Research article Special Issues

Rate of convergence to periodic regimes in nonlinear feedback systems with strongly convex backlash characteristics

  • Published: 22 September 2025
  • This paper considers a class of hysteresis systems consisting of a linear part with an external input and feedback with a backlash nonlinearity. Assuming that the latter is specified by a strongly convex set, we establish estimates for the Lyapunov exponents which quantify the rate of convergence of the system state trajectories to a forced periodic regime when the input is a periodic function of time with a sufficiently large "amplitude". These results employ enhanced dissipation inequalities, arising from differential inclusions with strongly convex sets which were used previously for the Moreau sweeping process.

    Citation: Igor G. Vladimirov, Ian R. Petersen. Rate of convergence to periodic regimes in nonlinear feedback systems with strongly convex backlash characteristics[J]. Mathematics in Engineering, 2025, 7(5): 610-636. doi: 10.3934/mine.2025025

    Related Papers:

  • This paper considers a class of hysteresis systems consisting of a linear part with an external input and feedback with a backlash nonlinearity. Assuming that the latter is specified by a strongly convex set, we establish estimates for the Lyapunov exponents which quantify the rate of convergence of the system state trajectories to a forced periodic regime when the input is a periodic function of time with a sufficiently large "amplitude". These results employ enhanced dissipation inequalities, arising from differential inclusions with strongly convex sets which were used previously for the Moreau sweeping process.



    加载中


    [1] E. Allgower, K. Georg, Simplicial and continuation methods for approximating fixed points and solutions to systems of equations, SIAM Rev., 22 (1980), 28–85. https://doi.org/10.1137/1022003 doi: 10.1137/1022003
    [2] B. Brogliato, Absolute stability and the Lagrange-Dirichlet theorem with monotone multivalued mappings, Syst. Control Lett., 51 (2004), 343–353. https://doi.org/10.1016/j.sysconle.2003.09.007 doi: 10.1016/j.sysconle.2003.09.007
    [3] B. Brogliato, W. P. M. H. Heemels, Observer design for Lur'e systems with multivalued mappings: a passivity approach, IEEE Trans. Automat. Contr., 54 (2009), 1996–2001. https://doi.org/10.1109/TAC.2009.2023968 doi: 10.1109/TAC.2009.2023968
    [4] M. Brokate, A. Pokrovskii, D. Rachinskii, O. Rasskazov, Differential equations with hysteresis via a canonical example, In: G. Bertotti, I. D. Mayergoyz, The science of hysteresis, Vol. Ⅰ, Academic Press, 2006, 125–291. https://doi.org/10.1016/B978-012480874-4/50005-1
    [5] H. Frankowska, C. Olech, $R$-convexity of the integral of set-valued functions, In: Contributions to Analysis and Geometry, Baltimore MD: Johns Hopkins University Press, 1981, 117–129.
    [6] V. V. Goncharov, G. E. Ivanov, Strong and weak convexity of closed sets in a Hilbert space, In: N. Daras, T. Rassias, Operations research, engineering, and cyber security, Springer, 113 (2017), 259–297. https://doi.org/10.1007/978-3-319-51500-7_12
    [7] I. Gudoshnikov, O. Makarenkov, D. Rachinskii, Formation of a nontrivial finite-time stable attractor in a class of polyhedral sweeping processes with periodic input, ESAIM: COCV, 29 (2023), 84. https://doi.org/10.1051/cocv/2023074 doi: 10.1051/cocv/2023074
    [8] I. Gudoshnikov, O. Makarenkov, Structurally stable families of periodic solutions in sweeping processes of networks of elastoplastic springs, Phys. D, 406 (2020), 132443. https://doi.org/10.1016/j.physd.2020.132443 doi: 10.1016/j.physd.2020.132443
    [9] N. J. Higham, Functions of matrices: theory and computation, Philadelphia: SIAM, 2008.
    [10] R. A. Horn, C. R. Johnson, Matrix analysis, New York: Cambridge University Press, 2007.
    [11] G. E. Ivanov, Quadratic convergence of algorithms for solving linear differential games, Ph.D. Thesis, Moscow Institute of Physics and Technology, 1994.
    [12] G. E. Ivanov, E. S. Polovinkin, On strongly convex differential games, Differ. Uravn., 31 (1995), 1641–1648.
    [13] G. E. Ivanov, Weakly convex sets and functions: theory and applications, Moscow: Fizmatlit, 2006.
    [14] G. E. Ivanov, Nonlinear images of sets. I: strong and weak convexity, J. Convex Anal., 27 (2020), 361–380.
    [15] M. Kamenskii, O. Makarenkov, On the response of autonomous sweeping processes to periodic perturbations, Set-Valued Var. Anal., 24 (2016), 551–563. https://doi.org/10.1007/s11228-015-0348-1 doi: 10.1007/s11228-015-0348-1
    [16] M. Kamenskii, O. Makarenkov, L. N. Wadippuli, P. R. de Fitte, Global stability of almost periodic solutions to monotone sweeping processes and their response to non-monotone perturbations, Nonlinear Anal.: Hybrid Syst., 30 (2018), 213–224. https://doi.org/10.1016/j.nahs.2018.05.007 doi: 10.1016/j.nahs.2018.05.007
    [17] M. Kamenskii, O. Makarenkov, L. N. Wadippuli, A continuation principle for periodic BV-continuous state-dependent sweeping processes, SIAM J. Math. Anal., 52 (2020), 5598–5626. https://doi.org/10.1137/19M1248613 doi: 10.1137/19M1248613
    [18] P. E. Kloeden, V. S. Kozyakin, The inflation of attractors and their discretization: the autonomous case, Nonlinear Anal., 40 (2000), 333–343. https://doi.org/10.1016/S0362-546X(00)85020-8 doi: 10.1016/S0362-546X(00)85020-8
    [19] A. N. Kolmogorov, On certain asymptotic characteristics of completely bounded metric spaces, Dokl. Akad. Nauk SSSR, 108 (1956), 385–388.
    [20] M. A. Krasnosel'skiǐ, A. V. Pokrovskiǐ, Systems with hysteresis, Springer-Verlag, 1989. https://doi.org/10.1007/978-3-642-61302-9
    [21] R. I. Leine, N. van de Wouw, Uniform convergence of monotone measure differential inclusions: with application to the control of mechanical systems with unilateral constraints, Int. J. Bifur. Chaos, 18 (2008), 1435–1457. https://doi.org/10.1142/S0218127408021099 doi: 10.1142/S0218127408021099
    [22] J. J. Moreau, Rafle par un convexe variable, I, Sém. Anal. Convexe Montpellier, 1971.
    [23] J. J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Differ. Equations, 26 (1977), 347–374.
    [24] A. Plis, Accessible sets in control theory, Int. Conf. Differ. Equ., 1975,646–650. https://doi.org/10.1016/B978-0-12-059650-8.50052-1
    [25] E. S. Polovinkin, M. V. Balashov, Elements of convex and strongly convex analysis, Moscow: Fizmatlit, 2004.
    [26] R. T. Rockafellar, Convex analysis, Princeton University Press, 1970. https://doi.org/10.1515/9781400873173
    [27] M. C. Smith, Synthesis of mechanical networks: the inerter, IEEE Trans. Automat. Contr., 47 (2002), 1648–1662. https://doi.org/10.1109/TAC.2002.803532 doi: 10.1109/TAC.2002.803532
    [28] I. G. Vladimirov, I. R. Petersen, Convergence to periodic regimes in nonlinear feedback systems with a strongly convex backlash, 2020 European Control Conference (ECC), 2020, 71–76. https://doi.org/10.23919/ECC51009.2020.9143648
    [29] I. G. Vladimirov, On strong solutions of the Moreau process, Doklady Math., 55 (1997), 167–169.
    [30] I. G. Vladimirov, V. V. Chernorutski, On self-induced oscillations in systems with play, Autom. Remote Control, 56 (1995), 1538–1544.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(652) PDF downloads(111) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog