Research article Special Issues

Sharp global existence and orbital stability of standing waves for the Schrödinger-Hartree equation with partial confinement

  • Published: 23 October 2025
  • MSC : 35A01, 35A15, 35B44, 35Q55

  • This study is concerned with the sharp criterion of global existence and the orbital stability of standing waves for the Hartree equation in presence of a partial confinement. Using the scaling technique and constructing cross-invariant sets, we first derive the sharp threshold for global existence and blow-up of the solution in both $ L^{2} $-critical and $ L^{2} $-supercritical settings. Then, by taking advantage of the profile decomposition technique and concentration compact arguments together with variational methods, we explore the existence of normalized standing waves and show that these standing waves are orbitally stable in the $ L^{2} $-subcritical, $ L^{2} $-critical, and supercritical cases. Our conclusions complement and compensate some previous results.

    Citation: Feiyan Lei, Hui Jian. Sharp global existence and orbital stability of standing waves for the Schrödinger-Hartree equation with partial confinement[J]. AIMS Mathematics, 2025, 10(10): 24208-24239. doi: 10.3934/math.20251073

    Related Papers:

  • This study is concerned with the sharp criterion of global existence and the orbital stability of standing waves for the Hartree equation in presence of a partial confinement. Using the scaling technique and constructing cross-invariant sets, we first derive the sharp threshold for global existence and blow-up of the solution in both $ L^{2} $-critical and $ L^{2} $-supercritical settings. Then, by taking advantage of the profile decomposition technique and concentration compact arguments together with variational methods, we explore the existence of normalized standing waves and show that these standing waves are orbitally stable in the $ L^{2} $-subcritical, $ L^{2} $-critical, and supercritical cases. Our conclusions complement and compensate some previous results.



    加载中


    [1] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., 71 (1999), 463–512. https://doi.org/10.1103/RevModPhys.71.463 doi: 10.1103/RevModPhys.71.463
    [2] L. Pitaevskii, S. Stringari, Bose-Einstein condensation, Oxford: Oxford University Press, 2003.
    [3] J. Zhang, Stability of attractive Bose-Einstein condensates, J. Stat. Phys., 101 (2000), 731–746. https://doi.org/10.1023/A:1026437923987 doi: 10.1023/A:1026437923987
    [4] F. Maucher, S. Skupin, W. Krolikowski, Collapse in the nonlocal nonlinear Schrödinger equation, Nonlinearity, 24 (2011), 1987–2001. https://doi.org/10.1088/0951-7715/24/7/005 doi: 10.1088/0951-7715/24/7/005
    [5] E. H. Lieb, R. Seiringer, J. P. Solovej, J. Yngvason, The quantum-mechanical many body problem: The Bose gas, Physics, 27 (2004), 97–183. https://doi.org/10.1007/3-540-30434-7-9 doi: 10.1007/3-540-30434-7-9
    [6] T. Cazenave, Semilinear Schrödinger equations, American Mathematical Society, 10 (2003).
    [7] J. Shu, J. Zhang, Sharp criterion of global existence for nonlinear Schrödinger equation with a harmonic potential, Acta Math. Appl. Sin.-E., 25 (2009), 537–544. https://doi.org/10.1007/s10114-009-7473-4 doi: 10.1007/s10114-009-7473-4
    [8] J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential, Commun. Part. Diff. Eq., 30 (2005), 1429–1443. https://doi.org/10.1080/03605300500299539 doi: 10.1080/03605300500299539
    [9] Y. J. Wang, Strong instability of standing waves for Hartree equation with harmonic potential, Physica D, 237 (2008), 998–1005. https://doi.org/10.1016/j.physd.2007.11.018 doi: 10.1016/j.physd.2007.11.018
    [10] J. Huang, J. Zhang, X. G. Li, Stability of standing waves for the $L^{2}$-critical Hartree equations with harmonic potential, Appl. Anal., 92 (2013), 2076–2083. https://doi.org/10.1080/00036811.2012.716512 doi: 10.1080/00036811.2012.716512
    [11] X. Luo, Normalized standing waves for the Hartree equations, J. Differ. Equations, 267 (2019), 4493–4524. https://doi.org/10.1016/j.jde.2019.05.009 doi: 10.1016/j.jde.2019.05.009
    [12] B. H. Feng, Sharp threshold of global existence and instability of standing wave for the Schrödinger Hartree equation with a harmonic potential, Nonlinear Anal.-Real, 31 (2016), 132–145. https://doi.org/10.1016/j.nonrwa.2016.01.012 doi: 10.1016/j.nonrwa.2016.01.012
    [13] A. H. Ardila, V. D. Dinh, Some qualitative studies of the focusing inhomogeneous Gross-Pitaevskii equation, Z. Angew. Math. Phys., 71 (2020), 79. https://doi.org/10.1007/s00033-020-01301-z doi: 10.1007/s00033-020-01301-z
    [14] J. Bellazzini, N. Boussa$ \rm \ddot{l} $d, L. Jeanjean, N. Visciglia, Existence and stability of standing waves for supercritical NLS with a partial confinement, Commun. Math. Phys., 353 (2017), 229–251. https://doi.org/10.1007/s00220-017-2866-1 doi: 10.1007/s00220-017-2866-1
    [15] T. X. Gou, Existence and orbital stability of standing waves to nonlinear Schrödinger system with partial confinement, J. Math. Phys., 59 (2018), 071508. https://doi.org/10.1063/1.5028208 doi: 10.1063/1.5028208
    [16] H. F. Jia, G. B. Li, X. Luo, Stable standing waves for cubic nonlinear Schrödinger systems with partial confinement, Discrete Cont. Dyn., 40 (2020), 2739–2766. https://doi.org/10.3934/dcds.2020148 doi: 10.3934/dcds.2020148
    [17] L. Xiao, Q. Geng, J. Wang, M. Zhu, Existence and stability of standing waves for the Choquard equation with partial confinement, Topol. Method. Nonl. An., 55 (2020), 451–474. https://doi.org/10.12775/TMNA.2019.079 doi: 10.12775/TMNA.2019.079
    [18] J. Y. Liu, Z. Q. He, B. H. Feng, Existence and stability of standing waves for the inhomogeneous Gross-Pitaevskii equation with a partial confinement, J. Math. Anal. Appl., 506 (2022), 125604. https://doi.org/10.1016/j.jmaa.2021.125604 doi: 10.1016/j.jmaa.2021.125604
    [19] Y. H. Hong, S. D. Jin, Uniqueness and orbital stability of standing waves for the nonlinear Schrödinger equation with a partial confinement, SIAM J. Math. Anal., 56 (2024), 2714–2737. https://doi.org/10.1137/22M1534705 doi: 10.1137/22M1534705
    [20] Y. C. Mo, B. H. Feng, C. D. Deng, Strong instability of ground state standing waves for the Hartree equation with a partial/complete harmonic potential, Math. Method. Appl. Sci., 47 (2024), 11810–11824. https://doi.org/10.1002/mma.9329 doi: 10.1002/mma.9329
    [21] J. J. Pan, J. Zhang, Mass concentration for nonlinear Schrödinger equation with partial confinement, J. Math. Anal. Appl., 481 (2020), 123484. https://doi.org/10.1016/j.jmaa.2019.123484 doi: 10.1016/j.jmaa.2019.123484
    [22] M. Gong, H. Jian, Sharp threshold of global existence and mass concentration for the Schrödinger-Hartree equation with anisotropic harmonic confinement, Adv. Math. Phys., 2023 (2023), 4316819. https://doi.org/10.1155/2023/4316819 doi: 10.1155/2023/4316819
    [23] T. Cazenave, P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys., 85 (1982), 549–561. https://doi.org/10.1007/BF01403504 doi: 10.1007/BF01403504
    [24] E. H. Lieb, M. Loss, Analysis, in graduate studies in mathematics, 2 Eds., American Mathematical Society, 2001.
    [25] M. I. Weinstein, Non-linear Schrödinger-equations and sharp interpolation estimates, Commun. Math. Phys., 87 (1983), 567–576. https://doi.org/10.1007/BF01208265 doi: 10.1007/BF01208265
    [26] B. H. Feng, X. X. Yuan, On the Cauchy problem for the Schrödinger-Hartree equation, Evol. Equ. Control The., 4 (2015), 431–445. https://doi.org/10.3934/eect.2015.4.431 doi: 10.3934/eect.2015.4.431
    [27] V. Moroz, J. V. Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153–184. https://doi.org/10.1016/j.jfa.2013.04.007 doi: 10.1016/j.jfa.2013.04.007
    [28] J. Zhang, S. H. Zhu, Stability of standing waves for the nonlinear fractional Schrödinger equation, J. Dyn. Differ. Equ., 29 (2017), 1017–1030. https://doi.org/10.1007/s10884-015-9477-3 doi: 10.1007/s10884-015-9477-3
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(268) PDF downloads(25) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog