authors in the $ 2 $TLFF-CODAS methodology. While computing the weights for the criteria, we use the entropy measure. The criteria weights are given below:

    $ W1=0.0028,W2=0.0188,W3=0.0050,W4=0.0547,W5=0.0796,W6=0.0509,W7=0.0807,W8=0.1028,W9=0.1017,W10=0.0022,W11=0.0033,W12=0.0973,W13=0.1227,W14=0.0149,W15=0.1233,W16=0.1393.
    $
    Table 17.  Aggregated decision matrix in the form of $ 2 $TLFFNs.
    Criteria $ \mathbb{A}_{1} $ $ \mathbb{A}_{2} $ $ \mathbb{A}_{3} $
    $ Im $ $ ((\wp_{8}, -0.1052), (\wp_{0}, 0.0119)) $ $ ((\wp_{7}, 0.4442), (\wp_{0}, 0.0852)) $ $ ((\wp_{8}, -0.2311), (\wp_{0}, 0.0310)) $
    $ Pe $ $ ((\wp_{8}, -0.2150), (\wp_{0}, 0.0238)) $ $ ((\wp_{7}, -0.4241), (\wp_{0}, 0.2018)) $ $ ((\wp_{7}, 0.4036), (\wp_{0}, 0.0838)) $
    $ Tr $ $ ((\wp_{8}, -0.1567), (\wp_{0}, 0.0179)) $ $ ((\wp_{7}, 0.2360), (\wp_{0}, 0.0990)) $ $ ((\wp_{8}, -0.3757), (\wp_{0}, 0.0820)) $
    $ Em $ $ ((\wp_{6}, -0.1795), (\wp_{1}, -0.4907)) $ $ ((\wp_{7}, 0.2360), (\wp_{0}, 0.0990)) $ $ ((\wp_{8}, -0.0167), (\wp_{0}, 0.0020)) $
    $ Te $ $ ((\wp_{5}, 0.4799), (\wp_{1}, -0.3493)) $ $ ((\wp_{8}, -0.2001), (\wp_{0}, 0.0242)) $ $ ((\wp_{8}, -0.0081), (\wp_{0}, 0.0010)) $
    $ Qu $ $ ((\wp_{6}, -0.0264), (\wp_{0}, 0.4096)) $ $ ((\wp_{8}, -0.4068), (\wp_{0}, 0.0486)) $ $ ((\wp_{8}, -0.0167), (\wp_{0}, 0.0020)) $
    $ Fu $ $ ((\wp_{5}, 0.2041), (\wp_{1}, -0.3124)) $ $ ((\wp_{7}, -0.1240), (\wp_{0}, 0.1494)) $ $ ((\wp_{8}, -0.0344), (\wp_{0}, 0.0039)) $
    $ Ob $ $ ((\wp_{5}, -0.0150), (\wp_{1}, -0.2935)) $ $ ((\wp_{8}, -0.2001), (\wp_{0}, 0.0242)) $ $ ((\wp_{8}, -0.0344), (\wp_{0}, 0.0039)) $
    $ Un $ $ ((\wp_{5}, -0.1053), (\wp_{1}, -0.1274)) $ $ ((\wp_{8}, -0.4068), (\wp_{0}, 0.0486)) $ $ ((\wp_{8}, -0.0344), (\wp_{0}, 0.0039)) $
    $ Fa $ $ ((\wp_{8}, -0.0656), (\wp_{0}, 0.0080)) $ $ ((\wp_{8}, -0.4690), (\wp_{0}, 0.0621)) $ $ ((\wp_{8}, -0.2743), (\wp_{0}, 0.0322)) $
    $ Tc $ $ ((\wp_{8}, -0.2486), (\wp_{0}, 0.0385)) $ $ ((\wp_{7}, 0.3072), (\wp_{0}, 0.0937)) $ $ ((\wp_{8}, -0.3171), (\wp_{0}, 0.0520)) $
    $ Co $ $ ((\wp_{5}, 0.0385), (\wp_{1}, 0.0487)) $ $ ((\wp_{8}, -0.3431), (\wp_{0}, 0.0467)) $ $ ((\wp_{8}, -0.0167), (\wp_{0}, 0.0020)) $
    $ Ne $ $ ((\wp_{4}, 0.3207), (\wp_{1}, 0.3483)) $ $ ((\wp_{7}, -0.4241), (\wp_{0}, 0.2018)) $ $ ((\wp_{8}, -0.0081), (\wp_{0}, 0.0010)) $
    $ Cm $ $ ((\wp_{7}, -0.1663), (\wp_{0}, 0.2499)) $ $ ((\wp_{8}, -0.3789), (\wp_{0}, 0.0494)) $ $ ((\wp_{8}, -0.1344), (\wp_{0}, 0.0161)) $
    $ Ta $ $ ((\wp_{5}, -0.3724), (\wp_{1}, 0.0848)) $ $ ((\wp_{8}, -0.1567), (\wp_{0}, 0.0179)) $ $ ((\wp_{8}, -0.0167), (\wp_{0}, 0.0020)) $
    $ Ch $ $ ((\wp_{4}, 0.1949), (\wp_{2}, -0.3358)) $ $ ((\wp_{8}, -0.2973), (\wp_{0}, 0.0366)) $ $ ((\wp_{8}, -0.0344), (\wp_{0}, 0.0039)) $

     | Show Table
    DownLoad: CSV
    Table 18.  Scores of Table 17.
    Criteria $ \mathbb{A}_{1} $ $ \mathbb{A}_{2} $ $ \mathbb{A}_{3} $
    $ Im $ $ (\wp_{8}, -0.1557) $ $ (\wp_{7}, 0.2229) $ $ (\wp_{8}, -0.3367) $
    $ Pe $ $ (\wp_{8}, -0.3139) $ $ (\wp_{6}, 0.2215) $ $ (\wp_{7}, 0.1704) $
    $ Tr $ $ (\wp_{8}, -0.2305) $ $ (\wp_{7}, -0.0400) $ $ (\wp_{7}, 0.4625) $
    $ Em $ $ (\wp_{6}, -0.4605) $ $ (\wp_{7}, -0.0400) $ $ (\wp_{8}, -0.0250) $
    $ Te $ $ (\wp_{5}, 0.2835) $ $ (\wp_{8}, -0.2927) $ $ (\wp_{8}, -0.0121) $
    $ Qu $ $ (\wp_{6}, -0.3352) $ $ (\wp_{7}, 0.4203) $ $ (\wp_{8}, -0.0250) $
    $ Fu $ $ (\wp_{5}, 0.0986) $ $ (\wp_{7}, -0.4602) $ $ (\wp_{8}, -0.0514) $
    $ Ob $ $ (\wp_{5}, -0.0350) $ $ (\wp_{8}, -0.2927) $ $ (\wp_{8}, -0.0514) $
    $ Un $ $ (\wp_{5}, -0.0890) $ $ (\wp_{7}, 0.4203) $ $ (\wp_{8}, -0.0514) $
    $ Fa $ $ (\wp_{8}, -0.0976) $ $ (\wp_{7}, 0.3369) $ $ (\wp_{8}, -0.3975) $
    $ Tc $ $ (\wp_{8}, -0.3614) $ $ (\wp_{7}, 0.0482) $ $ (\wp_{8}, -0.4570) $
    $ Co $ $ (\wp_{5}, -0.0097) $ $ (\wp_{8}, -0.4929) $ $ (\wp_{8}, -0.0250) $
    $ Ne $ $ (\wp_{5}, -0.3890) $ $ (\wp_{6}, 0.2215) $ $ (\wp_{8}, -0.0121) $
    $ Cm $ $ (\wp_{6}, 0.4931) $ $ (\wp_{7}, 0.4581) $ $ (\wp_{8}, -0.1982) $
    $ Ta $ $ (\wp_{5}, -0.2358) $ $ (\wp_{8}, -0.2305) $ $ (\wp_{8}, -0.0250) $
    $ Ch $ $ (\wp_{5}, -0.4593) $ $ (\wp_{8}, -0.4296) $ $ (\wp_{8}, -0.0514) $

     | Show Table
    DownLoad: CSV

    The values of the weighted aggregated matrix are shown in Table 19. Table 19's score values and the NIS values are shown in Table 20. The values of $ \mathcal{ED}_{i} $ and $ \mathcal{HD}_{i} $ are given as follows:

    $ ED1=0.1143,ED2=2.267,ED3=3.964.HD1=0.1021,HD2=2.1401,HD3=3.9146.
    $
    Table 19.  Weighted aggregated decision matrix in the form of $ 2 $TLFFNs.
    Criteria $ \mathbb{A}_{1} $ $ \mathbb{A}_{2} $ $ \mathbb{A}_{3} $
    $ Im $ $ ((\wp_{2}, -0.3330), (\wp_{8}, -0.1445)) $ $ ((\wp_{1}, 0.3283), (\wp_{8}, -0.1011)) $ $ ((\wp_{2}, -0.4766), (\wp_{8}, -0.1234)) $
    $ Pe $ $ ((\wp_{3}, -0.1187), (\wp_{7}, 0.1712)) $ $ ((\wp_{2}, -0.0217), (\wp_{7}, 0.4653)) $ $ ((\wp_{2}, 0.4619), (\wp_{7}, 0.3429)) $
    $ Tr $ $ ((\wp_{2}, -0.0642), (\wp_{8}, -0.2404)) $ $ ((\wp_{2}, -0.4909), (\wp_{8}, -0.1738)) $ $ ((\wp_{2}, -0.2773), (\wp_{8}, -0.1811)) $
    $ Em $ $ ((\wp_{2}, 0.3776), (\wp_{7}, -0.1188)) $ $ ((\wp_{3}, 0.3132), (\wp_{6}, 0.2915)) $ $ ((\wp_{5}, -0.0118), (\wp_{5}, 0.0823)) $
    $ Te $ $ ((\wp_{2}, 0.4966), (\wp_{7}, -0.4484)) $ $ ((\wp_{5}, -0.4178), (\wp_{5}, 0.0415)) $ $ ((\wp_{6}, -0.2585), (\wp_{4}, -0.0880)) $
    $ Qu $ $ ((\wp_{2}, 0.4010), (\wp_{7}, -0.1231)) $ $ ((\wp_{4}, -0.3672), (\wp_{6}, 0.1698)) $ $ ((\wp_{5}, -0.1151), (\wp_{5}, 0.2450)) $
    $ Fu $ $ ((\wp_{2}, 0.3592), (\wp_{7}, -0.4373)) $ $ ((\wp_{3}, 0.4196), (\wp_{6}, -0.1980)) $ $ ((\wp_{5}, 0.3335), (\wp_{4}, 0.3232)) $
    $ Ob $ $ ((\wp_{2}, 0.4314), (\wp_{6}, 0.2336)) $ $ ((\wp_{5}, -0.0582), (\wp_{4}, 0.4066)) $ $ ((\wp_{6}, -0.3043), (\wp_{4}, -0.3473)) $
    $ Un $ $ ((\wp_{2}, 0.3732), (\wp_{6}, 0.3860)) $ $ ((\wp_{5}, -0.4969), (\wp_{5}, -0.2392)) $ $ ((\wp_{6}, -0.3205), (\wp_{4}, -0.3165)) $
    $ Fa $ $ ((\wp_{2}, -0.391), (\wp_{8}, -0.1207)) $ $ ((\wp_{1}, 0.2642), (\wp_{8}, -0.0851)) $ $ ((\wp_{1}, 0.3740), (\wp_{8}, -0.0965)) $
    $ Tc $ $ ((\wp_{2}, -0.4066), (\wp_{8}, -0.1397)) $ $ ((\wp_{1}, 0.3426), (\wp_{8}, -0.1165)) $ $ ((\wp_{2}, -0.4600), (\wp_{8}, -0.1319)) $
    $ Co $ $ ((\wp_{2}, 0.4171), (\wp_{7}, -0.4351)) $ $ ((\wp_{5}, -0.4472), (\wp_{6}, -0.1500)) $ $ ((\wp_{6}, -0.1565), (\wp_{4}, -0.4305)) $
    $ Ne $ $ ((\wp_{2}, 0.2006), (\wp_{6}, 0.4299)) $ $ ((\wp_{4}, -0.3539), (\wp_{5}, 0.0932)) $ $ ((\wp_{6}, 0.3876), (\wp_{3}, -0.3443)) $
    $ Cm $ $ ((\wp_{2}, -0.0518), (\wp_{8}, -0.4027)) $ $ ((\wp_{2}, 0.4676), (\wp_{7}, 0.4160)) $ $ ((\wp_{3}, -0.1804), (\wp_{7}, 0.2932)) $
    $ Ta $ $ ((\wp_{2}, 0.3753), (\wp_{6}, 0.2531)) $ $ ((\wp_{5}, 0.3354), (\wp_{4}, -0.2302)) $ $ ((\wp_{6}, 0.1985), (\wp_{3}, -0.1229)) $
    $ Ch $ $ ((\wp_{2}, 0.2229), (\wp_{6}, 0.4284)) $ $ ((\wp_{5}, 0.1524), (\wp_{4}, -0.2227)) $ $ ((\wp_{6}, 0.1523), (\wp_{3}, -0.2348)) $

