Research article Special Issues

Dynamical analysis of SIR model with Gamma distribution delay driven by Lévy noise and switching

  • Published: 21 May 2025
  • Considering the distributed time delay and the stochastic change of environment, this research primarily studied the dynamical behavior of the gamma-distributed delay SIR model driven by Lévy noise and Markov chain. First, it is proved that there is a unique global positive solution for stochastic model. Second, by constructing appropriate stochastic Lyapunov functions that account for regime switching, we derive a sufficient condition, $ {R_s} > 1 $, indicating the existence of a stationary distribution. This suggests the disease will persist over a long period. Finally, numerical simulations confirm the theoretical findings.

    Citation: Jing Yang, Shaojuan Ma, Dongmei Wei. Dynamical analysis of SIR model with Gamma distribution delay driven by Lévy noise and switching[J]. Electronic Research Archive, 2025, 33(5): 3158-3176. doi: 10.3934/era.2025138

    Related Papers:

  • Considering the distributed time delay and the stochastic change of environment, this research primarily studied the dynamical behavior of the gamma-distributed delay SIR model driven by Lévy noise and Markov chain. First, it is proved that there is a unique global positive solution for stochastic model. Second, by constructing appropriate stochastic Lyapunov functions that account for regime switching, we derive a sufficient condition, $ {R_s} > 1 $, indicating the existence of a stationary distribution. This suggests the disease will persist over a long period. Finally, numerical simulations confirm the theoretical findings.



    加载中


    [1] S. Dong, L. Xu, Y. A, Z. Lan, D. Xiao, B. Gao, Application of a time-delay SIR model with vaccination in COVID-19 prediction and its optimal control strategy, Nonlinear Dyn., 111 (2023), 10677–10692. https://doi.org/10.1007/s11071-023-08308-x doi: 10.1007/s11071-023-08308-x
    [2] H. K. Ebraheem, N. Alkhateeb, H. Badran, E. Sultan, Delayed dynamics of SIR model for COVID-19, Open J. Modell. Simul., 9 (2021), 146–158. https://doi.org/10.4236/ojmsi.2021.92010 doi: 10.4236/ojmsi.2021.92010
    [3] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. London, Ser. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [4] Q. Liu, D. Jiang, T. Hayat, A. Alsaedi, Dynamics of a stochastic SIR epidemic model with distributed delay and degenerate diffusion, J. Franklin Inst., 356 (2019), 7347–7370. https://doi.org/10.1016/j.jfranklin.2019.06.030 doi: 10.1016/j.jfranklin.2019.06.030
    [5] M. De la Sen, S. Alonso-Quesada, A. Ibeas, On the stability of an SEIR epidemic model with distributed time-delay and a general class of feedback vaccination rules, Appl. Math. Comput., 270 (2015), 953–976. https://doi.org/10.1016/j.amc.2015.08.099 doi: 10.1016/j.amc.2015.08.099
    [6] M. Li, X. Liu, An SIR epidemic model with time delay and general nonlinear incidence rate, Abstr. Appl. Anal., 1 (2014), 131257. https://doi.org/10.1155/2014/131257 doi: 10.1155/2014/131257
    [7] Attaullah, K. Mahdi, M. Yavuz, S. Boulaaras, M. Haiour, V. Pham, Computational approaches on integrating vaccination and treatment strategies in the SIR model using Galerkin time discretization scheme, Math. Comput. Modell. Dyn. Syst., 30 (2024), 758–791. https://doi.org/10.1080/13873954.2024.2405504 doi: 10.1080/13873954.2024.2405504
    [8] G. Zaman, Y. H. Kang, I. H. Jung, Optimal treatment of an SIR epidemic model with time delay, Biosystems, 98 (2009), 43–50. https://doi.org/10.1016/j.biosystems.2009.05.006 doi: 10.1016/j.biosystems.2009.05.006
    [9] N. A. Kudryashov, M. A. Chmykhov, M. Vigdorowitsch, Analytical features of the SIR model and their applications to COVID-19, Appl. Math. Modell., 90 (2021), 466–473. https://doi.org/10.1016/j.apm.2020.08.057 doi: 10.1016/j.apm.2020.08.057
    [10] A. Kumar, K. Goel, Nilam, A deterministic time-delayed SIR epidemic model: mathematical modeling and analysis, Theory Biosci., 139 (2020), 67–76. https://doi.org/10.1007/s12064-019-00300-7 doi: 10.1007/s12064-019-00300-7
    [11] Z. Yaagoub, K. Allali, Global stability of multi-strain SEIR epidemic model with vaccination strategy, Math. Comput. Appl., 28 (2023), 9. https://doi.org/10.3390/mca28010009 doi: 10.3390/mca28010009
    [12] O. Krylova, D. J. Earn, Effects of the infectious period distribution on predicted transitions in childhood disease dynamics, J. R. Soc. Interface, 10 (2013), 20130098. https://doi.org/10.1098/rsif.2013.0098 doi: 10.1098/rsif.2013.0098
    [13] F. Wang, X. Wang, S. Zhang, C. Ding, On pulse vaccine strategy in a periodic stochastic SIR epidemic model, Chaos, Solitons Fractals, 66 (2014), 127–135. https://doi.org/10.1016/j.chaos.2014.06.003 doi: 10.1016/j.chaos.2014.06.003
    [14] Y. Cai, Y. Kang, W. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl. Math. Comput., 305 (2022), 221–240. https://doi.org/10.1016/j.amc.2017.02.003 doi: 10.1016/j.amc.2017.02.003
    [15] M. N'zi, I. Yattara, The dynamics of a delayed deterministic and stochastic epidemic SIR models with a saturated incidence rate, Random Oper. Stochastic Equations, 26 (2018), 235–245. https://doi.org/10.1515/rose-2018-0021 doi: 10.1515/rose-2018-0021
    [16] K. Sato, K. Sawaki, An optimal policy for lockdown periods in a pandemic based on the stochastic SIR model with time delay, in Probability and Statistical Models in Operations Research, Computer and Management Sciences, Springer Series in Reliability Engineering, Springer, Cham, (2024), 17–39. https://doi.org/10.1007/978-3-031-64597-6_2
    [17] C. Ji, D. Jiang, Threshold behaviour of a stochastic SIR model, Appl. Math. Modell., 38 (2014), 5067–5079. https://doi.org/10.1016/j.apm.2014.03.037 doi: 10.1016/j.apm.2014.03.037
    [18] M. Yavuz, L. Boulaasair, H. Bouzahir, M. A. Diop, B. Benaid, The impact of two independent gaussian white noises on the behavior of a stochastic epidemic model, J. Appl. Math. Comput. Mech., 23 (2024), 121–134. https://doi.org/10.17512/jamcm.2024.1.10 doi: 10.17512/jamcm.2024.1.10
    [19] N. H. Du, N. N. Nhu. Permanence and extinction for the stochastic SIR epidemic model, J. Differ. Equations, 269 (2020), 9619–9652. https://doi.org/10.1016/j.jde.2020.06.049 doi: 10.1016/j.jde.2020.06.049
    [20] F. Wang, T. Li, Dynamics of a stochastic epidemic model with information intervention and vertical transmission, Electron. Res. Arch., 32 (2024), 3700–3727. https://doi.org/10.3934/era.2024168 doi: 10.3934/era.2024168
    [21] W. Li, B. Wang, D. Huang, V. Rajic, J. Zhao, Dynamical properties of a stochastic tumor-immune model with comprehensive pulsed therapy, Commun. Nonlinear Sci. Numer. Simul., 140 (2024), 108330. https://doi.org/10.1016/j.cnsns.2024.108330 doi: 10.1016/j.cnsns.2024.108330
    [22] N. T. Dieu, D. H. Nguyen, N. H. Du, G. Yin, Classification of asymptotic behavior in a stochastic SIR model, SIAM J. Appl. Dyn. Syst., 15 (2016), 1062–1084. https://doi.org/10.1137/15M1043315 doi: 10.1137/15M1043315
    [23] B. E. Berrhazi, M. El Fatini, T. Caraballo, R. Pettersson, A stochastic SIRI epidemic model with Lévy noise, Discrete Contin. Dyn. Syst. - Ser. B, 23 (2018), 3645–3661. https://doi.org/10.3934/dcdsb.2018057 doi: 10.3934/dcdsb.2018057
    [24] N. Privault, L. Wang, Stochastic SIR Lévy jump model with heavy-tailed increments, J. Nonlinear Sci., 31 (2021), 1–28. https://doi.org/10.1007/s00332-020-09670-5 doi: 10.1007/s00332-020-09670-5
    [25] D. Kiouach, Y. Sabbar, The long-time behavior of a stochastic SIR epidemic model with distributed delay and multidimensional Lévy jumps, Int. J. Biomath., 15 (2022), 2250004. https://doi.org/10.1142/s1793524522500048 doi: 10.1142/s1793524522500048
    [26] Q. Yang, X. Zhang, D. Jiang, Asymptotic behavior of a stochastic SIR model with general incidence rate and nonlinear Lévy jumps, Nonlinear Dyn., 107 (2022), 2975–2993. https://doi.org/10.1142/s1793524522500048 doi: 10.1142/s1793524522500048
    [27] Y. Zhou, W. Zhang, Threshold of a stochastic SIR epidemic model with Lévy jumps, Physica A, 446 (2016), 204–216. https://doi.org/10.1016/j.physa.2015.11.023 doi: 10.1016/j.physa.2015.11.023
    [28] Y. Zhou, S. Yuan, D. Zhao, Threshold behavior of a stochastic SIS model with Lévy jumps, Appl. Math. Comput., 275 (2016), 255–267. https://doi.org/10.1016/j.apm.2014.03.037 doi: 10.1016/j.apm.2014.03.037
    [29] J. Danane, M. Yavuz, M. Yıldız, Stochastic modeling of three-species prey–predator model driven by Lévy jump with mixed Holling-II and Beddington–DeAngelis functional responses, Fractal Fract., 7 (2023), 751. https://doi.org/10.3390/fractalfract7100751 doi: 10.3390/fractalfract7100751
    [30] S. Li, SIR epidemic model with general nonlinear incidence rate and Lévy jumps, Mathematics, 12 (2024), 215. https://doi.org/10.3390/math12020215 doi: 10.3390/math12020215
    [31] Q. Liu, D. Jiang, N. Shi, Threshold behavior in a stochastic SIQR epidemic model with standard incidence and regime switching, Appl. Math. Comput., 316 (2018), 310–325. https://doi.org/10.1016/j.amc.2017.08.042 doi: 10.1016/j.amc.2017.08.042
    [32] W. Wei, W. Xu, J. Liu, A regime-switching stochastic SIR epidemic model with a saturated incidence and limited medical resources, Int. J. Biomath., 16 (2023), 2250124. https://doi.org/10.1142/s1793524522501248 doi: 10.1142/s1793524522501248
    [33] M. Jin, Y. Lin, M. Pei, Asymptotic behavior of a regime-switching SIR epidemic model with degenerate diffusion, Adv. Differ. Equ., 2018 (2018). https://doi.org/10.1186/s13662-018-1505-2
    [34] D. Li, S. Liu, Threshold dynamics and ergodicity of an SIRS epidemic model with Markovian switching, J. Differ. Equations, 263 (2017), 8873–8915. https://doi.org/10.1016/j.jde.2017.08.066 doi: 10.1016/j.jde.2017.08.066
    [35] A. Gray, D. Greenhalgh, X. Mao, J. Pan, The SIS epidemic model with Markovian switching, J. Math. Anal. Appl., 394 (2012), 496–516. https://doi.org/10.1016/j.jmaa.2012.05.029 doi: 10.1016/j.jmaa.2012.05.029
    [36] Y. Kang, Y. Fu, Y. Chen, Signal-to-noise ratio gain of an adaptive neuron model with Gamma renewal synaptic input, Acta Mech. Sin., 38 (2022), 521347. https://doi.org/10.1007/s10409-021-09029-6 doi: 10.1007/s10409-021-09029-6
    [37] J. E. Sereno, A. D'Jorge, A. Ferramosca, E. A. Hernandez-Vargas, A. H. González, Model predictive control for optimal social distancing in a type SIR-switched model. IFAC-PapersOnLine, 54 (2021), 251–256. https://doi.org/10.1016/j.ifacol.2021.10.264
    [38] T. Caraballo, M. El Fatini, M. G. El Khalifi, R. Gerlach, R. Pettersson, Analysis of a stochastic distributed delay epidemic model with relapse and gamma distribution kernel, Chaos, Solitons Fractals, 133 (2020), 109643. https://doi.org/10.1016/j.chaos.2020.109643 doi: 10.1016/j.chaos.2020.109643
    [39] C. Liu, Y. Tian, P. Chen, L. Cheung, Stochastic dynamic effects of media coverage and incubation on a distributed delayed epidemic system with Lévy jumps, Chaos, Solitons Fractals, 182 (2024), 114781. https://doi.org/10.1016/j.chaos.2024.114781 doi: 10.1016/j.chaos.2024.114781
    [40] D. Kuang, Q. Yin, J. Li, The threshold of a stochastic SIRS epidemic model with general incidence rate under regime-switching, J. Franklin Inst., 360 (2023), 13624–13647. https://doi.org/10.1016/j.jfranklin.2022.04.027 doi: 10.1016/j.jfranklin.2022.04.027
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(793) PDF downloads(52) Cited by(1)

Article outline

Figures and Tables

Figures(6)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog