This paper considers a class of hysteresis systems consisting of a linear part with an external input and feedback with a backlash nonlinearity. Assuming that the latter is specified by a strongly convex set, we establish estimates for the Lyapunov exponents which quantify the rate of convergence of the system state trajectories to a forced periodic regime when the input is a periodic function of time with a sufficiently large "amplitude". These results employ enhanced dissipation inequalities, arising from differential inclusions with strongly convex sets which were used previously for the Moreau sweeping process.
Citation: Igor G. Vladimirov, Ian R. Petersen. Rate of convergence to periodic regimes in nonlinear feedback systems with strongly convex backlash characteristics[J]. Mathematics in Engineering, 2025, 7(5): 610-636. doi: 10.3934/mine.2025025
This paper considers a class of hysteresis systems consisting of a linear part with an external input and feedback with a backlash nonlinearity. Assuming that the latter is specified by a strongly convex set, we establish estimates for the Lyapunov exponents which quantify the rate of convergence of the system state trajectories to a forced periodic regime when the input is a periodic function of time with a sufficiently large "amplitude". These results employ enhanced dissipation inequalities, arising from differential inclusions with strongly convex sets which were used previously for the Moreau sweeping process.
| [1] |
E. Allgower, K. Georg, Simplicial and continuation methods for approximating fixed points and solutions to systems of equations, SIAM Rev., 22 (1980), 28–85. https://doi.org/10.1137/1022003 doi: 10.1137/1022003
|
| [2] |
B. Brogliato, Absolute stability and the Lagrange-Dirichlet theorem with monotone multivalued mappings, Syst. Control Lett., 51 (2004), 343–353. https://doi.org/10.1016/j.sysconle.2003.09.007 doi: 10.1016/j.sysconle.2003.09.007
|
| [3] |
B. Brogliato, W. P. M. H. Heemels, Observer design for Lur'e systems with multivalued mappings: a passivity approach, IEEE Trans. Automat. Contr., 54 (2009), 1996–2001. https://doi.org/10.1109/TAC.2009.2023968 doi: 10.1109/TAC.2009.2023968
|
| [4] | M. Brokate, A. Pokrovskii, D. Rachinskii, O. Rasskazov, Differential equations with hysteresis via a canonical example, In: G. Bertotti, I. D. Mayergoyz, The science of hysteresis, Vol. Ⅰ, Academic Press, 2006, 125–291. https://doi.org/10.1016/B978-012480874-4/50005-1 |
| [5] | H. Frankowska, C. Olech, $R$-convexity of the integral of set-valued functions, In: Contributions to Analysis and Geometry, Baltimore MD: Johns Hopkins University Press, 1981, 117–129. |
| [6] | V. V. Goncharov, G. E. Ivanov, Strong and weak convexity of closed sets in a Hilbert space, In: N. Daras, T. Rassias, Operations research, engineering, and cyber security, Springer, 113 (2017), 259–297. https://doi.org/10.1007/978-3-319-51500-7_12 |
| [7] |
I. Gudoshnikov, O. Makarenkov, D. Rachinskii, Formation of a nontrivial finite-time stable attractor in a class of polyhedral sweeping processes with periodic input, ESAIM: COCV, 29 (2023), 84. https://doi.org/10.1051/cocv/2023074 doi: 10.1051/cocv/2023074
|
| [8] |
I. Gudoshnikov, O. Makarenkov, Structurally stable families of periodic solutions in sweeping processes of networks of elastoplastic springs, Phys. D, 406 (2020), 132443. https://doi.org/10.1016/j.physd.2020.132443 doi: 10.1016/j.physd.2020.132443
|
| [9] | N. J. Higham, Functions of matrices: theory and computation, Philadelphia: SIAM, 2008. |
| [10] | R. A. Horn, C. R. Johnson, Matrix analysis, New York: Cambridge University Press, 2007. |
| [11] | G. E. Ivanov, Quadratic convergence of algorithms for solving linear differential games, Ph.D. Thesis, Moscow Institute of Physics and Technology, 1994. |
| [12] | G. E. Ivanov, E. S. Polovinkin, On strongly convex differential games, Differ. Uravn., 31 (1995), 1641–1648. |
| [13] | G. E. Ivanov, Weakly convex sets and functions: theory and applications, Moscow: Fizmatlit, 2006. |
| [14] | G. E. Ivanov, Nonlinear images of sets. I: strong and weak convexity, J. Convex Anal., 27 (2020), 361–380. |
| [15] |
M. Kamenskii, O. Makarenkov, On the response of autonomous sweeping processes to periodic perturbations, Set-Valued Var. Anal., 24 (2016), 551–563. https://doi.org/10.1007/s11228-015-0348-1 doi: 10.1007/s11228-015-0348-1
|
| [16] |
M. Kamenskii, O. Makarenkov, L. N. Wadippuli, P. R. de Fitte, Global stability of almost periodic solutions to monotone sweeping processes and their response to non-monotone perturbations, Nonlinear Anal.: Hybrid Syst., 30 (2018), 213–224. https://doi.org/10.1016/j.nahs.2018.05.007 doi: 10.1016/j.nahs.2018.05.007
|
| [17] |
M. Kamenskii, O. Makarenkov, L. N. Wadippuli, A continuation principle for periodic BV-continuous state-dependent sweeping processes, SIAM J. Math. Anal., 52 (2020), 5598–5626. https://doi.org/10.1137/19M1248613 doi: 10.1137/19M1248613
|
| [18] |
P. E. Kloeden, V. S. Kozyakin, The inflation of attractors and their discretization: the autonomous case, Nonlinear Anal., 40 (2000), 333–343. https://doi.org/10.1016/S0362-546X(00)85020-8 doi: 10.1016/S0362-546X(00)85020-8
|
| [19] | A. N. Kolmogorov, On certain asymptotic characteristics of completely bounded metric spaces, Dokl. Akad. Nauk SSSR, 108 (1956), 385–388. |
| [20] | M. A. Krasnosel'skiǐ, A. V. Pokrovskiǐ, Systems with hysteresis, Springer-Verlag, 1989. https://doi.org/10.1007/978-3-642-61302-9 |
| [21] |
R. I. Leine, N. van de Wouw, Uniform convergence of monotone measure differential inclusions: with application to the control of mechanical systems with unilateral constraints, Int. J. Bifur. Chaos, 18 (2008), 1435–1457. https://doi.org/10.1142/S0218127408021099 doi: 10.1142/S0218127408021099
|
| [22] | J. J. Moreau, Rafle par un convexe variable, I, Sém. Anal. Convexe Montpellier, 1971. |
| [23] | J. J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Differ. Equations, 26 (1977), 347–374. |
| [24] | A. Plis, Accessible sets in control theory, Int. Conf. Differ. Equ., 1975,646–650. https://doi.org/10.1016/B978-0-12-059650-8.50052-1 |
| [25] | E. S. Polovinkin, M. V. Balashov, Elements of convex and strongly convex analysis, Moscow: Fizmatlit, 2004. |
| [26] | R. T. Rockafellar, Convex analysis, Princeton University Press, 1970. https://doi.org/10.1515/9781400873173 |
| [27] |
M. C. Smith, Synthesis of mechanical networks: the inerter, IEEE Trans. Automat. Contr., 47 (2002), 1648–1662. https://doi.org/10.1109/TAC.2002.803532 doi: 10.1109/TAC.2002.803532
|
| [28] | I. G. Vladimirov, I. R. Petersen, Convergence to periodic regimes in nonlinear feedback systems with a strongly convex backlash, 2020 European Control Conference (ECC), 2020, 71–76. https://doi.org/10.23919/ECC51009.2020.9143648 |
| [29] | I. G. Vladimirov, On strong solutions of the Moreau process, Doklady Math., 55 (1997), 167–169. |
| [30] | I. G. Vladimirov, V. V. Chernorutski, On self-induced oscillations in systems with play, Autom. Remote Control, 56 (1995), 1538–1544. |