     | Show Table
    DownLoad: CSV
    Table 20.  Scores of Table 19 and NIS.
    Criteria $ \mathbb{A}_{1} $ $ \mathbb{A}_{2} $ $ \mathbb{A}_{3} $ NIS
    $ Im $ $ (\wp_{0}, 0.2490) $ $ (\wp_{0}, 0.1681) $ $ (\wp_{0}, 0.2099) $ $ ((\wp_{1}, 0.3283), (\wp_{8}, -0.1011)) $
    $ Pe $ $ (\wp_{1}, 0.3057) $ $ (\wp_{1}, -0.1899) $ $ (\wp_{1}, 0.0235) $ $ ((\wp_{2}, -0.0217), (\wp_{7}, 0.4653)) $
    $ Tr $ $ (\wp_{0}, 0.4065) $ $ (\wp_{0}, 0.2819) $ $ (\wp_{0}, 0.3055) $ $ ((\wp_{2}, -0.4909), (\wp_{8}, -0.1738)) $
    $ Em $ $ (\wp_{2}, -0.4406) $ $ (\wp_{2}, 0.3385) $ $ (\wp_{4}, -0.0559) $ $ ((\wp_{2}, 0.3776), (\wp_{7}, -0.1188)) $
    $ Te $ $ (\wp_{2}, -0.0754) $ $ (\wp_{4}, -0.2494) $ $ (\wp_{5}, 0.0109) $ $ ((\wp_{2}, 0.4966), (\wp_{7}, -0.4484)) $
    $ Qu $ $ (\wp_{2}, -0.4327) $ $ (\wp_{3}, -0.4603) $ $ (\wp_{4}, -0.2166) $ $ ((\wp_{2}, 0.4010), (\wp_{7}, -0.1231)) $
    $ Fu $ $ (\wp_{2}, -0.1056) $ $ (\wp_{3}, -0.2135) $ $ (\wp_{5}, -0.4460) $ $ ((\wp_{2}, 0.3592), (\wp_{7}, -0.4373)) $
    $ Ob $ $ (\wp_{2}, 0.2199) $ $ (\wp_{4}, 0.2744) $ $ (\wp_{5}, 0.0628) $ $ ((\wp_{2}, 0.4314), (\wp_{6}, 0.2336)) $
    $ Un $ $ (\wp_{2}, 0.0698) $ $ (\wp_{4}, -0.1296) $ $ (\wp_{5}, 0.0408) $ $ ((\wp_{2}, 0.3732), (\wp_{6}, 0.3860)) $
    $ Fa $ $ (\wp_{0}, 0.2109) $ $ (\wp_{0}, 0.1421) $ $ (\wp_{0}, 0.1633) $ $ ((\wp_{1}, 0.2642), (\wp_{8}, -0.0851)) $
    $ Tc $ $ (\wp_{0}, 0.2375) $ $ (\wp_{0}, 0.1911) $ $ (\wp_{0}, 0.2231) $ $ ((\wp_{1}, 0.3426), (\wp_{8}, -0.1165)) $
    $ Co $ $ (\wp_{2}, -0.1001) $ $ (\wp_{4}, -0.1540) $ $ (\wp_{5}, 0.2036) $ $ ((\wp_{2}, 0.4171), (\wp_{7}, -0.4351)) $
    $ Ne $ $ (\wp_{2}, 0.0064) $ $ (\wp_{3}, 0.3465) $ $ (\wp_{6}, -0.1102) $ $ ((\wp_{2}, 0.2006), (\wp_{6}, 0.4299)) $
    $ Cm $ $ (\wp_{1}, -0.3681) $ $ (\wp_{1}, -0.0690) $ $ (\wp_{1}, 0.1444) $ $ ((\wp_{2}, -0.0518), (\wp_{8}, -0.4027)) $
    $ Ta $ $ (\wp_{2}, 2.1945) $ $ (\wp_{5}, -0.2320) $ $ (\wp_{6}, -0.3255) $ $ ((\wp_{2}, 0.3753), (\wp_{6}, 0.2531)) $
    $ Ch $ $ (\wp_{2}, 0.0104) $ $ (\wp_{5}, -0.3524) $ $ (\wp_{6}, -0.3459) $ $ ((\wp_{2}, 0.2229), (\wp_{6}, 0.4284)) $

     | Show Table
    DownLoad: CSV

    Finally, the $ \mathcal{RA} $ matrix with their corresponding alternatives sum and ranks is presented in Table 21.

    Table 21.  $ \mathcal{RA} $ matrix with sum and ranks.
    $ \mathcal{RA} $ $ \mathbb{A}_{1} $ $ \mathbb{A}_{2} $ $ \mathbb{A}_{3} $ Sum Rank
    $ \mathbb{A}_{1} $ 0 2.2345 10.8273 13.0618 2
    $ \mathbb{A}_{2} $ 6.5399 0 -4.7083 1.8315 3
    $ \mathbb{A}_{3} $ 18.5267 4.7083 0 23.2350 1

     | Show Table
    DownLoad: CSV

    The following facts have been observed when addressing the problem using the suggested and existing approaches:

    ● Using the $ 2 $TLPyF-CODAS technique [48], the results are shown in Table 16. These findings, which we obtained are identical to our suggested approach. The best option using the suggested and existing methodologies is the same, which is $ \mathbb{A}_3 $, demonstrating the validity and correctness of the technique. The $ 2 $TLPyF-CODAS technique, however, simply considers the positive and negative membership degrees as the two membership degrees. On the other hand, our current strategy, which consists of three membership levels, can accommodate a wide range of content. Moreover, the authors explicitly give weights to the criterion, whereas we compute the weights of the criteria using the entropy measure.

    ● The outcomes of using the $ 2 $TLFF-CODAS approach are shown in Table 21. These calculations we made using the previous method produced results that are consistent. The best option by utilizing the previous and suggested methodologies is the same, which is $ \mathbb{A}_3 $ and proves the validity and correctness of the approach offered. The $ 2 $TLFF-CODAS technique, on the other hand, consists of just two membership degrees: the positive membership degree and the negative membership degree, and since there isn't a neutral portion, it might not produce correct findings. On the other hand, our presented strategy, which consists of three membership levels and can handle a wide range of obscure information, is built on a solid foundation. Furthermore, we use the entropy measure to determine the criteria weights, compared to the $ 2 $TLFF-CODAS method that explicitly assign weights to the criteria.

    Table 22 displays the final rankings of the three options along with the best alternative using the suggested and existing methodologies. Figure 4 also shows the graphic representation of the ranking positions of all options.

    Table 22.  Comparison with existing methods.
    Method Ranking order Best alternative
    $ 2 $TL$ q $-RPF-CODAS (proposed) $ \mathbb{A}_{3} > \mathbb{A}_{1} > \mathbb{A}_{2} $ $ \mathbb{A}_{3} $
    $ 2 $TLPyF-CODAS [48] $ \mathbb{A}_{3} > \mathbb{A}_{1} > \mathbb{A}_{2} $ $ \mathbb{A}_{3} $
    $ 2 $TLFF-CODAS [55] $ \mathbb{A}_{3} > \mathbb{A}_{1} > \mathbb{A}_{2} $ $ \mathbb{A}_{3} $

     | Show Table
    DownLoad: CSV
    Figure 4.  Comparison using proposed and existing approaches.

    The following salient characteristics of our created technique serve to distinguish the given approach from the approaches already in use:

    1) As $ 2 $TLPyFS and $ 2 $TLFFS are special instances of $ 2 $TL$ q $-RPFS (owing to the lack of neutral membership grade), for $ q = 2 $ and $ q = 3 $, respectively, the range of the $ 2 $TL$ q $-RPFS is wider than the $ 2 $TLPyFS and $ 2 $TLFFS. As a result, the suggested strategy is generalized. We suggest the new AOs to fuse the provided information using $ 2 $TL$ q $-RPFSs. These novel operators, namely the $ 2 $TL$ q $-RPFEWA and $ 2 $TL$ q $-RPFEOWA operators, limit the effects of unclear data throughout the information integrating process and establish the link between aggregated arguments.

    2) We present a novel aggregation concept for Einstein AOs in the $ 2 $TL$ q $-RPF setting. This concept has a wider range (i.e., includes degrees of membership, neutral membership, and non-membership to explain the uncertainty and vagueness) and is capable of illuminating the maximum discrepancies of the data set.

    3) The most often used way for resolving MCGDM issues is the CODAS approach. The application of the CODAS approach with $ 2 $TL$ q $-RPFSs is also lacking.

    4) In conclusion, the approach we provide is general and suited to solving $ 2 $TL$ q $-RPFS MCGDM issues. While contrasting the suggested technique with the $ 2 $TLPyF-CODAS and $ 2 $TLFF-CODAS methodologies, we came to the same ranking conclusions.

    In order to illustrate linguistic assessment values using LTs, it has been acknowledged that the $ 2 $TLTSs are adequate structures. The $ 2 $TL$ q $-RPFS is a more extensive and universal structure since there is a wide range of permissible triplets. Furthermore, the $ 2 $TL$ q $-RPFSs provide remarkable qualities to express the experts' preference ratings utilizing LTs and within the constraints of $ q $-RPFSs. The $ 2 $TL$ q $-RPF context has been introduced with an improved and efficient CODAS approach. We use the entropy measure approach to compute the weights for the criteria. Moreover, under the umbrella of $ 2 $TL$ q $-RPFSs, two Einstein AOs, $ 2 $TL$ q $-RPFEWA and $ 2 $TL$ q $-RPFEOWA, have been investigated. The recommended method has been used to select the best alternative for RTTM system in order to show its value and effectiveness. In addition to this, parameter analysis is done to verify the stability of the suggested technique. The importance and reliability of the developed approach have been assessed and demonstrated by comparison with other procedures. As a result, we draw the conclusion that the technique is generic, simple to comprehend, practical to use, and capable of capturing the linguistic MCGDM difficulties. The major contributions of the proposed study are outlined in the following essential points: (1) suggested a novel approach to MCGDM issues in a linguistic context; (2) presented two AOs for $ 2 $TL$ q $-RPFSs; (3) provided a more reliable and effective CODAS approach for the $ 2 $TL$ q $-RPF scenario; (4) used a case study to implement the suggested MCGDM methodology. Although the structure of $ 2 $TL$ q $-RPFS has a broader structure and is capable to accommodate a wide range of information by increasing the powers of parameter $ q $. But it can only handle fuzzy information, and we have to consider the same powers of three triplets. In addition, the proposed strategies may not provide stable results for a large number of alternatives and criteria. Furthermore, the proposed methodology is able to capture only one-dimensional data. Our future research directions are stated as follows:

    ● We aim to integrate the CODAS approach with other methodologies to compute criteria weights, such as AHP, SWARA and IDOCRIW.

    ● In the future, we will extend more MCGDM approaches for $ 2 $TL$ q $-RPFSs using the CODAS methodology to address more real-world MCGDM problems in other disciplines. The application of the current work can be looked into other pertinent subject topics.

    ● Furthermore, we are planning to extend more MCGDM methods, such as PROMETHEE, ELECTRE, and WASPAS for $ 2 $TL$ q $-RPFSs.

    The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the Large Group Research Project under grant number (R.G.P.2/181/44).

    The authors declare no conflict of interest.

    [1] Andersen BB, Korbo L, Pakkenberg B. (1992) A quantitative study of the human cerebellum with unbiased stereological techniques. J Comp Neurol 326(4): 549-60.
    [2] Glickstein M, Doron K. (2008) Cerebellum: Connections and functions. Cerebellum 7(4):589-94.
    [3] Gibb R, Kolb B. (1999) A method for vibratome sectioning of golgi-cox stained whole rat brain. J Neurosci Methods 79(1): 1-4.
    [4] Ito M. (2002) Historical review of the significance of the cerebellum and the role of purkinje cells in motor learning. Ann N Y Acad Sci 978: 273-88. doi: 10.1111/j.1749-6632.2002.tb07574.x
    [5] Eccles JC, Ito M, Szentágothai J. (1967) The Cerebellum as a Neuronal Machine. New York: NY Springer-Verlag.
    [6] Marr D. (1960) A theory of cerebellar cortex. J Physiol 202(2): 437-70.
    [7] Albus JS. (1971) A theory of cerebellar function. Math Biosci 10: 25-61. doi: 10.1016/0025-5564(71)90051-4
    [8] Thach WT, Goodkin HP, Keating JG. (1992) The cerebellum and the adaptive coordination of movement. Ann Rev Neurosci 15: 403-42. doi: 10.1146/annurev.ne.15.030192.002155
    [9] Leiner HC, Leiner AL, Dow RS. (1986) Does the cerebellum contribute to mental skills? Behav Neurosci 100(4): 443-54.
    [10] Keele SW, Ivry R. (1990) Does the cerebellum provide a common computation for diverse tasks? A timing hypothesis. Ann NY Acad Sci 608: 207-11.
    [11] Petersen SE, Fox PT, Posner MI, et al. (1989) Positron emission tomographic studies of the processing of single words. J Cognitive Neurosci 1: 153-170. doi: 10.1162/jocn.1989.1.2.153
    [12] Strick PL, Dum RP, Fiez JA. (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413-34. doi: 10.1146/annurev.neuro.31.060407.125606
    [13] DOW RS. (1961) Some aspects of cerebellar physiology. J Neurosurg 18: 512-30. doi: 10.3171/jns.1961.18.4.0512
    [14] Kandel ER, Schwartz JH, Jessell TM. (2000) Principles of neural science. 4Eds, New York: McGraw-Hill, Health Professions Division, 1414 .
    [15] Berntson GG, Torello MW. (1982) The paleocerebellum and the integration of behavioural function. Physiol Psychol 10: 2-12. doi: 10.3758/BF03327003
    [16] Middleton FA, Strick PL. (1997) Cerebellar output channels. Int Rev Neurobiol 41: 61-82. doi: 10.1016/S0074-7742(08)60347-5
    [17] Hashimoto M, Hibi M. (2012) Development and evolution of cerebellar neural circuits. Dev Growth Differ 54(3): 373-89.
    [18] Ito M. (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78(3-5): 272-303.
    [19] Eccles JC. (1967) Circuits in the cerebellar control of movement. Proc Natl Acad Sci USA58(1): 336-43.
    [20] Akshoomoff NA, Courchesne E. (1992) A new role for the cerebellum in cognitive operations. Behav Neurosci 106(5): 731-8.
    [21] Decety J, Sjoholm H, Ryding E, Stenberg G, Ingvar DH. (1990) The cerebellum participates in mental activity: Tomographic measurements of regional cerebral blood flow. Brain Res 535(2):313-7.
    [22] Ryding E, Decety J, Sjoholm H, et al. (1993) Motor imagery activates the cerebellum regionally. A SPECT rCBF study with 99mTc-HMPAO. Brain Res Cogn Brain Res 1(2): 94-9.
    [23] Kim SG, Ugurbil K, Strick PL. (1994) Activation of a cerebellar output nucleus during cognitive processing. Science 265(5174): 949-51.
    [24] Schmahmann JD, Sherman JC. (1998) The cerebellar cognitive affective syndrome. Brain 121:561-79. doi: 10.1093/brain/121.4.561
    [25] Exner C, Weniger G, Irle E. (2004) Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology 63(11): 2132-5.
    [26] Marien P, de Smet HJ, Wijgerde E, et al. (2013) Posterior fossa syndrome in adults: A new case and comprehensive survey of the literature. Cortex 49(1): 284-300.
    [27] Kuper M, Timmann D. (2013) Cerebellar mutism. Brain Lang 127(3): 327-33.
    [28] Baillieux H, De Smet HJ, Paquier PF, et al. (2008) Cerebellar neurocognition: Insights into the bottom of the brain. Clin Neurol Neurosurg 110(8): 763-73.
    [29] Steinlin M, Imfeld S, Zulauf P, et al. (2003) Neuropsychological long-term sequelae after posterior fossa tumour resection during childhood. Brain 126(Pt 9): 1998-2008.
    [30] Levisohn L, Cronin-Golomb A, Schmahmann JD. (2000) Neuropsychological consequences of cerebellar tumour resection in children: Cerebellar cognitive affective syndrome in a paediatric population. Brain 123: 1041-50. doi: 10.1093/brain/123.5.1041
    [31] de Smet HJ, Baillieux H, Wackenier P, et al. (2009) Long-term cognitive deficits following posterior fossa tumor resection: A neuropsychological and functional neuroimaging follow-up study. Neuropsychology 23(6): 694-704.
    [32] Pollack IF, Polinko P, Albright AL, et al. (1995) Mutism and pseudobulbar symptoms after resection of posterior fossa tumors in children: Incidence and pathophysiology. Neurosurgery37(5): 885-93.
    [33] Ozimek A, Richter S, Hein-Kropp C, et al. (2004) Cerebellar mutism––report of four cases. J Neurol 251(8): 963-72.
    [34] Daniels SR, Moores LE, DiFazio MP. (2005) Visual disturbance associated with postoperative cerebellar mutism. Pediatr Neurol 32(2): 127-30.
    [35] Riva D. (1998) The cerebellar contribution to language and sequential functions: Evidence from a child with cerebellitis. Cortex 34(2): 279-87.
    [36] Drost G, Verrips A, Thijssen HO, et al. (2000) Cerebellar involvement as a rare complication of pneumococcal meningitis. Neuropediatrics 31(2): 97-9.
    [37] Fujisawa H, Yonaha H, Okumoto K, et al. (2005) Mutism after evacuation of acute subdural hematoma of the posterior fossa. Childs Nerv Syst 21(3): 234-6.
    [38] Ersahin Y, Mutluer S, Saydam S, Barcin E. (1997) Cerebellar mutism: Report of two unusual cases and review of the literature. Clin Neurol Neurosurg 99(2): 130-4.
    [39] Al-Anazi A, Hassounah M, Sheikh B, et al. (2001) Cerebellar mutism caused by arteriovenous malformation of the vermis. Br J Neurosurg 15(1): 47-50.
    [40] Dubey A, Sung WS, Shaya M, et al. (2009) Complications of posterior cranial fossa surgery––an institutional experience of 500 patients. Surg Neurol 72(4): 369-75.
    [41] Afshar-Oromieh A, Linhart H, Podlesek D, et al. (2010) Postoperative cerebellar mutism in adult patients with lhermitte-duclos disease. Neurosurg Rev 33(4): 401-8.
    [42] Coplin WM, Kim DK, Kliot M, et al. (1997) Mutism in an adult following hypertensive cerebellar hemorrhage: Nosological discussion and illustrative case. Brain Lang 59(3): 473-93.
    [43] Moore MT. (1969) Progressive akinetic mutism in cerebellar hemangioblastoma with "normal-pressure hydrocephalus". Neurology 19(1): 32-6.
    [44] Caner H, Altinors N, Benli S, et al. (1999) Akinetic mutism after fourth ventricle choroid plexus papilloma: Treatment with a dopamine agonist. Surg Neurol 51(2): 181-4.
    [45] Idiaquez J, Fadic R, Mathias CJ. (2001) Transient orthostatic hypertension after partial cerebellar resection. Clin Auton Res 21(1): 57-9.
    [46] De Smet HJ, Marien P. (2012) Posterior fossa syndrome in an adult patient following surgical evacuation of an intracerebellar haematoma. Cerebellum 11(2): 587-92.
    [47] Dunwoody GW, Alsagoff ZS, Yuan SY. (1997) Cerebellar mutism with subsequent dysarthria in an adult: Case report. Br J Neurosurg 11(2): 161-3.
    [48] Marien P, Verslegers L, Moens M, et al. (2013) Posterior fossa syndrome after cerebellar stroke. Cerebellum 12(5): 686-91.
    [49] Sacchetti B, Scelfo B, Strata P. (2005) The cerebellum: Synaptic changes and fear conditioning. Neuroscientist 11(3): 217-27.
    [50] LeDoux JE. (1994) Emotion, memory and the brain. Sci Am 270(6): 50-7.
    [51] Maschke M, Schugens M, Kindsvater K, et al. (2002) Fear conditioned changes of heart rate in patients with medial cerebellar lesions. J Neurol Neurosurg Psychiatry 72(1): 116-8.
    [52] Maschke M, Drepper J, Kindsvater K, et al. (2000) Fear conditioned potentiation of the acoustic blink reflex in patients with cerebellar lesions. J Neurol Neurosurg Psychiatry 68(3):358-64.
    [53] Turner BM, Paradiso S, Marvel CL, et al. (2007) The cerebellum and emotional experience. Neuropsychologia 45(6): 1331-41.
    [54] Nashold BS, Wilson WP, Slaughter DG. (1969) Sensations evoked by stimulation in the midbrain of man. J Neurosurg 30(1): 14-24.
    [55] Damasio AR, Grabowski TJ, Bechara A, et al. (2000) Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci 3(10): 1049-56.
    [56] Ploghaus A, Tracey I, Clare S, et al. (2000) Learning about pain: The neural substrate of the prediction error for aversive events. Proc Natl Acad Sci USA 97(16): 9281-6.
    [57] Ploghaus A, Tracey I, Gati JS, et al. (1999) Dissociating pain from its anticipation in the human brain. Science 284(5422): 1979-81.
    [58] Singer T, Seymour B, O'Doherty J, et al. (2004) Empathy for pain involves the affective but not sensory components of pain. Science 303(5661): 1157-62.
    [59] Fischer H, Andersson JL, Furmark T, et al. (2000) Fear conditioning and brain activity: A positron emission tomography study in humans. Behav Neurosci 114(4): 671-80.
    [60] Frings M, Maschke M, Erichsen M, et al. (2002) Involvement of the human cerebellum in fear-conditioned potentiation of the acoustic startle response: A PET study. Neuroreport 13(10):1275-8.
    [61] Timmann D, Drepper J, Frings M, et al. (2010) The human cerebellum contributes to motor, emotional and cognitive associative learning. A review. Cortex 46(7): 845-57.
    [62] Baumann O, Mattingley JB. (2012) Functional topography of primary emotion processing in the human cerebellum. Neuroimage 61(4): 805-11.
    [63] Schienle A, Scharmuller W. (2013) Cerebellar activity and connectivity during the experience of disgust and happiness. Neuroscience 246: 375-81. doi: 10.1016/j.neuroscience.2013.04.048
    [64] Schienle A, Stark R, Walter B, et al. (2002) The insula is not specifically involved in disgust processing: An fMRI study. Neuroreport 13(16): 2023-6.
    [65] Stoodley CJ, Schmahmann JD. (2009) Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies. Neuroimage 44(2): 489-501.
    [66] Heilman KM, Gilmore RL. (1998) Cortical influences in emotion. J Clin Neurophysiol 15(5):409-23.
    [67] Fusar-Poli P, Placentino A, Carletti F, et al. (2009) Functional atlas of emotional faces processing: A voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. J Psychiatry Neurosci 34(6): 418-32.
    [68] Vuilleumier P, Pourtois G. (2007) Distributed and interactive brain mechanisms during emotion face perception: Evidence from functional neuroimaging. Neuropsychologia 45(1): 174-94.
    [69] Schutter DJ, Enter D, Hoppenbrouwers SS. (2009) High-frequency repetitive transcranial magnetic stimulation to the cerebellum and implicit processing of happy facial expressions. J Psychiatry Neurosci 34(1): 60-5.
    [70] Ferrucci R, Giannicola G, Rosa M, et al. (2012) Cerebellum and processing of negative facial emotions: Cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cogn Emot 26(5):786-99.
    [71] Adamaszek M, D'Agata F, Kirkby KC, et al. (2014) Impairment of emotional facial expression and prosody discrimination due to ischemic cerebellar lesions. Cerebellum 13(3):338-45.
    [72] Furl N, van Rijsbergen NJ, Kiebel SJ, et al. (2010) Modulation of perception and brain activity by predictable trajectories of facial expressions. Cereb Cortex 20(3): 694-703.
    [73] Kilts CD, Egan G, Gideon DA, et al. (2003) Dissociable neural pathways are involved in the recognition of emotion in static and dynamic facial expressions. Neuroimage 18(1): 156-68.
    [74] Villanueva R. (2012) The cerebellum and neuropsychiatric disorders. Psychiatry Res 198(3):527-32.
    [75] Loeber RT, Cintron CM, Yurgelun-Todd DA. (2001) Morphometry of individual cerebellar lobules in schizophrenia. Am J Psychiatry 158(6): 952-4.
    [76] Okugawa G, Sedvall GC, Agartz I. (2003) Smaller cerebellar vermis but not hemisphere volumes in patients with chronic schizophrenia. Am J Psychiatry 160(9): 1614-7.
    [77] Jacobsen LK, Giedd JN, Berquin PC, et al. (1997) Quantitative morphology of the cerebellum and fourth ventricle in childhood-onset schizophrenia. Am J Psychiatry 154(12): 1663-9.
    [78] Nasrallah HA, Schwarzkopf SB, Olson SC, et al. (1991) Perinatal brain injury and cerebellar vermal lobules I-X in schizophrenia. Biol Psychiatry 29(6): 567-74.
    [79] Ichimiya T, Okubo Y, Suhara T, et al. (2001) Reduced volume of the cerebellar vermis in neuroleptic-naive schizophrenia. Biol Psychiatry 49(1): 20-7.
    [80] Staal WG, Hulshoff Pol HE, Schnack HG, et al. (2000) Structural brain abnormalities in patients with schizophrenia and their healthy siblings. Am J Psychiatry 157(3): 416-21.
    [81] Aylward EH, Reiss A, Barta PE, et al. (1994) Magnetic resonance imaging measurement of posterior fossa structures in schizophrenia. Am J Psychiatry 151(10): 1448-52.
    [82] Heath RG. (1977) Modulation of emotion with a brain pacemaker. Treatment for intractable psychiatric illness. J Nerv Ment Dis 165(5): 300-17.
    [83] Demirtas-Tatlidede A, Freitas C, Cromer JR, et al. (2010) Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophr Res 124(1-3):91-100.
    [84] Manu P, Sarpal D, Muir O, et al. (2011) When can patients with potentially life-threatening adverse effects be rechallenged with clozapine? A systematic review of the published literature. Schizophr Res 134(2-3): 180-6.
    [85] Soares JC, Mann JJ. (1997) The anatomy of mood disorders––review of structural neuroimaging studies. Biol Psychiatry 41(1): 86-106.
    [86] Fitzgerald PB, Laird AR, Maller J, et al. (2008) A meta-analytic study of changes in brain activation in depression. Hum Brain Mapp 29(6): 683-95.
    [87] Leroi I, O'Hearn E, Marsh L, Lyketsos CG, et al. (2002) Psychopathology in patients with degenerative cerebellar diseases: A comparison to huntington's disease. Am J Psychiatry 159(8):1306-14.
    [88] Alalade E, Denny K, Potter G. (2011) Altered cerebellar-cerebral functional connectivity in geriatric depression. PLoS One 6(5): e20035.
    [89] Kanner L. (1943) Autistic disturbances of affective contact. Nervous Child 2: 217-50.
    [90] Senju A, Johnson MH. (2009) Atypical eye contact in autism: Models, mechanisms and development. Neurosci Biobehav Rev 33(8): 1204-14.
    [91] Ospina MB, Krebs Seida J, Clark B, et al. (2008) Behavioural and developmental interventions for autism spectrum disorder: A clinical systematic review. PLoS One 3(11): e3755.
    [92] Hughes JR. (2009) Update on autism: A review of 1300 reports published in 2008. Epilepsy Behav 16(4): 569-89.
    [93] Muratori F, Maestro S. (2007) Autism as a downstream effect of primary difficulties in intersubjectivity interacting with abnormal development of brain connectivity. Inter J Dialog Science 2007(2): 93-118.
    [94] Bailey A, Luthert P, Dean A, et al. (1998) A clinicopathological study of autism. Brain 121 ( Pt 5)(Pt 5): 889-905.
    [95] Bauman M, Kemper TL. (1985) Histoanatomic observations of the brain in early infantile autism. Neurology 35(6): 866-74.
    [96] Courchesne E, Yeung-Courchesne R, Press GA, et al. (1988) Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med 318(21): 1349-54.
    [97] Courchesne E, Hesselink JR, Jernigan TL, et al. (1987) Abnormal neuroanatomy in a nonretarded person with autism. unusual findings with magnetic resonance imaging. Arch Neurol 44(3):335-41.
    [98] Hashimoto T, Tayama M, Murakawa K, et al. (1995) Development of the brainstem and cerebellum in autistic patients. J Autism Dev Disord 25(1):1-18.
    [99] Ingram JL, Peckham SM, Tisdale B, et al. (2000) Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism. Neurotoxicol Teratol 22(3): 319-24.
    [100] Pierce K, Courchesne E. (2001) Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biol Psychiatry 49(8): 655-64.
    [101] Sparks BF, Friedman SD, Shaw DW, et al. (2002) Brain structural abnormalities in young children with autism spectrum disorder. Neurology 59(2): 184-92.
    [102] Allen G, Courchesne E. (2003) Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: An fMRI study of autism. Am J Psychiatry160(2): 262-73.
    [103] Waterhouse L, Fein D, Modahl C. (1996) Neurofunctional mechanisms in autism. Psychol Rev103(3): 457-89.
    [104] Snow WM, Hartle K, Ivanco TL. (2008) Altered morphology of motor cortex neurons in the VPA rat model of autism. Dev Psychobiol 50(7): 633-9.
    [105] Allen G, Buxton RB, Wong EC, et al. (1997) Attentional activation of the cerebellum independent of motor involvement. Science 275(5308): 1940-3.
    [106] Lalonde R, Strazielle C. (2003) The effects of cerebellar damage on maze learning in animals. Cerebellum 2(4): 300-9.
    [107] Joyal CC, Strazielle C, Lalonde R. (2001) Effects of dentate nucleus lesions on spatial and postural sensorimotor learning in rats. Behav Brain Res 122(2): 131-7.
    [108] Joyal CC, Meyer C, Jacquart G, et al. (1996) Effects of midline and lateral cerebellar lesions on motor coordination and spatial orientation. Brain Res 739(1-2): 1-11.
    [109] Leggio MG, Molinari M, Neri P, et al. (2000) Representation of actions in rats: The role of cerebellum in learning spatial performances by observation. Proc Natl Acad Sci USA 97(5):2320-5.
    [110] Dow RS, Moruzzi G. (1958) The physiology and pathology of the cerebellum. Minneapolis: University of Minnesota Press.
    [111] Sprague JM, Chambers WW. (1959) An analysis of cerebellar function in the cat, as revealed by its complete and partial destruction, and its interaction with the cerebral cortex. Archs ital Biol 97:68-88.
    [112] Chambers WW, Sprague JM. (1955) Functional localization in the cerebellum II. Arch Neurol Psychiat (Chic) 74: 653-680. doi: 10.1001/archneurpsyc.1955.02330180071008
    [113] Peters M, Monjan AA. (1971) Behavior after cerebellar lesions in cats and monkeys. Physiol Behav 6(2): 205-6.
    [114] Berman AS, Berman D, Prescott JW. (1974) The effect of cerebellar lesions on emotional behavior in the rhesus monkey. In: Cooper IS, Riklan M, Snider RS, editors. Ihe Cerebellum, Epilepsy, and Behavior. New York: Plenum, 1974.
    [115] Supple WF, Leaton RN, Fanselow MS. (1987) Effects of cerebellar vermal lesions on species-specific fear responses, neophobia, and taste-aversion learning in rats. Physiol Behav39(5): 579-86.
    [116] Barnett SA, Barnett SA. (1975) The rat: a study in behavior. Chicago: University of Chicago. Press.
    [117] Supple WF, Leaton RN. (1990) Cerebellar vermis: Essential for classically conditioned bradycardia in the rat. Brain Res 509(1): 17-23.
    [118] Supple WF, Kapp BS. (1993) The anterior cerebellar vermis: Essential involvement in classically conditioned bradycardia in the rabbit. J Neurosci 13(9): 3705-11.
    [119] Yuzaki M. (2003) The delta2 glutamate receptor: 10 years later. Neurosci Res 46(1): 11-22.
    [120] Sacchetti B, Scelfo B, Tempia F, et al. (2004) Long-term synaptic changes induced in the cerebellar cortex by fear conditioning. Neuron 42(6): 973-82.
    [121] Saab CY, Willis WD. (2003) The cerebellum: Organization, functions and its role in nociception. Brain Res Brain Res Rev 42(1): 85-95.
    [122] Sacchetti B, Baldi E, Lorenzini CA, et al. (2002) Cerebellar role in fear-conditioning consolidation. Proc Natl Acad Sci USA 99(12): 8406-11.
    [123] Sacchetti B, Scelfo B, Strata P. (2009) Cerebellum and emotional behavior. Neuroscience 162(3):756-62.
    [124] Butler AB, Hodos H. (1996) Comparative vertebrate neuroanatomy. New York: Wiley-Liss.
    [125] Rodriguez F, Duran E, Gomez A, et al. (2005) Cognitive and emotional functions of the teleost fish cerebellum. Brain Res Bull 66(4-6): 365-70.
    [126] Yoshida M, Kondo H. (2012) Fear conditioning-related changes in cerebellar purkinje cell activities in goldfish. Behav Brain Funct 8: 52. doi: 10.1186/1744-9081-8-52
    [127] Supple WF, Sebastiani L, Kapp BS. (1993) Purkinje cell responses in the anterior cerebellar vermis during pavlovian fear conditioning in the rabbit. Neuroreport 4(7): 975-8.
    [128] Middleton FA, Strick PL. (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266(5184): 458-61.
    [129] Middleton FA, Strick PL. (2000) Cerebellar projections to the prefrontal cortex of the primate. J Neurosci 21(2):700-12.
    [130] Middleton FA, Strick PL. (1998) Cerebellar output: Motor and cognitive channels. Trends Cogn Sci 2(9): 348-54.
    [131] Dietrichs E. (1984) Cerebellar autonomic function: Direct hypothalamocerebellar pathway. Science 223(4636): 591-3.
    [132] Haines DE, Dietrichs E. (1984) An HRP study of hypothalamo-cerebellar and cerebello-hypothalamic connections in squirrel monkey (saimiri sciureus). J Comp Neurol 229(4):559-75.
    [133] Snider RS, Maiti A. (1976) Cerebellar contributions to the papez circuit. J Neurosci Res 2(2):133-46.
    [134] Heath RG. (1972) Physiologic basis of emotional expression: Evoked potential and mirror focus studies in rhesus monkeys. Biol Psychiatry 5(1):15-31.
    [135] Heath RG, Harper JW. (1974) Ascending projections of the cerebellar fastigial nucleus to the hippocampus, amygdala, and other temporal lobe sites: Evoked potential and histological studies in monkeys and cats. Exp Neurol 45(2): 268-87.
    [136] Prescott JW. (1971) Early somatosensory deprivation as ontogenic process in the abnormal development of the brain and behavior. In: Moor-Jankowski E, editor. Basel: Karger.
    [137] D'Angelo E, Casali S. (2013) Seeking a unified framework for cerebellar function and dysfunction: From circuit operations to cognition. Front Neural Circuits 6: 116.
    [138] Larouche M, Hawkes R. (2006) From clusters to stripes: The developmental origins of adult cerebellar compartmentation. Cerebellum 5(2): 77-88.
    [139] Snow WM, Anderson JE, Fry M. (2014) Regional and genotypic differences in intrinsic electrophysiological properties of cerebellar purkinje neurons from wild-type and dystrophin-deficient mdx mice. Neurobiol Learn Mem 107: 19-31. doi: 10.1016/j.nlm.2013.10.017
    [140] Stoodley CJ, Schmahmann JD. (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46(7): 831-44.
    [141] Schmahmann JD, Caplan D. (2006) Cognition, emotion and the cerebellum. Brain 129(Pt 2):290-2.
    [142] Leiner HC, Leiner AL, Dow RS. (1989) Reappraising the cerebellum: What does the hindbrain contribute to the forebrain? Behav Neurosci 103(5): 998-1008.
    [143] Schmahmann JD. (2010) The role of the cerebellum in cognition and emotion: Personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev 20(3): 236-60.
    [144] Nudo RJ, Plautz EJ, Frost SB. (2001) Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve 24(8): 1000-19.
  • This article has been cited by:

    1. Uzma Ahmad, Ayesha Khan, Sundas Shhazadi, Extended ELECTRE I method for decision-making based on 2-tuple linguistic q-rung picture fuzzy sets, 2024, 1432-7643, 10.1007/s00500-023-09544-4
    2. Ayesha Khan, Uzma Ahmad, Multi-criteria group decision-making based on 2-tuple linguistic q-rung picture fuzzy sets, 2024, 9, 2364-4966, 10.1007/s41066-023-00441-7
    3. Yuan Rong, Liying Yu, An extended MARCOS approach and generalized Dombi aggregation operators-based group decision-making for emergency logistics suppliers selection utilizing q-rung picture fuzzy information, 2024, 9, 2364-4966, 10.1007/s41066-023-00439-1
    4. Rachna Rana, Pankaj Bhambri, 2024, chapter 6, 9798369368756, 149, 10.4018/979-8-3693-6875-6.ch006
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8308) PDF downloads(1249) Cited by(22)

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog