Research article

Study on pest management SI epidemic model with instantaneous and non-instantaneous impulsive effects

  • Published: 23 October 2025
  • MSC : 34A37, 34C25, 34D05, 92D45

  • In this study, we propose and analyze a Susceptible-Infected (SI) epidemic model applied to pest management, focusing on the nonlinear release of infected pests and an instantaneous pulse of pesticide spraying. Additionally, the mortality rates of both susceptible and infected pests following the pesticide application are modeled as non-instantaneous pulses. Utilizing the comparison theorem for pulse differential equations and Floquet theory, we derive a threshold condition for the eradication of susceptible pests. We also demonstrate that all solutions are uniformly ultimately bounded. Furthermore, we establish conditions for the globally asymptotic stability of the pest-free boundary periodic solution and the permanence of the system. Finally, numerical simulations are conducted to verify the theoretical findings, and the key parameters affecting the pest extinction threshold were obtained, thereby providing a solid theoretical basis for the development of effective pest management strategies.

    Citation: Hu Pu, Sergey Meleshko, Eckart Schulz, Jianjun Jiao. Study on pest management SI epidemic model with instantaneous and non-instantaneous impulsive effects[J]. AIMS Mathematics, 2025, 10(10): 24179-24207. doi: 10.3934/math.20251072

    Related Papers:

  • In this study, we propose and analyze a Susceptible-Infected (SI) epidemic model applied to pest management, focusing on the nonlinear release of infected pests and an instantaneous pulse of pesticide spraying. Additionally, the mortality rates of both susceptible and infected pests following the pesticide application are modeled as non-instantaneous pulses. Utilizing the comparison theorem for pulse differential equations and Floquet theory, we derive a threshold condition for the eradication of susceptible pests. We also demonstrate that all solutions are uniformly ultimately bounded. Furthermore, we establish conditions for the globally asymptotic stability of the pest-free boundary periodic solution and the permanence of the system. Finally, numerical simulations are conducted to verify the theoretical findings, and the key parameters affecting the pest extinction threshold were obtained, thereby providing a solid theoretical basis for the development of effective pest management strategies.



    加载中


    [1] B. Liu, Z. Teng, L. Chen, The effect of impulsive spraying pesticide on stage-structured population models with birth pulse, J. Biol. Syst., 13 (2005), 31–44. https://doi.org/10.1142/S0218339005001409 doi: 10.1142/S0218339005001409
    [2] Z. Lu, X. Chi, L. Chen, Impulsive control strategies in biological control of pesticide, Theor. Popul. Biol., 64 (2003), 39–47. https://doi.org/10.1016/S0040-5809(03)00048-0 doi: 10.1016/S0040-5809(03)00048-0
    [3] G. R. Jiang, Q. S. Lu, L. Peng, Impulsive ecological control of a stage-structured pest management system, Math. Biosci. Eng., 36 (2005), 331–344. https://doi.org/10.3934/mbe.2005.2.329 doi: 10.3934/mbe.2005.2.329
    [4] C. Y. Wei, Study of the dynamics of a pest model with birth pulse, MS. Thesis, Shaanxi Normal University, 2012.
    [5] B. Kang, M. He, B. Liu, Optimal control of agricultural insects with a stage-structured model, Math. Probl. Eng., 2013 (2013), 168979.
    [6] J. Liang, S. Tang, R. A. Cheke, Beverton-Holt discrete pest management models with pulsed chemical control and evolution of pesticide resistance, Commun. Nonlinear Sci. Numer. Simul., 36 (2016), 327–341. https://doi.org/10.1016/j.cnsns.2015.12.014 doi: 10.1016/j.cnsns.2015.12.014
    [7] J. Liang, S. Tang, R. A. Cheke, J. Wu, Adaptive release of natural enemies in a pest-natural enemy system with pesticide resistance, Bull. Math. Biol., 75 (2013), 2167–2195. https://doi.org/10.1007/s11538-013-9886-6 doi: 10.1007/s11538-013-9886-6
    [8] J. Liang, S. Tang, R. A. Cheke, J. Wu, Models for determining how many natural enemies to release inoculatively in combinations of biological and chemical control with pesticide resistance, J. Math. Anal. Appl., 422 (2015), 1479–1503. https://doi.org/10.1016/j.jmaa.2014.09.048 doi: 10.1016/j.jmaa.2014.09.048
    [9] X. N. Liu, L. S. Chen, Complex dynamics of Holling type Ⅱ Lotka-Volterra predator-prey system with impulsive perturbations on the predator, Chaos Soliton. Fract., 16 (2003), 311–320. https://doi.org/10.1016/S0960-0779(02)00408-3 doi: 10.1016/S0960-0779(02)00408-3
    [10] Y. Zhang, B. Liu, L. Chen, Extinction and permanence of a two-prey one-predator system with impulsive effect, Math. Med. Biol., 20 (2003), 309–325. https://doi.org/10.1093/imammb/20.4.309 doi: 10.1093/imammb/20.4.309
    [11] J. Jiao, S. Cai, L. Li, Y. Zhang, Dynamics of a predator-prey model with impulsive biological control and unilaterally impulsive diffusion, Adv. Differ. Equ., 2016 (2016), 150. https://doi.org/10.1186/s13662-016-0851-1 doi: 10.1186/s13662-016-0851-1
    [12] Y. Li, J. Liang, Models for determining the optimal switching time in chemical control of pest with pesticide resistance, Math. Biosci. Eng., 18 (2021), 471–494. https://doi.org/10.3934/mbe.2021026 doi: 10.3934/mbe.2021026
    [13] B. Kang, X. Hou, B. Liu, Threshold control strategy for a Filippov model with group defense of pests and a constant-rate release of natural enemies, Math. Biosci. Eng., 20 (2023), 12076–12092. https://doi.org/10.3934/mbe.2023537 doi: 10.3934/mbe.2023537
    [14] B. Liu, Y. Zhang, L. Chen, The dynamical behaviors of a Lotka-Volterra predator-prey model concerning integrated pest management, Nonlinear Anal., 6 (2005), 227–243. https://doi.org/10.1016/j.nonrwa.2004.08.001 doi: 10.1016/j.nonrwa.2004.08.001
    [15] J. Jiao, L. Chen, Nonlinear incidence rate of a pest management SI model with biological and chemical control concern, Appl. Math. Mech., 28 (2007), 541–551. https://doi.org/10.1007/s10483-007-0415-y doi: 10.1007/s10483-007-0415-y
    [16] J. Jiao, X. Dai, Q. Quan, Dynamics of a pest-nature enemy model for IPM with repeatedly releasing natural enemy and impulsively spraying pesticides, Adv. Cont. Discr. Mod., 2025 (2025), 52. https://doi.org/10.1186/s13662-025-03877-0 doi: 10.1186/s13662-025-03877-0
    [17] J. Jiao, Y. Xiao, Dynamics of a pest-natural enemy model with natural enemy periodic migration described by time delay, Nonlinear Anal., 87 (2026), 104454. https://doi.org/10.1016/j.nonrwa.2025.104454 doi: 10.1016/j.nonrwa.2025.104454
    [18] J. Liu, Q. Qi, B. Liu, S. Gao, Pest control switching models with instantaneous and non-instantaneous impulsive effects, Math. Comput. Simul., 205 (2023), 926–938. https://doi.org/10.1016/j.matcom.2022.10.027 doi: 10.1016/j.matcom.2022.10.027
    [19] X. Dai, J. Jiao, Q. Quan, A. Zhou, Dynamics of a predator-prey system with sublethal effects of pesticides on pests and natural enemies, Int. J. Biomath., 17 (2024), 2350007. https://doi.org/10.1142/S1793524523500079 doi: 10.1142/S1793524523500079
    [20] X. Dai, J. Jiao, Q. Quan, Dynamic analysis of an instantaneous/non-instantaneous unilateral diffusion prey-predator model with impulsive control strategy, Math. Meth. Appl. Sci., 2025.
    [21] J. Li, Q. Huang, B. Liu, A pest control model with birth pulse and residual and delay effects of pesticides, Adv. Differ. Equ., 2019 (2019), 117. https://doi.org/10.1186/s13662-019-1978-7 doi: 10.1186/s13662-019-1978-7
    [22] B. Liu, G. Hu, B. Kan, X. Huang, Analysis of a hybrid pest management model incorporating pest resistance and different control strategies, Math. Biosci. Eng., 17 (2020), 4364–4383. https://doi.org/10.3934/mbe.2020241 doi: 10.3934/mbe.2020241
    [23] L. Wu, Z. Xiang, A study of integrated pest management models with instantaneous and non-instantaneous impulse effects, Math. Biosci. Eng., 21 (2024), 3063–3094. https://doi.org/10.3934/mbe.2024136 doi: 10.3934/mbe.2024136
    [24] Q. Quan, J. Jiao, X. Dai, Dynamics of a vegetation management model with seasonal rainfall and groundwater diffusion, Int. J. Biomath., 2024, 2450136. https://doi.org/10.1142/S1793524524501365 doi: 10.1142/S1793524524501365
    [25] J. Jiao, W. Tang, Dynamics of a lake-eutrophication model with nontransient/transient impulsive dredging and pulse inputting, Adv. Differ. Equ., 2021 (2021), 280. https://doi.org/10.1186/s13662-021-03434-5 doi: 10.1186/s13662-021-03434-5
    [26] J. Jiao, S. Cai, L. Li, Dynamics of a periodic switched predator-prey system with impulsive harvesting and hibernation of prey population, J. Franklin Inst., 353 (2016), 3818–3834. https://doi.org/10.1016/j.jfranklin.2016.06.035 doi: 10.1016/j.jfranklin.2016.06.035
    [27] J. Jiao, Z. Liu, L. Li, X. Nie, Threshold dynamics of a stage-structured single population model with non-transient and transient impulsive effects, Appl. Math. Lett., 97 (2019), 88–92. https://doi.org/10.1016/j.aml.2019.05.024 doi: 10.1016/j.aml.2019.05.024
    [28] Q. Quan, W. Tang, J. Jiao, Y. Wang Dynamics of a new stage-structured population model with transient and nontransient impulsive effects in a polluted environment, Adv. Differ. Equ., 518 (2021), 108096. https://doi.org/10.1186/s13662-021-03667-4 doi: 10.1186/s13662-021-03667-4
    [29] Q. Quan, X. Dai, J. Jiao, Dynamics of a predator-prey model with impulsive diffusion and transient/nontransient impulsive harvesting, Mathematics, 11 (2023), 3254. https://doi.org/10.3390/math11143254 doi: 10.3390/math11143254
    [30] Q. Quan, M. Wang, J. Jiao, X. Dai, Dynamics of a predator–prey fishery model with birth pulse, impulsive releasing and harvesting on prey, J. Appl. Math. Comput., 70 (2024), 3011–3031. https://doi.org/10.1007/s12190-024-02081-9 doi: 10.1007/s12190-024-02081-9
    [31] X. Dai, Z. Zhou, J. Jiao, Dynamical analysis of a periodically switched predator-prey model with role reversal and hibernation, Int. J. Biomath., 2025, 2550008. https://doi.org/10.1142/S1793524525500081 doi: 10.1142/S1793524525500081
    [32] C. Li, S. Tang, Analyzing a generalized pest-natural enemy model with nonlinear impulsive control, Open Math., 16 (2018), 1390–1411. https://doi.org/10.1515/math-2018-0114 doi: 10.1515/math-2018-0114
    [33] Z. Zhou, J. Jiao, X. Dai, L. Wu, Dynamics of a predator-prey system with impulsive stocking prey and nonlinear harvesting predator at different moments, Mathematics, 12 (2024), 2369. https://doi.org/10.3390/math12152369 doi: 10.3390/math12152369
    [34] L. Wu, J. Jiao, X. Dai, Z. Zhou, Dynamical analysis of an ecological aquaculture management model with stage-structure and nonlinear impulsive releases for larval predators, AIMS Math., 9 (2024), 29053–29075. https://doi.org/10.3934/math.20241410 doi: 10.3934/math.20241410
    [35] L. Wu, J. Jiao, X. Dai, Dynamics of stage-structured ecological aquaculture management model with impulsive harvesting and nonlinearly releasing larval predators at different fixed moments, J. Comput. Sci., 2025 (2025), 102532. https://doi.org/10.1016/j.jocs.2025.102532 doi: 10.1016/j.jocs.2025.102532
    [36] J. Jiao, Y. Xiao, H. Jiao, Dynamics of a switched predator-prey breeding management model with impulsive nonlinear releasing and age-selective harvesting predator, Adv. Cont. Discr. Mod., 2025 (2025), 101. https://doi.org/10.1186/s13662-025-03960-6 doi: 10.1186/s13662-025-03960-6
    [37] Z. Zhou, Q. Quan, J. Jiao, X. Dai, Bifurcation dynamics of a predator–prey model with impulsive density-dependent nonlinear pesticide spraying and predator release, Commun. Nonlinear Sci. Numer. Simul., 150 (2025), 108979. https://doi.org/10.1016/j.cnsns.2025.108979 doi: 10.1016/j.cnsns.2025.108979
    [38] L. Wu, J. Jiao, Q. Quan, H. Sun, Dynamics of a pest management model with nonlinearly impulsive releasing two types of natural enemies and their interspecific cooperation, Chaos Soliton. Fract., 199 (2025), 116805. https://doi.org/10.1016/j.chaos.2025.116805 doi: 10.1016/j.chaos.2025.116805
    [39] H. Sun, J. Jiao, Dynamics of a host-parasite model with impulsive culling and density-dependent stocking during fish reproductive cycles, Int. J. Biomath., 2025, 2550073. https://doi.org/10.1142/S1793524525500731 doi: 10.1142/S1793524525500731
    [40] V. Lakshmikantham, D. D. Bainov, P. Simeonov, Theory of impulsive differential equations, Singapore: World Scientific, 1989. https://doi.org/10.1142/0906
    [41] D. Bainov, P. Simeonov, Impulsive differential equations: periodic solutions and applications, John Wiley & Sons, Inc., 1993.
    [42] J. Li, Q. Huang, B. Liu, A pest control model with birth pulse and residual and delay effects of pesticides, Adv. Differ. Equ., 2019 (2019), 117. https://doi.org/10.1186/s13662-019-1978-7 doi: 10.1186/s13662-019-1978-7
    [43] W. Gao, H. M. Baskonus, Deeper investigation of modified epidemiological computer virus model containing the Caputo operator, Chaos Soliton. Fract., 158 (2022), 112050. https://doi.org/10.1016/j.chaos.2022.112050 doi: 10.1016/j.chaos.2022.112050
    [44] Q. Tul Ain, T. Sathiyaraj, S. Karim, M. Nadeem, P. Kandege Mwanakatwe, ABC fractional derivative for the alcohol drinking model using two-scale fractal dimension, Complexity, 2022 (2022), 8531858.
    [45] P. Veeresha, N. S. Malagi, D. G. Prakasha, H. M. Baskonus, An efficient technique to analyze the fractional model of vector-borne diseases, Phys. Scr., 97 (2022), 054004. https://doi.org/10.1088/1402-4896/ac607b doi: 10.1088/1402-4896/ac607b
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(385) PDF downloads(18) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog