AIMS Mathematics, 2016, 1(2): 137-143. doi: 10.3934/Math.2016.2.137.

Research article

Export file:

Format

• RIS(for EndNote,Reference Manager,ProCite)
• BibTex
• Text

Content

• Citation Only
• Citation and Abstract

Quantum Rule of Angular Momentum

1 Department of Mathematics, Sichuan University, Chengdu, P. R. China
2 Department of Mathematics, Indiana University, Bloomington, IN 47405, USA

## Abstract    Full Text(HTML)    Figure/Table    Related pages

In this article, we establish a quantum rule of angular momentum that only fermions with spin J = 1/2 and bosons with J = 0 can rotate around a center with zero moment of force, and particles with J ≠ 0, 1/2 will move on a straight line unless there is a nonzero moment of force present.
Figure/Table
Supplementary
Article Metrics

Citation: Tian Ma, Shouhong Wang. Quantum Rule of Angular Momentum. AIMS Mathematics, 2016, 1(2): 137-143. doi: 10.3934/Math.2016.2.137

References

• 1. L. de Broglie, Recherches sur la th´eorie des quanta, Thesis Paris, 1924.
• 2. A. Einstein, U¨ ber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, Annalen der Physik 322, 132–148.
• 3. T. Ma and S. Wang, Unified field equations coupling four forces and principle of interaction dynamics, arXiv:1210.0448 (2012); DCDS-A, 35:3 (2015), 1103-1138.
• 4. T. Ma and S. Wang, Unified field theory and principle of representation invariance, arXiv:1212.4893 (2012); version 1 appeared in Applied Mathematics and Optimization, DOI: 10.1007/s00245-013-9226-0, 69:3 (2014), 359-392.
• 5. T. Ma and S. Wang, Weakton model of elementary particles and decay mechanisms, Indiana University Institute for Scientific Computing and Applied Mathematics Preprint Series, #1304 (May 30, 2013); Electronic Journal of Theoretical Physics, Volume 12, No. 32, 139-178.
• 6. T. Ma and S. Wang, Mathematical Principles of Theoretical Physics, Science Press, Beijing, 524pp., August, 2015.
• 7. M. Planck, Ueber das Gesetz der Energieverteilung im Normalspectrum, Annalen der Physik, 309, 553–563.