Research article

Boundedness of solutions in a two-species chemotaxis system

  • Published: 13 May 2025
  • In this paper, we consider an initial-Neumann boundary value problem for a two-species chemotaxis system

    $ \begin{equation*} \left\{ \begin{array}{ll} \frac{\partial u}{\partial t} = \Delta u-\chi\nabla \cdot (u\nabla w)+u(a_{1}-b_{1}u^{m-1}+c_{1}v),\ &\ \ (x,t) \in \Omega\times(0,T_{\max}), \\[2.5mm] \frac{\partial v}{\partial t} = \Delta v-\xi\nabla \cdot (v\nabla w)+v(a_{2}-b_{2}v^{l-1}-c_{2}u), \ &\ \ (x,t) \in \Omega\times(0,T_{\max}), \\[2.5mm] \frac{\partial w}{\partial t} = \Delta w-(u^{\alpha}+v^{\beta})w, \ &\ \ (x,t) \in \Omega\times(0,T_{\max}), \end{array} \right. \end{equation*} $

    where the domain $ \Omega\subset\mathbb{R}^{n}(n\geq 2) $ is bounded and smooth, $ T_{\max}\in (0, \infty], $ and parameters $ a_{i}, b_{i}, c_{i}, m, l, \alpha, $ $ \beta, \chi, \xi > 0 $ with $ m, l > 1, i = 1, 2. $ In the current work, we provide a sufficient condition of global classical solvability to the above system. More precisely, for some suitable initial data, if $ m > \max\{\frac{\alpha(n+2)}{2}, 1 \} $ and $ l > \max\{\frac{\beta(n+2)}{2}, 1 \}, $ then the system has a global classical solution. Compared to previous work, the existence result established here is more generalized, depending only on the nonlinear power exponents and spatial dimensions.

    Citation: Chang-Jian Wang, Yuan-Hao Zang. Boundedness of solutions in a two-species chemotaxis system[J]. Electronic Research Archive, 2025, 33(5): 2862-2880. doi: 10.3934/era.2025126

    Related Papers:

  • In this paper, we consider an initial-Neumann boundary value problem for a two-species chemotaxis system

    $ \begin{equation*} \left\{ \begin{array}{ll} \frac{\partial u}{\partial t} = \Delta u-\chi\nabla \cdot (u\nabla w)+u(a_{1}-b_{1}u^{m-1}+c_{1}v),\ &\ \ (x,t) \in \Omega\times(0,T_{\max}), \\[2.5mm] \frac{\partial v}{\partial t} = \Delta v-\xi\nabla \cdot (v\nabla w)+v(a_{2}-b_{2}v^{l-1}-c_{2}u), \ &\ \ (x,t) \in \Omega\times(0,T_{\max}), \\[2.5mm] \frac{\partial w}{\partial t} = \Delta w-(u^{\alpha}+v^{\beta})w, \ &\ \ (x,t) \in \Omega\times(0,T_{\max}), \end{array} \right. \end{equation*} $

    where the domain $ \Omega\subset\mathbb{R}^{n}(n\geq 2) $ is bounded and smooth, $ T_{\max}\in (0, \infty], $ and parameters $ a_{i}, b_{i}, c_{i}, m, l, \alpha, $ $ \beta, \chi, \xi > 0 $ with $ m, l > 1, i = 1, 2. $ In the current work, we provide a sufficient condition of global classical solvability to the above system. More precisely, for some suitable initial data, if $ m > \max\{\frac{\alpha(n+2)}{2}, 1 \} $ and $ l > \max\{\frac{\beta(n+2)}{2}, 1 \}, $ then the system has a global classical solution. Compared to previous work, the existence result established here is more generalized, depending only on the nonlinear power exponents and spatial dimensions.



    加载中


    [1] E. Keller, L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5
    [2] C. Wang, P. Wang, X. Zhu, Global dynamics in a chemotaxis system involving nonlinear indirect signal secretion and logistic source, Z. Angew. Math. Phys., 74 (2023), 237. https://doi.org/10.1007/s00033-023-02126-2 doi: 10.1007/s00033-023-02126-2
    [3] M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equations, 35 (2010), 1516–1537. https://doi.org/10.1080/03605300903473426 doi: 10.1080/03605300903473426
    [4] C. Lo, J. Rodrigues, Global existence for nonlocal quasilinear diffusion systems in nonisotropic nondivergence form, Math. Nachr., 297 (2024), 2122–2147. https://doi.org/10.1002/mana.202200250 doi: 10.1002/mana.202200250
    [5] M. Winkler, Does a "volume-filling effect" always prevent chemotactic collapse?, Math. Methods Appl. Sci., 33 (2010), 12–24. https://doi.org/10.1002/mma.1146 doi: 10.1002/mma.1146
    [6] C. Wang, J. Zhu, Blow-up analysis to a quasilinear chemotaxis system with nonlocal logistic effect, Bull. Malays. Math. Sci. Soc., 47 (2024), 60. https://doi.org/10.1007/s40840-024-01659-7 doi: 10.1007/s40840-024-01659-7
    [7] M. Winkler, How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?, Trans. Am. Math. Soc., 369 (2017), 3067–3125. https://doi.org/10.1090/tran/6733 doi: 10.1090/tran/6733
    [8] J. Zheng, An optimal result for global existence and boundedness in a three-dimensional Keller-Segel-Stokes, J. Differ. Equations, 267 (2019), 2385–2415. https://doi.org/10.1016/j.jde.2019.03.013 doi: 10.1016/j.jde.2019.03.013
    [9] W. Zhang, Global solutions in a chemotaxis consumption model with singular sensitivity, Z. Angew. Math. Phys., 74 (2023), 165. https://doi.org/10.1007/s00033-023-02049-y doi: 10.1007/s00033-023-02049-y
    [10] H. Liu, C. Lo, Determining a parabolic system by boundary observation of its non-negative solutions with biological applications, Inverse Probl., 40 (2024), 025009. https://doi.org/10.1088/1361-6420/ad149f doi: 10.1088/1361-6420/ad149f
    [11] N. Bellomo, A. Bellouquid, Y. Tao, M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663–1763. https://doi.org/10.1142/S021820251550044X doi: 10.1142/S021820251550044X
    [12] P. Liu, J. Shi, Z. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2597–2625. https://doi.org/10.3934/dcdsb.2013.18.2597 doi: 10.3934/dcdsb.2013.18.2597
    [13] G. Fragnelli, Positive periodic solutions for a system of anisotropic parabolic equations, J. Math. Anal. Appl., 367 (2010), 204–228. https://doi.org/10.1016/j.jmaa.2009.12.039 doi: 10.1016/j.jmaa.2009.12.039
    [14] H. Alaa, N. Alaa, A. Bouchriti, A. Charkaoui, An improved nonlinear anisotropic model with p(x)-growth conditions applied to image restoration and enhancement, Math. Meth. Appl. Sci., 47 (2024), 7546–7575. https://doi.org/10.1002/mma.9989 doi: 10.1002/mma.9989
    [15] A. Charkaoui, A. Ben-Loghfyry, S. Zeng, A novel parabolic model driven by double phase flux operator with variable exponents: Application to image decomposition and denoising, Comput. Math. Appl., 174 (2024), 97–141. https://doi.org/10.1016/j.camwa.2024.08.021 doi: 10.1016/j.camwa.2024.08.021
    [16] A. Charkaoui, A. Ben-Loghfyry, S. Zeng, Nonlinear parabolic double phase variable exponent systems with applications in image noise removal, Appl. Math. Modell., 132 (2024), 495–530. https://doi.org/10.1016/j.apm.2024.04.059 doi: 10.1016/j.apm.2024.04.059
    [17] J. Ahn, M. Winkler, A critical exponent for blow-up in a two-dimensional chemotaxis-consumption system, Calc. Var. Partial Differ. Equations, 62 (2023), 6. https://doi.org/10.1007/s00526-023-02523-5 doi: 10.1007/s00526-023-02523-5
    [18] W. Lyu, Asymptotic stabilization for a class of chemotaxis-consumption systems with generalized logistic source, Nonlinear Anal., 217 (2022), 112737. https://doi.org/10.1016/j.na.2021.112737 doi: 10.1016/j.na.2021.112737
    [19] Y. Wang, M. Winkler, Finite-time blow-up in a repulsive chemotaxis-consumption system, Proc. Roy. Soc. Edinburgh Sect. A, 153 (2023), 1150–1166. https://doi.org/10.1017/prm.2022.39 doi: 10.1017/prm.2022.39
    [20] Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., 381 (2011), 521–529. https://doi.org/10.1016/j.jmaa.2011.02.041 doi: 10.1016/j.jmaa.2011.02.041
    [21] K. Baghaei, A. Khelghati, Boundedness of classical solutions for a chemotaxis model with consumption of chemoattractant, C. R. Math. Acad. Sci. Paris, 355 (2017), 633–639. https://doi.org/10.1002/mma.4264 doi: 10.1002/mma.4264
    [22] M. Fuest, Analysis of a chemotaxis model with indirect signal absorption, J. Differ. Equations, 267 (2019), 4778–4806. https://doi.org/10.1016/j.jde.2019.05.015 doi: 10.1016/j.jde.2019.05.015
    [23] J. Lankeit, Y. Wang, Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption, Discrete Contin. Dyn. Syst., 37 (2017), 6099–6121. https://doi.org/10.3934/dcds.2017262 doi: 10.3934/dcds.2017262
    [24] C. Wang, Z. Zheng, X. Zhu, Dynamic behavior analysis to a generalized chemotaxis-consumption system, J. Math. Phys., 65 (2024), 011503. https://doi.org/10.1063/5.0176530 doi: 10.1063/5.0176530
    [25] Y. Chiyo, S. Frassu, G. Viglialoro, A nonlinear attraction-repulsion Keller-Segel model with double sublinear absorptions: Criteria toward boundedness, Commun. Pure Appl. Anal., 22 (2023), 1783–1809. https://doi.org/10.3934/cpaa.2023047 doi: 10.3934/cpaa.2023047
    [26] C. Wang, Z. Zheng, Global boundedness for a chemotaxis system involving nonlinear indirect consumption mechanism, Discrete Contin. Dyn. Syst. B, 29 (2024), 2141–2157. https://doi.org/10.3934/dcdsb.2023171 doi: 10.3934/dcdsb.2023171
    [27] X. Bai, M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553–583. https://doi.org/10.1512/iumj.2016.65.5776 doi: 10.1512/iumj.2016.65.5776
    [28] M. Mizukami, Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2301–2319. https://doi.org/10.3934/dcdsb.2017097 doi: 10.3934/dcdsb.2017097
    [29] M. Mizukami, Improvement of conditions for asymptotic stability in a two-species chemotaxiscompetition model with signal-dependent sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 13 (2020), 269–278. https://doi.org/10.3934/dcdss.2020015 doi: 10.3934/dcdss.2020015
    [30] K. Lin, C. Mu, Convergence of global and bounded solutions of a two-species chemotaxis model with a logistic source, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2233–2260. https://doi.org/10.3934/dcdsb.2017094 doi: 10.3934/dcdsb.2017094
    [31] K. Lin, C. Mu, L. Wang, Boundedness in a two-species chemotaxis system, Math. Methods Appl. Sci., 38 (2015), 5085–5096. https://doi.org/10.1002/mma.3429 doi: 10.1002/mma.3429
    [32] L. Miao, H. Yang, S. Fu, Global boundedness in a two-species predator-prey chemotaxis model, Appl. Math. Lett., 111 (2021), 106–639. https://doi.org/10.1016/j.aml.2020.106639 doi: 10.1016/j.aml.2020.106639
    [33] L. Wang, C. Mu, X. Hu, P. Zheng, Boundedness and asymptotic stability of solutions to a two-species chemotaxis system with consumption of chemoattractant, J. Differ. Equations, 264 (2018), 3369–3401. https://doi.org/10.1016/j.jde.2017.11.019 doi: 10.1016/j.jde.2017.11.019
    [34] J. Zhang, X. Hu, L. Wang, L. Qu, Boundedness in a quasilinear two-species chemotaxis system with consumption of chemoattractant, Electron. J. Qual. Theory Differ. Equations, 31 (2019), 1–12. https://doi.org/10.14232/ejqtde.2019.1.31 doi: 10.14232/ejqtde.2019.1.31
    [35] Q. Zhang, W. Tao, Boundedness and stabilization in a two-species chemotaxis system with signal absorption, Comput. Math. Appl., 78 (2019), 2672–2681. https://doi.org/10.1016/j.camwa.2019.04.008 doi: 10.1016/j.camwa.2019.04.008
    [36] G. Ren, B. Liu, Global existence and asymptotic behavior in a two-species chemotaxis system with logistic source, J. Differ. Equations, 269 (2020), 1484–1520. https://doi.org/10.1016/j.jde.2020.01.008 doi: 10.1016/j.jde.2020.01.008
    [37] G. Ren, B. Liu, Global solvability and asymptotic behavior in a two-species chemotaxis system with Lotka-Volterra competitive kinetics, Math. Models Methods Appl. Sci., 31 (2021), 941–978. https://doi.org/10.1142/S0218202521500238 doi: 10.1142/S0218202521500238
    [38] M. Winkler, Global generalized solutions to a multi-dimensional doubly tactic resource consumption model accounting for social interactions, Math. Models Methods Appl. Sci., 29 (2019), 373–418. https://doi.org/10.1142/S021820251950012X doi: 10.1142/S021820251950012X
    [39] Y. Tao, M. Winkler, Large time behavior in a forager-exploiter model with different taxis strategies for two groups in search of food, Math. Models Methods Appl. Sci., 29 (2019), 2151–2182. https://doi.org/10.1142/S021820251950043X doi: 10.1142/S021820251950043X
    [40] J. Wang, M. Wang, Global bounded solution of the higher-dimensional forager-exploiter model with/without growth sources, Math. Models Methods Appl. Sci., 30 (2020), 1297–1323. https://doi.org/10.1142/S0218202520500232 doi: 10.1142/S0218202520500232
    [41] D. Wu, S. Shen, Global boundedness and stabilization in a forager-exploiter model with logistic growth and nonlinear resource consumption, Nonlinear Anal. Real World Appl., 72 (2023), 103–854. https://doi.org/10.1016/j.nonrwa.2023.103854 doi: 10.1016/j.nonrwa.2023.103854
    [42] H. Ou, L. Wang, Boundedness in a two-species chemotaxis system with nonlinear resource consumption, Qual. Theory Dyn. Syst., 23 (2024), 14. https://doi.org/10.1007/s12346-023-00873-1 doi: 10.1007/s12346-023-00873-1
    [43] Y. Choi, Z. Wang, Prevention of blow-up by fast diffusion in chemotaxis, J. Math. Anal. Appl., 362 (2010), 553–564. https://doi.org/10.1016/j.jmaa.2009.08.012 doi: 10.1016/j.jmaa.2009.08.012
    [44] M. Delgado, I. Gayte, C. Morales-Rodrigo, A. Suárez, An angiogenesis model with nonlinear chemotactic response and flux at the tumor boundary, Nonlinear Anal., 72 (2010), 330–347. https://doi.org/10.1016/j.na.2009.06.057 doi: 10.1016/j.na.2009.06.057
    [45] H. Schmeisser, H. Triebel, Function spaces, differential operators and nonlinear analysis, in Teubner-Texte zur Mathematik, 133 (1993), 9–126. https://doi.org/10.1007/978-3-663-11336-2
    [46] J. Wang, Global existence and boundedness of a forager-exploiter system with nonlinear diffusions, J. Differ. Equations, 276 (2021), 460–492. https://doi.org/10.1016/j.jde.2020.12.028 doi: 10.1016/j.jde.2020.12.028
    [47] C. Stinner, C. Surulescu, M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969–2007. https://doi.org/10.1137/13094058X doi: 10.1137/13094058X
    [48] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segal model, J. Differ. Equations, 248 (2010), 2889–2905. https://doi.org/10.1016/j.jde.2010.02.008 doi: 10.1016/j.jde.2010.02.008
    [49] J. Wang, Global existence and stabilization in a forager-exploiter model with general logistic sources, Nonlinear Anal., 222 (2022), 112–985. https://doi.org/10.1016/j.na.2022.112985 doi: 10.1016/j.na.2022.112985
    [50] A. Friedman, Partial Different Equations, Holt Rinehart and Winston, New York, 1969.
    [51] L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa Sci. Fis. Mat., III. Ser., 13 (1959), 115–162.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(936) PDF downloads(57) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog