Research article Special Issues

Low dimensional completely resonant tori in Hamiltonian Lattices and a Theorem of Poincaré

  • Received: 20 February 2020 Accepted: 31 May 2020 Published: 03 August 2020
  • We present an extension of a classical result of Poincaré (1892) about continuation of periodic orbits and breaking of completely resonant tori in a class of nearly integrable Hamiltonian systems, which covers most Hamiltonian Lattice models. The result is based on the fixed point method of the period map and exploits a standard perturbation expansion of the solution with respect to a small parameter. Two different statements are given, about existence and linear stability: a first one, in the so called non-degenerate case, and a second one, in the completely degenerate case. A pair of examples inspired to the existence of localized solutions in the discrete NLS lattice is provided.

    Citation: Tiziano Penati, Veronica Danesi, Simone Paleari. Low dimensional completely resonant tori in Hamiltonian Lattices and a Theorem of Poincaré[J]. Mathematics in Engineering, 2021, 3(4): 1-20. doi: 10.3934/mine.2021029

    Related Papers:

    [1] A. M. Elaiw, N. H. AlShamrani, A. D. Hobiny . Stability of an adaptive immunity delayed HIV infection model with active and silent cell-to-cell spread. Mathematical Biosciences and Engineering, 2020, 17(6): 6401-6458. doi: 10.3934/mbe.2020337
    [2] A. M. Elaiw, N. H. AlShamrani . Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059
    [3] Yu Ji . Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences and Engineering, 2015, 12(3): 525-536. doi: 10.3934/mbe.2015.12.525
    [4] Xinran Zhou, Long Zhang, Tao Zheng, Hong-li Li, Zhidong Teng . Global stability for a class of HIV virus-to-cell dynamical model with Beddington-DeAngelis functional response and distributed time delay. Mathematical Biosciences and Engineering, 2020, 17(5): 4527-4543. doi: 10.3934/mbe.2020250
    [5] Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341
    [6] Yan Wang, Tingting Zhao, Jun Liu . Viral dynamics of an HIV stochastic model with cell-to-cell infection, CTL immune response and distributed delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7126-7154. doi: 10.3934/mbe.2019358
    [7] Shengqiang Liu, Lin Wang . Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences and Engineering, 2010, 7(3): 675-685. doi: 10.3934/mbe.2010.7.675
    [8] A. M. Elaiw, A. S. Shflot, A. D. Hobiny . Stability analysis of general delayed HTLV-I dynamics model with mitosis and CTL immunity. Mathematical Biosciences and Engineering, 2022, 19(12): 12693-12729. doi: 10.3934/mbe.2022593
    [9] Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022
    [10] Jiawei Deng, Ping Jiang, Hongying Shu . Viral infection dynamics with mitosis, intracellular delays and immune response. Mathematical Biosciences and Engineering, 2023, 20(2): 2937-2963. doi: 10.3934/mbe.2023139
  • We present an extension of a classical result of Poincaré (1892) about continuation of periodic orbits and breaking of completely resonant tori in a class of nearly integrable Hamiltonian systems, which covers most Hamiltonian Lattice models. The result is based on the fixed point method of the period map and exploits a standard perturbation expansion of the solution with respect to a small parameter. Two different statements are given, about existence and linear stability: a first one, in the so called non-degenerate case, and a second one, in the completely degenerate case. A pair of examples inspired to the existence of localized solutions in the discrete NLS lattice is provided.




    [1] Kapitula T, Kevrekidis P (2001) Stability of waves in discrete systems. Nonlinearity 14: 533-566.
    [2] Ahn T, Mackay RS, Sepulchre JA (2001) Dynamics of relative phases: Generalised multibreathers. Nonlinear Dynam 25: 157-182.
    [3] Aubry S (1997) Breathers in nonlinear lattices: Existence, linear stability and quantization. Phys D 103: 201-250.
    [4] Bruno AD (2020) Normalization of a periodic Hamiltonian system. Program Comput Soft 46: 76- 83.
    [5] Cheng CQ, Wang S (1999) The surviving of lower dimensional tori from a resonant torus of Hamiltonian Systems. J Differ Equations 155: 311-326.
    [6] Cuevas J, Koukouloyannis V, Kevrekidis PG, et al. (2011) Multibreather and vortex breather stability in Klein-Gordon lattices: Equivalence between two different approaches. Int J Bifurcat Chaos 21: 2161-2177.
    [7] Ekeland I (1990) Convexity Methods in Hamiltonian Mechanics, Berlin: Springer-Verlag.
    [8] Graff SM (1974) On the conservation of hyperbolic invariant for Hamiltonian systems. J Differ Equations 15: 1-69.
    [9] Han Y, Li Y, Yi Y (2006) Degenerate lower dimensional tori in Hamiltonian Systems. J Differ Equations 227: 670-691.
    [10] Kapitula T (2001) Stability of waves in perturbed Hamiltonian systems. Phys D 156: 186-200.
    [11] Koukouloyannis V, Kevrekidis PG (2009) On the stability of multibreathers in Klein-Gordon chains. Nonlinearity 22: 2269-2285.
    [12] Kevrekidis PG (2009) The Discrete Nonlinear Schr?dinger Equation, Berlin: Springer-Verlag.
    [13] Kevrekidis PG (2009) Non-nearest-neighbor interactions in nonlinear dynamical lattices. Phys Lett A 373: 3688-3693.
    [14] Koukouloyannis V, Kevrekidis PG, Cuevas J, et al. (2013) Multibreathers in Klein-Gordon chains with interactions beyond nearest neighbors. Phys D 242: 16-29.
    [15] Koukouloyannis V (2013) Non-existence of phase-shift breathers in one-dimensional KleinGordon lattices with nearest-neighbor interactions. Phys Lett A 377: 2022-2026.
    [16] Li Y, Yi Y (2003) A quasi-periodic Poincaré's theorem. Math Ann 326: 649-690.
    [17] MacKay RS (1996) Dynamics of networks: Features which persist from the uncoupled limit, In: Stochastic and Spatial Structures of Dynamical Systems, Amsterdam: North-Holland, 81-104.
    [18] MacKay RS, Sepulchre JS (1998) Stability of discrete breathers. Phys D 119: 148-162.
    [19] Meletlidou E, Ichtiaroglou S (1994) On the number of isolating integrals in perturbed Hamiltonian systems with n ≥ 3 degrees of freedom. J Phys A Math Gen 27: 3919-3926.
    [20] Meletlidou E, Stagika G (2006) On the continuation of degenerate periodic orbits in Hamiltonian systems. Regul Chaotic Dyn 11: 131-138.
    [21] Paleari S, Penati T (2019) Hamiltonian lattice dynamics. Mathematics in Engineering 1: 881-887.
    [22] Pelinovsky DE, Kevrekidis PG, Frantzeskakis DJ (2005) Persistence and stability of discrete vortices in nonlinear Schr?dinger lattices. Phys D 212: 20-53.
    [23] Pelinovsky DE, Kevrekidis PG, Frantzeskakis DJ (2005) Stability of discrete solitons in nonlinear Schr?dinger lattices. Phys D 212: 1-19.
    [24] Penati T, Sansottera M, Paleari S, et al. (2018) On the nonexistence of degenerate phase-shift discrete solitons in a dNLS nonlocal lattice. Phys D 370: 1-13.
    [25] Penati T, Koukouloyannis V, Sansottera M, et al. (2019) On the nonexistence of degenerate phaseshift multibreathers in Klein-Gordon models with interactions beyond nearest neighbors. Phys D 398: 92-114.
    [26] Penati T, Sansottera M, Danesi V (2018) On the continuation of degenerate periodic orbits via normal form: Full dimensional resonant tori. Commun Nonlinear Sci 61: 198-224.
    [27] Sansottera M, Danesi V, Penati T, et al. (2020) On the continuation of degenerate periodic orbits via normal form: Lower dimensional resonant tori. Commun Nonlinear Sci 90: 105360.
    [28] Poincaré H (1957) Les méthodes nouvelles de la mécanique céleste. Tome I. Solutions périodiques. Non-existence des intégrales uniformes. Solutions asymptotiques. New York: Dover Publications, Inc.
    [29] Poincaré H (1996) OEuvres. Tome VII. Les Grands Classiques Gauthier-Villars, Sceaux: Jacques Gabay.
    [30] Treshchev DV (1991) The mechanism of destruction of resonant tori of Hamiltonian systems. Math USSR Sb 68: 181-203.
    [31] Voyatzis G, Ichtiaroglou S (1999) Degenerate bifurcations of resonant tori in Hamiltonian systems. Int J Bifurcat Chaos 9: 849-863.
    [32] Yakubovich VA, Starzhinskii VM (1975) Linear differential equations with periodic coefficients. 1 and 2. New York-Toronto: John Wiley & Sons.
  • This article has been cited by:

    1. Jinliang Wang, Min Guo, Xianning Liu, Zhitao Zhao, Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay, 2016, 291, 00963003, 149, 10.1016/j.amc.2016.06.032
    2. Yu Yang, Stability and Hopf bifurcation of a delayed virus infection model with Beddington-DeAngelis infection function and cytotoxic T-lymphocyte immune response, 2015, 38, 01704214, 5253, 10.1002/mma.3455
    3. Hongquan Sun, Jin Li, A numerical method for a diffusive virus model with general incidence function, cell-to-cell transmission and time delay, 2020, 545, 03784371, 123477, 10.1016/j.physa.2019.123477
    4. A. M. Elaiw, N. H. AlShamrani, Dynamics of viral infection models with antibodies and general nonlinear incidence and neutralize rates, 2016, 4, 2195-268X, 303, 10.1007/s40435-015-0181-2
    5. Zhiting Xu, Youqing Xu, Stability of a CD4+ T cell viral infection model with diffusion, 2018, 11, 1793-5245, 1850071, 10.1142/S1793524518500717
    6. Jinliang Wang, Jiying Lang, Xianning Liu, Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells, 2015, 20, 1531-3492, 3215, 10.3934/dcdsb.2015.20.3215
    7. A. M. Elaiw, A. S. Alsheri, Global Dynamics of HIV Infection of CD4+T Cells and Macrophages, 2013, 2013, 1026-0226, 1, 10.1155/2013/264759
    8. Jia Liu, Qunying Zhang, Canrong Tian, EFFECT OF TIME DELAY ON SPATIAL PATTERNS IN A AIRAL INFECTION MODEL WITH DIFFUSION, 2016, 21, 1392-6292, 143, 10.3846/13926292.2016.1137503
    9. A. M. Shehata, A. M. Elaiw, E. Kh. Elnahary, M. Abul-Ez, Stability analysis of humoral immunity HIV infection models with RTI and discrete delays, 2017, 5, 2195-268X, 811, 10.1007/s40435-016-0235-0
    10. M.L. Mann Manyombe, J. Mbang, G. Chendjou, Stability and Hopf bifurcation of a CTL-inclusive HIV-1 infection model with both viral and cellular infections, and three delays, 2021, 144, 09600779, 110695, 10.1016/j.chaos.2021.110695
    11. A. M. Elaiw, N. H. AlShamrani, Global Properties of General Viral Infection Models with Humoral Immune Response, 2017, 25, 0971-3514, 453, 10.1007/s12591-015-0247-9
    12. Adrianne Jenner, Chae-Ok Yun, Arum Yoon, Peter S. Kim, Adelle C.F. Coster, Modelling heterogeneity in viral-tumour dynamics: The effects of gene-attenuation on viral characteristics, 2018, 454, 00225193, 41, 10.1016/j.jtbi.2018.05.030
    13. Ting Guo, Haihong Liu, Chenglin Xu, Fang Yan, Dynamics of a Delayed HIV-1 Infection Model with Saturation Incidence Rate and CTL Immune Response, 2016, 26, 0218-1274, 1650234, 10.1142/S0218127416502345
    14. Xiulan Lai, Xingfu Zou, Modeling HIV-1 Virus Dynamics with Both Virus-to-Cell Infection and Cell-to-Cell Transmission, 2014, 74, 0036-1399, 898, 10.1137/130930145
    15. A. M. Elaiw, N. A. Alghamdi, Global Stability of Humoral Immunity HIV Infection Models with Chronically Infected Cells and Discrete Delays, 2015, 2015, 1026-0226, 1, 10.1155/2015/370968
    16. Hai-Feng Huo, Rui Chen, Stability of an HIV/AIDS Treatment Model with Different Stages, 2015, 2015, 1026-0226, 1, 10.1155/2015/630503
    17. Hui Miao, Zhidong Teng, Xamxinur Abdurahman, Stability and Hopf bifurcation for a five-dimensional virus infection model with Beddington–DeAngelis incidence and three delays, 2018, 12, 1751-3758, 146, 10.1080/17513758.2017.1408861
    18. Chengjun Kang, Hui Miao, Xing Chen, Jiabo Xu, Da Huang, Global stability of a diffusive and delayed virus dynamics model with Crowley-Martin incidence function and CTL immune response, 2017, 2017, 1687-1847, 10.1186/s13662-017-1332-x
    19. Hui Miao, Zhidong Teng, Zhiming Li, Global Stability of Delayed Viral Infection Models with Nonlinear Antibody and CTL Immune Responses and General Incidence Rate, 2016, 2016, 1748-670X, 1, 10.1155/2016/3903726
    20. Hui Miao, Zhidong Teng, Xamxinur Abdurahman, Zhiming Li, Global stability of a diffusive and delayed virus infection model with general incidence function and adaptive immune response, 2018, 37, 0101-8205, 3780, 10.1007/s40314-017-0543-9
    21. Jinliang Wang, Xinxin Tian, Xia Wang, Stability analysis for delayed viral infection model with multitarget cells and general incidence rate, 2016, 09, 1793-5245, 1650007, 10.1142/S1793524516500078
    22. A. M. Ełaiw, N. H. AlShamrani, Global stability of a delayed virus dynamics model with multi-staged infected progression and humoral immunity, 2016, 09, 1793-5245, 1650060, 10.1142/S1793524516500601
    23. A. M. Elaiw, N. A. Almuallem, Global dynamics of delay-distributed HIV infection models with differential drug efficacy in cocirculating target cells, 2016, 39, 01704214, 4, 10.1002/mma.3453
    24. A. M. Elaiw, N. H. AlShamrani, Global stability of a delayed humoral immunity virus dynamics model with nonlinear incidence and infected cells removal rates, 2017, 5, 2195-268X, 381, 10.1007/s40435-015-0200-3
    25. Hongquan Sun, Jinliang Wang, Dynamics of a diffusive virus model with general incidence function, cell-to-cell transmission and time delay, 2019, 77, 08981221, 284, 10.1016/j.camwa.2018.09.032
    26. Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Jin, Neda Jahanshad, Gautam Prasad, Talia M. Nir, Cassandra D. Leonardo, Jieping Ye, Paul M. Thompson, , Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease, 2015, 7, 1663-4365, 10.3389/fnagi.2015.00048
    27. Yan Geng, Jinhu Xu, Stability and bifurcation analysis for a delayed viral infection model with full logistic proliferation, 2020, 13, 1793-5245, 2050033, 10.1142/S1793524520500333
    28. Jinliang Wang, Jingmei Pang, Toshikazu Kuniya, Yoichi Enatsu, Global threshold dynamics in a five-dimensional virus model with cell-mediated, humoral immune responses and distributed delays, 2014, 241, 00963003, 298, 10.1016/j.amc.2014.05.015
    29. A.M. Elaiw, N.H. AlShamrani, Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal, 2015, 26, 14681218, 161, 10.1016/j.nonrwa.2015.05.007
    30. A. M. Elaiw, N. H. AlShamrani, Global properties of nonlinear humoral immunity viral infection models, 2015, 08, 1793-5245, 1550058, 10.1142/S1793524515500588
    31. Zhijun Liu, Lianwen Wang, Ronghua Tan, Spatiotemporal dynamics for a diffusive HIV-1 infection model with distributed delays and CTL immune response, 2022, 27, 1531-3492, 2767, 10.3934/dcdsb.2021159
    32. Ke Guo, Songbai Guo, Lyapunov functionals for a general time-delayed virus dynamic model with different CTL responses, 2024, 34, 1054-1500, 10.1063/5.0204169
    33. Hui Miao, Global stability of a diffusive humoral immunity viral infection model with time delays and two modes of transmission, 2025, 10, 2473-6988, 14122, 10.3934/math.2025636
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4614) PDF downloads(676) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog