We introduce and analyse a variant of the two-dimensional $ XY $-model energy which is suited to detect both topological defects and geometric defects in form of fractional vortices and domain walls, respectively. In contrast to previously introduced variants, the energies we consider here are defined without using an angular lifting of the $ \mathbb{S}^1 $-valued spin variables. Moreover, they combine in an explicit way the features of the $ XY $-model energy on the one hand and weak-membrane energies on the other hand. This leads to simplified proofs of compactness and lower bound in the $ \Gamma $-convergence analysis.
Citation: Annika Bach. Emergence of topological and geometric defects in the Gamma-limit of discrete energies[J]. Mathematics in Engineering, 2025, 7(5): 637-667. doi: 10.3934/mine.2025026
We introduce and analyse a variant of the two-dimensional $ XY $-model energy which is suited to detect both topological defects and geometric defects in form of fractional vortices and domain walls, respectively. In contrast to previously introduced variants, the energies we consider here are defined without using an angular lifting of the $ \mathbb{S}^1 $-valued spin variables. Moreover, they combine in an explicit way the features of the $ XY $-model energy on the one hand and weak-membrane energies on the other hand. This leads to simplified proofs of compactness and lower bound in the $ \Gamma $-convergence analysis.
| [1] |
R. Alicandro, M. Cicalese, Variational analysis of the asymptotics of the $XY$ model, Arch. Rational Mech. Anal., 192 (2009), 501–536. https://doi.org/10.1007/s00205-008-0146-0 doi: 10.1007/s00205-008-0146-0
|
| [2] |
R. Alicandro, M. Cicalese, M. Ponsiglione, Variational equivalence between Ginzburg-Landau, $XY$ spin systems and screw dislocations energies, Indiana Univ. Math. J., 60 (2011), 171–208. https://doi.org/10.1512/iumj.2011.60.4339 doi: 10.1512/iumj.2011.60.4339
|
| [3] |
R. Alicandro, L. De Luca, A. Garroni, M. Ponsiglione, Metastability and dynamics of discrete topological singularities in two dimensions: a $\Gamma$-convergence approach, Arch. Rational Mech. Anal., 214 (2014), 269–330. https://doi.org/10.1007/s00205-014-0757-6 doi: 10.1007/s00205-014-0757-6
|
| [4] |
R. Alicandro, L. De Luca, G. Lazzaroni, M. Palombaro, M. Ponsiglione, Coarse-graining of a discrete model for edge dislocations in the regular triangular lattice, J. Nonlinear Sci., 33 (2023), 33. https://doi.org/10.1007/s00332-023-09888-z doi: 10.1007/s00332-023-09888-z
|
| [5] |
R. Alicandro, L. De Luca, M. Palombaro, M. Ponsiglione, $\Gamma$-convergence analysis of the nonlinear self-energy induced by edge dislocations in semi-discrete and discrete models in two dimensions, Adv. Calc. Var., 18 (2025), 1–23. https://doi.org/10.1515/acv-2023-0053 doi: 10.1515/acv-2023-0053
|
| [6] | L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems, Clarendon Press Oxford, 2000. https://doi.org/10.1093/oso/9780198502456.001.0001 |
| [7] |
A. Bach, A. Braides, M. Cicalese, Discrete-to-continuum limits of multibody systems with bulk and surface long-range interactions, SIAM J. Math. Anal., 52 (2020), 3600–3665. https://doi.org/10.1137/19M1289212 doi: 10.1137/19M1289212
|
| [8] |
A. Bach, M. Cicalese, A. Garroni, G. Orlando, Stacking faults in the limit of a discrete model for partial edge dislocations, Arch. Ration. Mech. Anal., 249 (2025), 47. https://doi.org/10.1007/s00205-025-02118-8 doi: 10.1007/s00205-025-02118-8
|
| [9] |
A. Bach, M. Cicalese, L. Kreutz, G. Orlando, The antiferromagnetic $XY$ model on the triangular lattice: topological singularities, Indiana Univ. Mat. J., 71 (2022), 2411–2475. https://doi.org/10.1512/iumj.2022.71.9239 doi: 10.1512/iumj.2022.71.9239
|
| [10] |
A. Bach, M. Cicalese, M. Ruf, Random finite-difference discretizations of the Ambrosio-Tortorelli functional with optimal mesh size, SIAM J. Math. Anal., 53 (2021), 2275–2318. https://doi.org/10.1137/20M1312927 doi: 10.1137/20M1312927
|
| [11] |
R. Badal, M. Cicalese, L. De Luca, M. Ponsiglione, $\Gamma$-convergence analysis of a generalized $XY$ model: fractional vortices and string defects, Commun. Math. Phys., 358 (2018), 705–739. https://doi.org/10.1007/s00220-017-3026-3 doi: 10.1007/s00220-017-3026-3
|
| [12] | F. Bethuel, H. Brezis, F. Hélein, Ginzburg-Landau vortices, Birkhäuser Boston, 1994. |
| [13] | H. Brezis, P. Mironescu, Sobolev maps to the circle: from the perspective of analysis, geometry, and topology, Progress in nonlinear differential equations and their applications, Vol. 96, Birkhäuser New York, 2021. https://doi.org/10.1007/978-1-0716-1512-6 |
| [14] |
A. Chambolle, Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations, SIAM J. Appl. Math., 55 (1995), 827–863. https://doi.org/10.1137/S0036139993257132 doi: 10.1137/S0036139993257132
|
| [15] |
A. Chambolle, Finite-differences discretizations of the Mumford-Shah functional, ESAIM: M2AN, 33 (1999), 261–288. https://doi.org/10.1051/m2an:1999115 doi: 10.1051/m2an:1999115
|
| [16] |
M. Cicalese, G. Orlando, M. Ruf, The $N$-clock model: variational analysis for fast and slow divergence rates of $N$, Arch. Rational Mech. Anal., 245 (2022), 1135–1196. https://doi.org/10.1007/s00205-022-01799-9 doi: 10.1007/s00205-022-01799-9
|
| [17] |
S. Conti, A. Garroni, M. Ortiz, A discrete crystal model in three dimensions: the line-tension limit for dislocations, Adv. Calc. Var., 18 (2025), 467–510. https://doi.org/10.1515/acv-2024-0007 doi: 10.1515/acv-2024-0007
|
| [18] |
M. Friedrich, L Kreutz, B. Schmidt, Emergence of rigid polycrystals from atomistic systems with Heitmann-Radin sticky disk energy, Arch. Ration. Mech. Anal., 240 (2021), 627–698. https://doi.org/10.1007/s00205-021-01615-w doi: 10.1007/s00205-021-01615-w
|
| [19] |
M. Friedrich, L Kreutz, K. Zemas, From atomistic systems to linearized continuum models for elastic materials with voids, Nonlinearity, 36 (2023), 679. https://doi.org/10.1088/1361-6544/aca5de doi: 10.1088/1361-6544/aca5de
|
| [20] |
A. Garroni, M. Petrache, E. N. Spadaro, Clearing-out of dipoles for minimizers of 2-dimensional discrete energies with topological singularities, Math. Mod. Meth. Appl. Sci., 35 (2025), 1385–1419. https://doi.org/10.1142/S0218202525500204 doi: 10.1142/S0218202525500204
|
| [21] |
M. Goldman, B. Merlet, V. Millot, A Ginzburg-Landau model with topologically induced free discontinuities, Ann. Inst. Fourier, 70 (2020), 2583–2675. https://doi.org/10.5802/aif.3388 doi: 10.5802/aif.3388
|
| [22] | J. P. Hirth, J. Lothe, Theory of dislocations, Robert E. Krieger Publishing Company, 1992. |
| [23] | D. Hull, D. J. Bacon, Introduction to dislocations, 5 Eds., Butterworth-Heinemann, 2011. https://doi.org/10.1016/C2009-0-64358-0 |
| [24] |
M. Ponsiglione, Elastic energy stored in a crystal induced by screw dislocations: from discrete to continuous, SIAM J. Math. Anal., 39 (2007), 449–469. https://doi.org/10.1137/060657054 doi: 10.1137/060657054
|
| [25] | A. Qarteroni, A. Valli, Numerical approximation of partial differential equations, 1 Ed., Springer Series in Computational Mathematics, Springer, 1994. https://doi.org/10.1007/978-3-540-85268-1 |
| [26] |
M. Ruf, Discrete stochastic approximations of the Mumford-Shah functional, Ann. Inst. H. Poincaré Anal. Non Lineairé, 36 (2019), 887–937. https://doi.org/10.1016/j.anihpc.2018.10.004 doi: 10.1016/j.anihpc.2018.10.004
|
| [27] |
O. Tchernyshyov, G. W. Chern, Fractional vortices and composite domain wall in flat nanomagnets, Phys. Rev. Lett., 95 (2005), 197204. https://doi.org/10.1103/PhysRevLett.95.197204 doi: 10.1103/PhysRevLett.95.197204
|
| [28] | R. Schoen, K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Differ. Geom., 18 (1983), 253–268. |