Research article

Floquet theory for first-order delay equations and an application to height stabilization of a drone's flight

  • Published: 13 May 2025
  • In this paper, we proposed a version of the Floquet theory for delay differential equations. We demonstrated that very natural assumptions for control in technical applications can lead us to a one-dimensional fundamental system. This approach allowed researchers to work with classical methods used in the case of ordinary differential equations. On this basis, new original unexpected results on the exponential stability were proposed. For example, in the equation $ x'(t)+a(t)x(t-\tau(t)) = 0 $, $ t\in[0, \infty) $, we avoided the assumption on the smallness of the product $ \sup_{t\in[0, \infty)}a(t)\sup_{t\in[0, \infty)}\tau(t) < 3/2 $ for asymptotic stability. We obtained that in the case of $ \omega $-periodic coefficient and delay, the fact that the period $ \omega $ was situated in a corresponding interval can lead to exponential stability. We then applied our new tests of stability to the stabilization of a drone's flight, where smallness of the noted above product could not be achieved from a technical point of view. For an equation with periodic coefficient and delay, we got a formula of the solution's representation on the semiaxis.

    Citation: Martin Bohner, Alexander Domoshnitsky, Oleg Kupervasser, Alex Sitkin. Floquet theory for first-order delay equations and an application to height stabilization of a drone's flight[J]. Electronic Research Archive, 2025, 33(5): 2840-2861. doi: 10.3934/era.2025125

    Related Papers:

  • In this paper, we proposed a version of the Floquet theory for delay differential equations. We demonstrated that very natural assumptions for control in technical applications can lead us to a one-dimensional fundamental system. This approach allowed researchers to work with classical methods used in the case of ordinary differential equations. On this basis, new original unexpected results on the exponential stability were proposed. For example, in the equation $ x'(t)+a(t)x(t-\tau(t)) = 0 $, $ t\in[0, \infty) $, we avoided the assumption on the smallness of the product $ \sup_{t\in[0, \infty)}a(t)\sup_{t\in[0, \infty)}\tau(t) < 3/2 $ for asymptotic stability. We obtained that in the case of $ \omega $-periodic coefficient and delay, the fact that the period $ \omega $ was situated in a corresponding interval can lead to exponential stability. We then applied our new tests of stability to the stabilization of a drone's flight, where smallness of the noted above product could not be achieved from a technical point of view. For an equation with periodic coefficient and delay, we got a formula of the solution's representation on the semiaxis.



