Citation: Tiziano Penati, Veronica Danesi, Simone Paleari. Low dimensional completely resonant tori in Hamiltonian Lattices and a Theorem of Poincaré[J]. Mathematics in Engineering, 2021, 3(4): 1-20. doi: 10.3934/mine.2021029
[1] | A. M. Elaiw, N. H. AlShamrani, A. D. Hobiny . Stability of an adaptive immunity delayed HIV infection model with active and silent cell-to-cell spread. Mathematical Biosciences and Engineering, 2020, 17(6): 6401-6458. doi: 10.3934/mbe.2020337 |
[2] | A. M. Elaiw, N. H. AlShamrani . Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059 |
[3] | Yu Ji . Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences and Engineering, 2015, 12(3): 525-536. doi: 10.3934/mbe.2015.12.525 |
[4] | Xinran Zhou, Long Zhang, Tao Zheng, Hong-li Li, Zhidong Teng . Global stability for a class of HIV virus-to-cell dynamical model with Beddington-DeAngelis functional response and distributed time delay. Mathematical Biosciences and Engineering, 2020, 17(5): 4527-4543. doi: 10.3934/mbe.2020250 |
[5] | Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341 |
[6] | Yan Wang, Tingting Zhao, Jun Liu . Viral dynamics of an HIV stochastic model with cell-to-cell infection, CTL immune response and distributed delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7126-7154. doi: 10.3934/mbe.2019358 |
[7] | Shengqiang Liu, Lin Wang . Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences and Engineering, 2010, 7(3): 675-685. doi: 10.3934/mbe.2010.7.675 |
[8] | A. M. Elaiw, A. S. Shflot, A. D. Hobiny . Stability analysis of general delayed HTLV-I dynamics model with mitosis and CTL immunity. Mathematical Biosciences and Engineering, 2022, 19(12): 12693-12729. doi: 10.3934/mbe.2022593 |
[9] | Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022 |
[10] | Jiawei Deng, Ping Jiang, Hongying Shu . Viral infection dynamics with mitosis, intracellular delays and immune response. Mathematical Biosciences and Engineering, 2023, 20(2): 2937-2963. doi: 10.3934/mbe.2023139 |
[1] | Kapitula T, Kevrekidis P (2001) Stability of waves in discrete systems. Nonlinearity 14: 533-566. |
[2] | Ahn T, Mackay RS, Sepulchre JA (2001) Dynamics of relative phases: Generalised multibreathers. Nonlinear Dynam 25: 157-182. |
[3] | Aubry S (1997) Breathers in nonlinear lattices: Existence, linear stability and quantization. Phys D 103: 201-250. |
[4] | Bruno AD (2020) Normalization of a periodic Hamiltonian system. Program Comput Soft 46: 76- 83. |
[5] | Cheng CQ, Wang S (1999) The surviving of lower dimensional tori from a resonant torus of Hamiltonian Systems. J Differ Equations 155: 311-326. |
[6] | Cuevas J, Koukouloyannis V, Kevrekidis PG, et al. (2011) Multibreather and vortex breather stability in Klein-Gordon lattices: Equivalence between two different approaches. Int J Bifurcat Chaos 21: 2161-2177. |
[7] | Ekeland I (1990) Convexity Methods in Hamiltonian Mechanics, Berlin: Springer-Verlag. |
[8] | Graff SM (1974) On the conservation of hyperbolic invariant for Hamiltonian systems. J Differ Equations 15: 1-69. |
[9] | Han Y, Li Y, Yi Y (2006) Degenerate lower dimensional tori in Hamiltonian Systems. J Differ Equations 227: 670-691. |
[10] | Kapitula T (2001) Stability of waves in perturbed Hamiltonian systems. Phys D 156: 186-200. |
[11] | Koukouloyannis V, Kevrekidis PG (2009) On the stability of multibreathers in Klein-Gordon chains. Nonlinearity 22: 2269-2285. |
[12] | Kevrekidis PG (2009) The Discrete Nonlinear Schr?dinger Equation, Berlin: Springer-Verlag. |
[13] | Kevrekidis PG (2009) Non-nearest-neighbor interactions in nonlinear dynamical lattices. Phys Lett A 373: 3688-3693. |
[14] | Koukouloyannis V, Kevrekidis PG, Cuevas J, et al. (2013) Multibreathers in Klein-Gordon chains with interactions beyond nearest neighbors. Phys D 242: 16-29. |
[15] | Koukouloyannis V (2013) Non-existence of phase-shift breathers in one-dimensional KleinGordon lattices with nearest-neighbor interactions. Phys Lett A 377: 2022-2026. |
[16] | Li Y, Yi Y (2003) A quasi-periodic Poincaré's theorem. Math Ann 326: 649-690. |
[17] | MacKay RS (1996) Dynamics of networks: Features which persist from the uncoupled limit, In: Stochastic and Spatial Structures of Dynamical Systems, Amsterdam: North-Holland, 81-104. |
[18] | MacKay RS, Sepulchre JS (1998) Stability of discrete breathers. Phys D 119: 148-162. |
[19] | Meletlidou E, Ichtiaroglou S (1994) On the number of isolating integrals in perturbed Hamiltonian systems with n ≥ 3 degrees of freedom. J Phys A Math Gen 27: 3919-3926. |
[20] | Meletlidou E, Stagika G (2006) On the continuation of degenerate periodic orbits in Hamiltonian systems. Regul Chaotic Dyn 11: 131-138. |
[21] | Paleari S, Penati T (2019) Hamiltonian lattice dynamics. Mathematics in Engineering 1: 881-887. |
[22] | Pelinovsky DE, Kevrekidis PG, Frantzeskakis DJ (2005) Persistence and stability of discrete vortices in nonlinear Schr?dinger lattices. Phys D 212: 20-53. |
[23] | Pelinovsky DE, Kevrekidis PG, Frantzeskakis DJ (2005) Stability of discrete solitons in nonlinear Schr?dinger lattices. Phys D 212: 1-19. |
[24] | Penati T, Sansottera M, Paleari S, et al. (2018) On the nonexistence of degenerate phase-shift discrete solitons in a dNLS nonlocal lattice. Phys D 370: 1-13. |
[25] | Penati T, Koukouloyannis V, Sansottera M, et al. (2019) On the nonexistence of degenerate phaseshift multibreathers in Klein-Gordon models with interactions beyond nearest neighbors. Phys D 398: 92-114. |
[26] | Penati T, Sansottera M, Danesi V (2018) On the continuation of degenerate periodic orbits via normal form: Full dimensional resonant tori. Commun Nonlinear Sci 61: 198-224. |
[27] | Sansottera M, Danesi V, Penati T, et al. (2020) On the continuation of degenerate periodic orbits via normal form: Lower dimensional resonant tori. Commun Nonlinear Sci 90: 105360. |
[28] | Poincaré H (1957) Les méthodes nouvelles de la mécanique céleste. Tome I. Solutions périodiques. Non-existence des intégrales uniformes. Solutions asymptotiques. New York: Dover Publications, Inc. |
[29] | Poincaré H (1996) OEuvres. Tome VII. Les Grands Classiques Gauthier-Villars, Sceaux: Jacques Gabay. |
[30] | Treshchev DV (1991) The mechanism of destruction of resonant tori of Hamiltonian systems. Math USSR Sb 68: 181-203. |
[31] | Voyatzis G, Ichtiaroglou S (1999) Degenerate bifurcations of resonant tori in Hamiltonian systems. Int J Bifurcat Chaos 9: 849-863. |
[32] | Yakubovich VA, Starzhinskii VM (1975) Linear differential equations with periodic coefficients. 1 and 2. New York-Toronto: John Wiley & Sons. |
1. | Jinliang Wang, Min Guo, Xianning Liu, Zhitao Zhao, Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay, 2016, 291, 00963003, 149, 10.1016/j.amc.2016.06.032 | |
2. | Yu Yang, Stability and Hopf bifurcation of a delayed virus infection model with Beddington-DeAngelis infection function and cytotoxic T-lymphocyte immune response, 2015, 38, 01704214, 5253, 10.1002/mma.3455 | |
3. | Hongquan Sun, Jin Li, A numerical method for a diffusive virus model with general incidence function, cell-to-cell transmission and time delay, 2020, 545, 03784371, 123477, 10.1016/j.physa.2019.123477 | |
4. | A. M. Elaiw, N. H. AlShamrani, Dynamics of viral infection models with antibodies and general nonlinear incidence and neutralize rates, 2016, 4, 2195-268X, 303, 10.1007/s40435-015-0181-2 | |
5. | Zhiting Xu, Youqing Xu, Stability of a CD4+ T cell viral infection model with diffusion, 2018, 11, 1793-5245, 1850071, 10.1142/S1793524518500717 | |
6. | Jinliang Wang, Jiying Lang, Xianning Liu, Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells, 2015, 20, 1531-3492, 3215, 10.3934/dcdsb.2015.20.3215 | |
7. | A. M. Elaiw, A. S. Alsheri, Global Dynamics of HIV Infection of CD4+T Cells and Macrophages, 2013, 2013, 1026-0226, 1, 10.1155/2013/264759 | |
8. | Jia Liu, Qunying Zhang, Canrong Tian, EFFECT OF TIME DELAY ON SPATIAL PATTERNS IN A AIRAL INFECTION MODEL WITH DIFFUSION, 2016, 21, 1392-6292, 143, 10.3846/13926292.2016.1137503 | |
9. | A. M. Shehata, A. M. Elaiw, E. Kh. Elnahary, M. Abul-Ez, Stability analysis of humoral immunity HIV infection models with RTI and discrete delays, 2017, 5, 2195-268X, 811, 10.1007/s40435-016-0235-0 | |
10. | M.L. Mann Manyombe, J. Mbang, G. Chendjou, Stability and Hopf bifurcation of a CTL-inclusive HIV-1 infection model with both viral and cellular infections, and three delays, 2021, 144, 09600779, 110695, 10.1016/j.chaos.2021.110695 | |
11. | A. M. Elaiw, N. H. AlShamrani, Global Properties of General Viral Infection Models with Humoral Immune Response, 2017, 25, 0971-3514, 453, 10.1007/s12591-015-0247-9 | |
12. | Adrianne Jenner, Chae-Ok Yun, Arum Yoon, Peter S. Kim, Adelle C.F. Coster, Modelling heterogeneity in viral-tumour dynamics: The effects of gene-attenuation on viral characteristics, 2018, 454, 00225193, 41, 10.1016/j.jtbi.2018.05.030 | |
13. | Ting Guo, Haihong Liu, Chenglin Xu, Fang Yan, Dynamics of a Delayed HIV-1 Infection Model with Saturation Incidence Rate and CTL Immune Response, 2016, 26, 0218-1274, 1650234, 10.1142/S0218127416502345 | |
14. | Xiulan Lai, Xingfu Zou, Modeling HIV-1 Virus Dynamics with Both Virus-to-Cell Infection and Cell-to-Cell Transmission, 2014, 74, 0036-1399, 898, 10.1137/130930145 | |
15. | A. M. Elaiw, N. A. Alghamdi, Global Stability of Humoral Immunity HIV Infection Models with Chronically Infected Cells and Discrete Delays, 2015, 2015, 1026-0226, 1, 10.1155/2015/370968 | |
16. | Hai-Feng Huo, Rui Chen, Stability of an HIV/AIDS Treatment Model with Different Stages, 2015, 2015, 1026-0226, 1, 10.1155/2015/630503 | |
17. | Hui Miao, Zhidong Teng, Xamxinur Abdurahman, Stability and Hopf bifurcation for a five-dimensional virus infection model with Beddington–DeAngelis incidence and three delays, 2018, 12, 1751-3758, 146, 10.1080/17513758.2017.1408861 | |
18. | Chengjun Kang, Hui Miao, Xing Chen, Jiabo Xu, Da Huang, Global stability of a diffusive and delayed virus dynamics model with Crowley-Martin incidence function and CTL immune response, 2017, 2017, 1687-1847, 10.1186/s13662-017-1332-x | |
19. | Hui Miao, Zhidong Teng, Zhiming Li, Global Stability of Delayed Viral Infection Models with Nonlinear Antibody and CTL Immune Responses and General Incidence Rate, 2016, 2016, 1748-670X, 1, 10.1155/2016/3903726 | |
20. | Hui Miao, Zhidong Teng, Xamxinur Abdurahman, Zhiming Li, Global stability of a diffusive and delayed virus infection model with general incidence function and adaptive immune response, 2018, 37, 0101-8205, 3780, 10.1007/s40314-017-0543-9 | |
21. | Jinliang Wang, Xinxin Tian, Xia Wang, Stability analysis for delayed viral infection model with multitarget cells and general incidence rate, 2016, 09, 1793-5245, 1650007, 10.1142/S1793524516500078 | |
22. | A. M. Ełaiw, N. H. AlShamrani, Global stability of a delayed virus dynamics model with multi-staged infected progression and humoral immunity, 2016, 09, 1793-5245, 1650060, 10.1142/S1793524516500601 | |
23. | A. M. Elaiw, N. A. Almuallem, Global dynamics of delay-distributed HIV infection models with differential drug efficacy in cocirculating target cells, 2016, 39, 01704214, 4, 10.1002/mma.3453 | |
24. | A. M. Elaiw, N. H. AlShamrani, Global stability of a delayed humoral immunity virus dynamics model with nonlinear incidence and infected cells removal rates, 2017, 5, 2195-268X, 381, 10.1007/s40435-015-0200-3 | |
25. | Hongquan Sun, Jinliang Wang, Dynamics of a diffusive virus model with general incidence function, cell-to-cell transmission and time delay, 2019, 77, 08981221, 284, 10.1016/j.camwa.2018.09.032 | |
26. | Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Jin, Neda Jahanshad, Gautam Prasad, Talia M. Nir, Cassandra D. Leonardo, Jieping Ye, Paul M. Thompson, , Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease, 2015, 7, 1663-4365, 10.3389/fnagi.2015.00048 | |
27. | Yan Geng, Jinhu Xu, Stability and bifurcation analysis for a delayed viral infection model with full logistic proliferation, 2020, 13, 1793-5245, 2050033, 10.1142/S1793524520500333 | |
28. | Jinliang Wang, Jingmei Pang, Toshikazu Kuniya, Yoichi Enatsu, Global threshold dynamics in a five-dimensional virus model with cell-mediated, humoral immune responses and distributed delays, 2014, 241, 00963003, 298, 10.1016/j.amc.2014.05.015 | |
29. | A.M. Elaiw, N.H. AlShamrani, Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal, 2015, 26, 14681218, 161, 10.1016/j.nonrwa.2015.05.007 | |
30. | A. M. Elaiw, N. H. AlShamrani, Global properties of nonlinear humoral immunity viral infection models, 2015, 08, 1793-5245, 1550058, 10.1142/S1793524515500588 | |
31. | Zhijun Liu, Lianwen Wang, Ronghua Tan, Spatiotemporal dynamics for a diffusive HIV-1 infection model with distributed delays and CTL immune response, 2022, 27, 1531-3492, 2767, 10.3934/dcdsb.2021159 | |
32. | Ke Guo, Songbai Guo, Lyapunov functionals for a general time-delayed virus dynamic model with different CTL responses, 2024, 34, 1054-1500, 10.1063/5.0204169 | |
33. | Hui Miao, Global stability of a diffusive humoral immunity viral infection model with time delays and two modes of transmission, 2025, 10, 2473-6988, 14122, 10.3934/math.2025636 |