In this short remark on a previous paper [
$ \begin{equation*} J(v,\Omega) = \int_{\Omega}\Big\{F(\nabla v,v,x)+W(v,x)\Big\}dx, \end{equation*} $
involving a Dirichlet energy $ F(\vec{\xi}, \tau, x)\sim|\vec{\xi}|^{p} $ and a degenerate double-well potential $ W(\tau, x)\sim(1-\tau^{2})^{m} $. In contrast to [
Citation: Chilin Zhang. A further remark on the density estimate for degenerate Allen-Cahn equations: $ \Delta_{p} $-type equations for $ 1 < p < \frac{n}{n-1} $ with rough coefficients[J]. Mathematics in Engineering, 2025, 7(5): 668-677. doi: 10.3934/mine.2025027
In this short remark on a previous paper [
$ \begin{equation*} J(v,\Omega) = \int_{\Omega}\Big\{F(\nabla v,v,x)+W(v,x)\Big\}dx, \end{equation*} $
involving a Dirichlet energy $ F(\vec{\xi}, \tau, x)\sim|\vec{\xi}|^{p} $ and a degenerate double-well potential $ W(\tau, x)\sim(1-\tau^{2})^{m} $. In contrast to [
| [1] | O. Savin, C. Zhang, Density estimates for Ginzburg-Landau energies with degenerate double-well potentials, arXiv, 2025. https://doi.org/10.48550/arXiv.2506.17000 |
| [2] |
J. S. Rowlinson, Translation of J. D. van der Waals' "The thermodynamic theory ofcapillarity under the hypothesis of a continuous variation of density", J. Stat. Phys., 20 (1979), 200–244. https://doi.org/10.1007/BF01011513 doi: 10.1007/BF01011513
|
| [3] | V. L. Ginzburg, L. P. Pitaevskii, On the theory of superfluidity, Sov. Phys. JETP, 34 (1958), 858–861. |
| [4] | L. D. Landau, On the theory of phase transitions, Zh. Eksp. Teor. Fiz., 7 (1937), 19–32. |
| [5] | L. D. Landau, Collected papers of L.D. Landau, Gordon and Breach Science Publishers, New York-London-Paris, 1967. |
| [6] |
S. M. Allen, J. W. Cahn, Ground state structures in ordered binary alloys with second neighbor interactions, Acta Metall., 20 (1972), 423–433. https://doi.org/10.1016/0001-6160(72)90037-5 doi: 10.1016/0001-6160(72)90037-5
|
| [7] |
J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. Ⅰ. interfacial free energy, J. Chem. Phys., 28 (1958), 258–267. https://doi.org/10.1063/1.1744102 doi: 10.1063/1.1744102
|
| [8] | L. Modica, $\Gamma $-convergence to minimal surfaces problem and global solutions of $\Delta u = 2(u^3-u)$, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), Pitagora, Bologna, 1979,223–244. |
| [9] | L. Modica, S. Mortola, Un esempio di $\Gamma^{-}$-convergenza, Boll. Un. Mat. Ital., 14 (1977), 285–299. |
| [10] |
G. Bouchitté, Singular perturbations of variational problems arising from a two-phase transition model, Appl. Math. Optim., 21 (1990), 289–314. https://doi.org/10.1007/BF01445167 doi: 10.1007/BF01445167
|
| [11] |
N. C. Owen, P. Sternberg, Nonconvex variational problems with anisotropic perturbations, Nonlinear Anal., 16 (1991), 705–719. https://doi.org/10.1016/0362-546X(91)90177-3 doi: 10.1016/0362-546X(91)90177-3
|
| [12] |
L. A. Caffarelli, A. Córdoba, Uniform convergence of a singular perturbation problem, Commun. Pure Appl. Math., 48 (1995), 1–12. https://doi.org/10.1002/cpa.3160480101 doi: 10.1002/cpa.3160480101
|
| [13] |
S. Dipierro, A. Farina, E. Valdinoci, Density estimates for degenerate double-well potentials, SIAM J. Math. Anal., 50 (2018), 6333–6347. https://doi.org/10.1137/17M114933X doi: 10.1137/17M114933X
|
| [14] |
A. Farina, E. Valdinoci, Geometry of quasiminimal phase transitions, Calc. Var. Partial Differential Equations, 33 (2008), 1–35. https://doi.org/10.1007/s00526-007-0146-1 doi: 10.1007/s00526-007-0146-1
|
| [15] |
A. Petrosyan, E. Valdinoci, Density estimates for a degenerate/singular phase-transition model, SIAM J. Math. Anal., 36 (2005), 1057–1079. https://doi.org/10.1137/S0036141003437678 doi: 10.1137/S0036141003437678
|
| [16] |
A. Petrosyan, E. Valdinoci, Geometric properties of Bernoulli-type minimizers, Interfaces Free Bound., 7 (2005), 55–77. https://doi.org/10.4171/ifb/113 doi: 10.4171/ifb/113
|
| [17] |
E. Valdinoci, Plane-like minimizers in periodic media: jet flows and Ginzburg-Landau-type functionals, J. Reine Angew. Math., 574 (2004), 147–185. https://doi.org/10.1515/crll.2004.068 doi: 10.1515/crll.2004.068
|
| [18] |
O. Savin, Regularity of flat level sets in phase transitions, Ann. Math., 169 (2009), 41–78. https://doi.org/10.4007/annals.2009.169.41 doi: 10.4007/annals.2009.169.41
|
| [19] | B. Sciunzi, E. Valdinoci, Mean curvature properties for $p$-Laplace phase transitions. J. Eur. Math. Soc., 7 (2005), 319–359. https://doi.org/10.4171/jems/31 |
| [20] | E. Valdinoci, B. Sciunzi, V. O. Savin, Flat level set regularity of $p$-Laplace phase transitions, Vol. 182, Memoirs of the American Mathematical Society, 2006. https://doi.org/10.1090/memo/0858 |
| [21] | F. De Pas, S. Dipierro, M. Piccinini, E. Valdinoci, Heteroclinic connections for fractional Allen-Cahn equations with degenerate potentials, Ann. Scuola Norm. Super.-Cl. Sci., 2025. https://doi.org/10.2422/2036-2145.202502_001 |
| [22] |
S. Dipierro, A. Farina, G. Giacomin, E. Valdinoci, Density estimates for a nonlocal variational model with a degenerate double-well potential via the Sobolev inequality, SIAM J. Math. Anal., 57 (2025), 5628–5682. https://doi.org/10.1137/25M1726005 doi: 10.1137/25M1726005
|
| [23] | S. Dipierro, A. Farina, G. Giacomin, E. Valdinoci, Density estimates for a (non)local variational model with degenerate double-well potential, arXiv, 2025. https://doi.org/10.48550/arXiv.2506.22193 |