    加载中


    [1] E. Fridman, A refined input delay approach to sampled-data control, Automatica, 46 (2010), 421–427. https://doi.org/10.1016/j.automatica.2009.11.017 doi: 10.1016/j.automatica.2009.11.017
    [2] E. Fridman, Introduction to Time-Delay Systems, Systems & Control: Foundations & Applications, Birkhäuser/Springer, Cham, 2014. https://doi.org/10.1007/978-3-319-09393-2
    [3] F. Cacace, A. Germani, C. Manes, A chain observer for nonlinear systems with multiple time-varying measurement delays, SIAM J. Control Optim., 52 (2014), 1862–1885. https://doi.org/10.1137/120876472 doi: 10.1137/120876472
    [4] M. Heemels, K. H. Johansson, P. Tabuada, An introduction to event-triggered and self-triggered control, in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), (2013), 3270–3285. https://doi.org/10.1109/CDC.2012.6425820
    [5] T. Ahmed-Ali, E. Fridman, F. Giri, L. Burlion, F. Lamnabhi-Lagarrigue, Using exponential time-varying gains for sampled-data stabilization and estimation, Automatica, 67 (2016), 244–251. https://doi.org/10.1016/j.automatica.2016.01.048 doi: 10.1016/j.automatica.2016.01.048
    [6] G. Floquet, Sur les équations différentielles linéaires à coefficients périodiques, Ann. Sci. Ec. Norm. Super., 12 (1883), 47–88.
    [7] E. A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955.
    [8] B. P. Demidovič, Лекции по математическоĭ теории устоĭчивости (Russian) [Lectures on the mathematical theory of stability], Izdat. "Nauka", Moscow, 1967.
    [9] A. Halanay, D. Wexler, Качественная Теория импульсных систем (Russian) [The qualitative theory of sampled-data systems], Izdat. "Mir", Moscow, 1971, Translated from the Romanian by M. I. Bukatar0 and G. V. Nožak, Edited by V. P. Rubanik.
    [10] I. G. Malkin, Теория устойчивости движения (Russian) [Theory of stability of motion], revised edition, Izdat. "Nauka", Moscow, 1966.
    [11] V. A. Yakubovich, V. M. Линейные дифференциальные уравнения спериодическими коѐффициентами и их приложения (Russian)[Linear differential equations with periodic coefficients and their applications], Izdat. "Nauka", Moscow, 1972.
    [12] R. P. Agarwal, M. Bohner, A. Domoshnitsky, Y. Goltser, Floquet theory and stability of nonlinear integro-differential equations, Acta Math. Hung., 109 (2005), 305–330. https://doi.org/10.1007/s10474-005-0250-7 doi: 10.1007/s10474-005-0250-7
    [13] L. C. Becker, T. A. Burton, T. Krisztin, Floquet theory for a Volterra equation, J. London Math. Soc., 37 (1988), 141–147. https://doi.org/10.1112/jlms/s2-37.121.141 doi: 10.1112/jlms/s2-37.121.141
    [14] A. Domoshnitsky, Y. Goltser, Floquet theorem and stability of linear integro-differential equations, Funct. Differ. Equ., 10 (2003), 463–471.
    [15] S. A. Belbas, Floquet theory for integral and integro-differential equations, Appl. Math. Comput., 223 (2013), 327–345. https://doi.org/10.1016/j.amc.2013.07.089 doi: 10.1016/j.amc.2013.07.089
    [16] W. G. Kelley, A. C. Peterson, Difference Equations, 2nd edition, Harcourt/Academic Press, San Diego, CA, 2001, An introduction with applications.
    [17] A. Halanay, V. Ra$\breve{{\rm{s}}}$van, Stability and boundary value problems for discrete-time linear Hamiltonian systems, Dyn. Syst. Appl., 8 (1999), 439–459.
    [18] A. Halanay, V. Ra$\breve{{\rm{s}}}$van, Stability and Stable Oscillations in Discrete Time Systems, vol. 2 of Advances in Discrete Mathematics and Applications, Gordon and Breach Science Publishers, Amsterdam, 2000.
    [19] R. P. Agarwal, V. Lupulescu, D. O'Regan, A. Younus, Floquet theory for a Volterra integro-dynamic system, Appl. Anal., 93 (2014), 2002–2013. https://doi.org/10.1080/00036811.2013.867019 doi: 10.1080/00036811.2013.867019
    [20] M. Bohner, R. Chieochan, Floquet theory for $q$-difference equations, Sarajevo J. Math., 8 (2012), 355–366. https://doi.org/10.5644/SJM.08.2.14 doi: 10.5644/SJM.08.2.14
    [21] J. J. DaCunha, J. M. Davis, A unified Floquet theory for discrete, continuous, and hybrid periodic linear systems, J. Differ. Equations, 251 (2011), 2987–3027. https://doi.org/10.1016/j.jde.2011.07.023 doi: 10.1016/j.jde.2011.07.023
    [22] C. Zou, J. Shi, Generalization of the Floquet theory, Nonlinear Anal. Theory Methods Appl., 71 (2009), 1100–1107. https://doi.org/10.1016/j.na.2008.11.033 doi: 10.1016/j.na.2008.11.033
    [23] A. Halanay, Differential Equations: Stability, Oscillations, Time Lags, Academic Press, New York-London, 1966.
    [24] J. Hale, Theory of Functional Differential Equations, 2nd edition, Applied Mathematical Sciences, Vol. 3, Springer-Verlag, New York-Heidelberg, 1977.
    [25] F. L. Traversa, M. Di Ventra, F. Bonani, Generalized Floquet theory: application to dynamical systems with memory and Bloch's theorem for nonlocal potentials, Phys. Rev. Lett., 110 (2013), 1–5. https://doi.org/10.1103/PhysRevLett.110.170602 doi: 10.1103/PhysRevLett.110.170602
    [26] T. Insperger, G. Stépán, Semi-Discretization for Time-Delay Systems: Stability and Engineering Applications, vol. 178 of Applied Mathematical Sciences, Springer, New York, 2011. https://doi.org/10.1007/978-1-4614-0335-7
    [27] W. Michiels, S. I. Niculescu, Stability, Control, and Computation for Time-Delay Systems: An Eigenvalue-Based Approach, vol. 27 of Advances in Design and Control, 2nd edition, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2014. https://doi.org/10.1137/1.9781611973631
    [28] T. Luzyanina, K. Engelborghs, Computing Floquet multipliers for functional differential equations, Int. J. Bifurcation Chaos, 12 (2002), 2977–2989. https://doi.org/10.1142/S0218127402006291 doi: 10.1142/S0218127402006291
    [29] L. Berezansky, A. Domoshnitsky, R. Koplatadze, Oscillation, Nonoscillation, Stability and Asymptotic Properties for Second and Higher Order Functional Differential Equations, CRC Press, Boca Raton, FL, 2020. https://doi.org/10.1201/9780429321689
    [30] C. Simmendinger, A. Wunderlin, A. Pelster, Analytical approach for the Floquet theory of delay differential equations, Phys. Rev. E, 59 (1999), 5344–5353. https://doi.org/10.1103/PhysRevE.59.5344 doi: 10.1103/PhysRevE.59.5344
    [31] J. P. Tian, J. Wang, Some results in Floquet theory, with application to periodic epidemic models, Appl. Anal., 94 (2015), 1128–1152. https://doi.org/10.1080/00036811.2014.918606 doi: 10.1080/00036811.2014.918606
    [32] A. D. Myshkis, Линейные дифференциальные уравнения с запаздывающим аргументом (Russian) [Linear differential equations with retarded argument], 2nd edition, Izdat. "Nauka", Moscow, 1972.
    [33] J. Shaik, S. Tiwari, C. P. Vyasarayani, Floquet theory for linear time-periodic delay differential equations using orthonormal history functions, J. Comput. Nonlinear Dyn., 18 (2023), 091005. https://doi.org/10.1115/1.4062633 doi: 10.1115/1.4062633
    [34] V. A. Bodner, M. S. Koszlov, Stabilization of Aerial Vehicles and Autopilots, Oborongiz, Moscow, 1961, In Russian.
    [35] Y. Song, L. He, D. Zhang, J. Qian, J. Fu, Neuroadaptive fault-tolerant control of quadrotor UAVs: a more affordable solution, IEEE Trans. Neural Networks Learn. Syst., 30 (2019), 1975–1983. https://doi.org/10.1109/tnnls.2018.2876130 doi: 10.1109/tnnls.2018.2876130
    [36] S. Yang, B. Xian, Energy-based nonlinear adaptive control design for the quadrotor UAV system with a suspended payload, IEEE Trans. Ind. Electron., 67 (2020), 2054–2064. https://doi.org/10.1109/TIE.2019.2902834 doi: 10.1109/TIE.2019.2902834
    [37] Y. Yu, J. Guo, C. K. Ahn, Z. Xiang, Neural adaptive distributed formation control of nonlinear multi-UAVs with unmodeled dynamics, IEEE Trans. Neural Networks Learn. Syst., 34 (2023), 9555–9561. https://doi.org/10.1109/tnnls.2022.3157079 doi: 10.1109/tnnls.2022.3157079
    [38] M. Abdillah, E. M. Mellouili, T. Haidi, A new intelligent controller based on integral sliding mode control and extended state observer for nonlinear MIMO drone quadrotor, Int. J. Intell. Networks, 5 (2024), 49–62. https://doi.org/10.1016/j.ijin.2024.01.005 doi: 10.1016/j.ijin.2024.01.005
    [39] F. R. Triputra, B. R. Trilaksono, T. Adiono, R. A. Sasongko, M. Dahsyat, Nonlinear dynamic modeling of a fixed-wing unmanned aerial vehicle: a case stduy of Wulung, J. Mechatron. Electr. Power Veh. Technol., 6 (2015), 19–30. https://doi.org/10.14203/j.mev.2015.v6.19-30 doi: 10.14203/j.mev.2015.v6.19-30
    [40] S. Avasker, A. Domoshnitsky, M. Kogan, O. Kupervasser, H. Kutomanov, Y. Rofsov, et al., A method for stabilization of drone flight controlled by autopilot with time delay, SN Appl. Sci., 2 (2020), 1–12. https://doi.org/10.1007/s42452-020-1962-6 doi: 10.1007/s42452-020-1962-6
    [41] A. Domoshnitsky, O. Kupervasser, Vision-Based Drone Navigation Using Ground Relief (DTM), Technical report, Hangzhou Avisi Electronics Co., Ltd., China private company, 2017–2018.
    [42] A. Domoshnitsky, O. Kupervasser, Vision-Based Drone Navigator, Technical report, NOFAR – Israel Innovation Authority / SWYFT Aeronautical Technology, Ltd., private company, 2020–2023.
    [43] A. Domoshnitsky, O. Kupervasser, Vision-Based Navigation of Ground Robots from Upper Position, Technical report, KAMIN – Israel Innovation Authority, 2018–2020.
    [44] G. Ladas, Y. G. Sficas, I. P. Stavroulakis, Asymptotic behavior of solutions of retarded differential equations, Proc. Am. Math. Soc., 88 (1983), 247–253. https://doi.org/10.2307/2044710 doi: 10.2307/2044710
    [45] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Введение в теориюфункционально-дифференциальных уравнений (Russian) [Introduction to the theory of functional-differential equations], "Nauka", Moscow, 1991, With an English summary.
    [46] N. V. Azbelev, P. M. Simonov, Stability of Differential Equations with Aftereffect, vol. 20 of Stability and Control: Theory, Methods and Applications, Taylor & Francis, London, 2003. https://doi.org/10.1201/9781482264807
    [47] T. Yoneyama, k On the ${3\over 2}$ stability theorem for one-dimensional delay-differential equations, J. Math. Anal. Appl., 125 (1987), 161–173. https://doi.org/10.1016/0022-247X(87)90171-5 doi: 10.1016/0022-247X(87)90171-5
    [48] A. Domoshnitsky, Maximum principles and nonoscillation intervals for first order Volterra functional differential equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 15 (2008), 769–814.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1198) PDF downloads(52) Cited by(2)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog