Research article

Construction of reversible MDS codes in the Rosenbloom-Tsfasman metric

  • Published: 23 October 2025
  • MSC : 94B05

  • Maximum distance separable (MDS) codes are a type of error-correcting codes that aim to optimize the shortest possible distance between codewords. These codes are useful in situations where error correction is critical, such as data storage or communication systems, and they can be found in a variety of domains, including information theory, cryptography, and reliable data transmission. The concept of MDS codes is fundamental in designing robust and efficient error-correcting codes that can withstand the challenges posed by noisy communication channels or unreliable storage systems. The Rosenbloom-Tsfasman (RT) metric provides a framework for constructing codes optimized for error correction, and reversible codes leverage this to maximize their error-correction capabilities. This study explored the characteristics of reversible MDS codes in the RT-metric by analyzing the structure of different types of generator matrices. It also established various properties of these codes, such as the conditions under which certain reversible MDS codes were self-dual over $ \mathbb{F}_2 $ and $ \mathbb{F}_q $. In addition, this study proposed several constructions for reversible MDS codes in the RT-metric.

    Citation: Bodigiri Sai Gopinadh, Venkatrajam Marka. Construction of reversible MDS codes in the Rosenbloom-Tsfasman metric[J]. AIMS Mathematics, 2025, 10(10): 24240-24256. doi: 10.3934/math.20251074

    Related Papers:

  • Maximum distance separable (MDS) codes are a type of error-correcting codes that aim to optimize the shortest possible distance between codewords. These codes are useful in situations where error correction is critical, such as data storage or communication systems, and they can be found in a variety of domains, including information theory, cryptography, and reliable data transmission. The concept of MDS codes is fundamental in designing robust and efficient error-correcting codes that can withstand the challenges posed by noisy communication channels or unreliable storage systems. The Rosenbloom-Tsfasman (RT) metric provides a framework for constructing codes optimized for error correction, and reversible codes leverage this to maximize their error-correction capabilities. This study explored the characteristics of reversible MDS codes in the RT-metric by analyzing the structure of different types of generator matrices. It also established various properties of these codes, such as the conditions under which certain reversible MDS codes were self-dual over $ \mathbb{F}_2 $ and $ \mathbb{F}_q $. In addition, this study proposed several constructions for reversible MDS codes in the RT-metric.



    加载中


    [1] J. L. Massey, Reversible codes, Inform. Control, 7 (1964), 369–380. https://doi.org/10.1016/S0019-9958(64)90438-3 doi: 10.1016/S0019-9958(64)90438-3
    [2] S. K. Muttoo, S. Lal, A reversible code over $ GF (q) $, Kybernetika, 22 (1986), 85–91.
    [3] Y. Takishima, M. Wada, H. Murakami, Reversible variable length codes, IEEE T. Commun., 43 (1995), 158–162. https://doi.org/10.1109/26.380026 doi: 10.1109/26.380026
    [4] C. Carlet, S. Guilley, Complementary dual codes for counter-measures to side-channel attacks, Adv. Math. Commun., 10 (2016), 131–150. https://doi.org/10.3934/amc.2016.10.131 doi: 10.3934/amc.2016.10.131
    [5] X. T. Ngo, S. Bhasin, J. L. Danger, S. Guilley, Z. Najm, Linear complementary dual code improvement to strengthen encoded circuit against hardware Trojan horses, In: 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), Washington, DC, USA, 2015. https://doi.org/10.1109/HST.2015.7140242
    [6] F. Gursoy, E. S. Oztas, I. Siap, Reversible DNA codes using skew polynomial rings, Appl. Algebr. Eng. Comm., 28 (2017), 311–320. https://doi.org/10.1007/s00200-017-0325-z doi: 10.1007/s00200-017-0325-z
    [7] H. Mostafanasab, A. Y. Darani, On cyclic DNA codes over $\mathbb {F} _2+ u\mathbb {F} _2+ u^ 2\mathbb {F} _2$, arXiv Preprint, 2016.
    [8] P. Gaborit, O. D. King, Linear constructions for DNA codes, Theor. Comput. Sci., 334 (2005), 99–113. https://doi.org/10.1016/j.tcs.2004.11.004 doi: 10.1016/j.tcs.2004.11.004
    [9] J. L. Massey, Linear codes with complementary duals, Discrete Math., 106-107 (1992), 337–342. https://doi.org/10.1016/0012-365X(92)90563-U doi: 10.1016/0012-365X(92)90563-U
    [10] X. Yang, J. L. Massey, The condition for a cyclic code to have a complementary dual, Discrete Math., 126 (1994), 391–393. https://doi.org/10.1016/0012-365X(94)90283-6 doi: 10.1016/0012-365X(94)90283-6
    [11] M. Y. Rosenbloom, M. A. Tsfasman, Codes for the $m$-Metric, Probl. Peredachi Inf., 33 (1997), 55–63. Available from: https://www.mathnet.ru/eng/ppi359.
    [12] W. J. Martin, D. R. Stinson, Association schemes for ordered orthogonal arrays and (T, M, S)-nets, Can. J. Math., 51 (1999), 326–346. https://doi.org/10.4153/CJM-1999-017-5 doi: 10.4153/CJM-1999-017-5
    [13] M. M. Skriganov, Coding theory and uniform distributions, Algebra i Analiz, 13 (2001), 191–239.
    [14] J. Quistorff, On Rosenbloom and Tsfasman's generalization of the Hamming space, Discrete Math., 307 (2007), 2514–2524. https://doi.org/10.1016/j.disc.2007.01.005 doi: 10.1016/j.disc.2007.01.005
    [15] M. Özen, İ. Şiap, On the structure and decoding of linear codes with respect to the Rosenbloom-Tsfasman metric, Selcuk J. Appl. Math., 5 (2004), 25–31.
    [16] M. Ozen, I. Şiap, Linear codes over $F_{q}[u]/(u^{s})$ with respect to the Rosenbloom-Tsfasman metric, Design. Code. Cryptogr., 38 (2006), 17–29. https://doi.org/10.1007/s10623-004-5658-5 doi: 10.1007/s10623-004-5658-5
    [17] I. Siap, M. Ozen, The complete weight enumerator for codes over $M_{n \times s}(R)$, Appl. Math. Lett., 17 (2004), 65–69. https://doi.org/10.1016/S0893-9659(04)90013-4 doi: 10.1016/S0893-9659(04)90013-4
    [18] S. T. Dougherty, M. M. Skriganov, MacWilliams duality and the Rosenbloom-Tsfasman metric, Mosc. Math. J., 2 (2002), 81–97.
    [19] L. Panek, E. Lazzarotto, F. M. Bando, Codes satisfying the chain condition over Rosenbloom-Tsfasman spaces, Int. J. Pure Appl. Math., 48 (2008), 217–222.
    [20] A. K. Sharma, A. Sharma, MacWilliams identities for weight enumerators with respect to the RT metric, Discrete Math. Algorit., 6 (2014), 1450030. https://doi.org/10.1142/S179383091450030X doi: 10.1142/S179383091450030X
    [21] K. Lee, The automorphism group of a linear space with the Rosenbloom-Tsfasman metric, Eur. J. Combin., 24 (2003), 607–612. https://doi.org/10.1016/S0195-6698(03)00077-5 doi: 10.1016/S0195-6698(03)00077-5
    [22] S. T. Dougherty, M. M. Skriganov, Maximum distance separable codes in the $\rho$ metric over arbitrary alphabets, J. Algebraic Comb., 16 (2002), 71–81. https://doi.org/10.1023/A:1020834531372 doi: 10.1023/A:1020834531372
    [23] S. Jain, Bursts in $m$-metric array codes, Linear Algebra Appl., 418 (2006), 130–141. https://doi.org/10.1016/j.laa.2006.01.022 doi: 10.1016/j.laa.2006.01.022
    [24] S. Jain, CT bursts-from classical to array coding, Discrete Math., 308 (2008), 1489–1499. https://doi.org/10.1016/j.disc.2007.04.010 doi: 10.1016/j.disc.2007.04.010
    [25] I. Siap, CT burst error weight enumerator of array codes, Albanian J. Math., 2 (2008), 171–178. https://doi.org/10.51286/albjm/1229503624 doi: 10.51286/albjm/1229503624
    [26] B. Yildiz, I. Siap, T. Bilgin, G. Yesilot, The covering problem for finite rings with respect to the RT-metric, Appl. Math. Lett., 23 (2010), 988–992. https://doi.org/10.1016/j.aml.2010.04.023 doi: 10.1016/j.aml.2010.04.023
    [27] R. S. Selvaraj, V. Marka, On normal q‐Ary codes in Rosenbloom‐Tsfasman metric, Int. Scholarly Res. Notices, 1 (2014), 237915. https://doi.org/10.1155/2014/237915 doi: 10.1155/2014/237915
    [28] V. Marka, R. S. Selvaraj, I. Gnanasudha, Self-dual codes in the Rosenbloom-Tsfasman metric, Math. Commun., 22 (2017), 75–87.
    [29] H. Q. Xu, G. K. Xu, W. Du, Niederreiter-Rosenbloom-Tsfasman LCD codes, Adv. Math. Commun., 16 (2022), 1071–1081. https://doi.org/10.3934/amc.2022065 doi: 10.3934/amc.2022065
    [30] Y. Fan, H. Liu, Double circulant matrices, Linear Multilinear A., 66 (2018), 2119–2137. https://doi.org/10.1080/03081087.2017.1387513 doi: 10.1080/03081087.2017.1387513
    [31] H. J. Kim, W. H. Choi, Y. Lee, Construction of reversible self-dual codes, Finite Fields App., 67 (2020), 101714. https://doi.org/10.1016/j.ffa.2020.101714 doi: 10.1016/j.ffa.2020.101714
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(244) PDF downloads(11) Cited by(0)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog