Citation: Yong Wang, Li-qun Gu. Biomedical diagnosis perspective of epigenetic detections using alpha-hemolysin nanopore[J]. AIMS Materials Science, 2015, 2(4): 448-472. doi: 10.3934/matersci.2015.4.448
[1] | Leon J. van Ruiten, Thomas Hartmann . The spatial turn and the scenario approach in flood risk management—Implementing the European Floods Directive in the Netherlands. AIMS Environmental Science, 2016, 3(4): 697-713. doi: 10.3934/environsci.2016.4.697 |
[2] | Gene T. Señeris . Nabaoy River Watershed potential impact to flooding using Geographic Information System remote sensing. AIMS Environmental Science, 2022, 9(3): 381-402. doi: 10.3934/environsci.2022024 |
[3] | G Mathias Kondolf, Pilar Lopez-Llompart . National-local land-use conflicts in floodways of the Mississippi River system. AIMS Environmental Science, 2018, 5(1): 47-63. doi: 10.3934/environsci.2018.1.47 |
[4] | Vijendra Kumar, Kul Vaibhav Sharma, Nikunj K. Mangukiya, Deepak Kumar Tiwari, Preeti Vijay Ramkar, Upaka Rathnayake . Machine learning applications in flood forecasting and predictions, challenges, and way-out in the perspective of changing environment. AIMS Environmental Science, 2025, 12(1): 72-105. doi: 10.3934/environsci.2025004 |
[5] | Said Qasim, Mohammad Qasim, Rajendra Prasad Shrestha, Amir Nawaz Khan . An assessment of flood vulnerability in Khyber Pukhtunkhwa province of Pakistan. AIMS Environmental Science, 2017, 4(2): 206-216. doi: 10.3934/environsci.2017.2.206 |
[6] | Ronak P. Chaudhari, Shantanu R. Thorat, Darshan J. Mehta, Sahita I. Waikhom, Vipinkumar G. Yadav, Vijendra Kumar . Comparison of soft-computing techniques: Data-driven models for flood forecasting. AIMS Environmental Science, 2024, 11(5): 741-758. doi: 10.3934/environsci.2024037 |
[7] | RAHMOUN Ibrahim, BENMAMAR Saâdia, RABEHI Mohamed . Comparison between different Intensities of Rainfall to identify overflow points in a combined sewer system using Storm Water Management Model. AIMS Environmental Science, 2022, 9(5): 573-592. doi: 10.3934/environsci.2022034 |
[8] | Kitipol Nualtong, Ronnason Chinram, Piyawan Khwanmuang, Sukrit Kirtsaeng, Thammarat Panityakul . An efficiency dynamic seasonal regression forecasting technique for high variation of water level in Yom River Basin of Thailand. AIMS Environmental Science, 2021, 8(4): 283-303. doi: 10.3934/environsci.2021019 |
[9] | Finu Shrestha, Kabir Uddin, Sudan Bikash Maharjan, Samjwal Ratna Bajracharya . Application of remote sensing and GIS in environmental monitoring in the Hindu Kush Himalayan region. AIMS Environmental Science, 2016, 3(4): 646-662. doi: 10.3934/environsci.2016.4.646 |
[10] | Ignazio Mongelli, Michalis Vousdoukas, Luc Feyen, Antonio Soria, Juan-Carlos Ciscar . Long-term economic impacts of coastal floods in Europe: a probabilistic analysis. AIMS Environmental Science, 2023, 10(5): 593-608. doi: 10.3934/environsci.2023033 |
In 1960, Opial [12] established the following inequality:
Theorem A Suppose $ f\in C^{1}[0, h] $ satisfies $ f(0) = f(h) = 0 $ and $ f(x) > 0 $ for all $ x\in (0, h). $ Then the inequality holds
$ ∫h0|f(x)f′(x)|dx≤h4∫h0(f′(x))2dx, $
|
(1.1) |
where this constant $ h/4 $ is best possible.
Many generalizations and extensions of Opial's inequality were established [2,4,5,6,7,8,9,10,11,15,16,17,18,19]. For an extensive survey on these inequalities, see [13]. Opial's inequality and its generalizations and extensions play a fundamental role in the ordinary and partial differential equations as well as difference equation [2,3,4,6,7,9,10,11,17]. In particular, Agarwal and Pang [3] proved the following Opial-Wirtinger's type inequalities.
Theorem B Let $ \lambda\geq 1 $ be a given real number, and let $ p(t) $ be a nonnegative and continuous function on $ [0, a] $. Further, let $ x(t) $ be an absolutely continuous function on $ [0, a] $, with $ x(0) = x(a) = 0 $. Then
$ ∫a0p(t)|x(t)|λdt≤12∫a0[t(a−t)](λ−1)/2p(t)dt∫a0|x′(t)|λdt. $
|
(1.2) |
The first aim of the present paper is to establish Opial-Wirtinger's type inequalities involving Katugampola conformable partial derivatives and $ \alpha $-conformable integrals (see Section 2). Our result is given in the following theorem, which is a generalization of (1.2).
Theorem 1.1 Let $ \lambda\geq 1 $ be a real number and $ \alpha\in (0, 1] $, and let $ p(s, t) $ be a nonnegative and continuous functions on $ [0, a]\times [0, b] $. Further, let $ x(s, t) $ be an absolutely continuous function and Katugampola partial derivable on $ [0, a]\times [0, b] $, with $ x(s, 0) = x(0, t) = x(0, 0) = 0 $ and $ x(a, b) = x(a, t) = x(s, b) = 0 $. If $ p > 1, $ $ \frac{1}{p}+\frac{1}{q} = 1 $ Then
$ \int_{0}^{a}\int_{0}^{b}p(s, t)|x(s, t)|^{\lambda}d_{\alpha}sd_{\alpha}t\leq\frac{p+q}{pq} \left(\frac{1}{\alpha^{2}}\right)^{\lambda-1}\left(\int_{0}^{a}\int_{0}^{b}\Gamma_{abpq\lambda\alpha}(s, t)\cdot p(s, t)d_{\alpha}sd_{\alpha}t\right) $ |
$ ×∫a0∫b0|∂2∂s∂t(x)α2(s,t)|λdαsdαt, $
|
(1.3) |
where
$ \Gamma_{abpq\lambda\alpha}(s, t) = \left\{(st)^{1/p}[(a-s)(b-t)]^{1/q}\right\}^{\alpha(\lambda-1)}. $ |
Remark 1.1 Let $ x(s, t) $ reduce to $ s(t) $ and with suitable modifications, and $ p = q = 2 $ and $ \alpha = 1 $, (1.3) become (1.2).
Theorem C Let $ \lambda\geq 1 $ be a given real number, and let $ p(t) $ be a nonnegative and continuous function on $ [0, a] $. Further, let $ x(t) $ be an absolutely continuous function on $ [0, a] $, with $ x(0) = x(a) = 0 $. Then
$ ∫a0p(t)|x(t)|λdt≤12(a2)λ−1(∫a0p(t)dt)∫a0|x′(t)|λdt. $
|
(1.4) |
Another aim of this paper is to establish the following inequality involving Katugampola conformable partial derivatives and $ \alpha $-conformable integrals. Our result is given in the following theorem.
Theorem 1.2 Let $ j = 1, 2 $ and $ \lambda\geq 1 $ be a real number, and let $ p_{j}(s, t) $ be a nonnegative and continuous functions on $ [0, a]\times [0, b] $. Further, let $ x_{j}(s, t) $ be an absolutely continuous function and Katugampola partial derivable on $ [0, a]\times [0, b] $, with $ x_{j}(s, 0) = x_{j}(0, t) = x_{j}(0, 0) = 0 $ and $ x_{j}(a, b) = x_{j}(a, t) = x_{j}(s, b) = 0 $. Then for $ \alpha\in(0, 1] $
$ \int_{0}^{a}\int_{0}^{b}\left(p_{1}(s, t)|x_{1}(s, t)|^{\lambda}+p_{2}(s, t)|x_{2}(s, t)|^{\lambda}\right)d_{\alpha}sd_{\alpha}t\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; $ |
$ \leq\frac{1}{2^{\lambda}}\left(\frac{1}{\alpha^{2}}\right)^{\lambda-1}\Bigg[\left(\int_{0}^{a}\int_{0}^{b}(st)^{\alpha(\lambda-1)}p_{1}(s, t) d_{\alpha}sd_{\alpha}t\right)\int_{0}^{a}\int_{0}^{b}\left|\frac{\partial^{2}}{\partial s\partial t}(x_{1})_{\alpha^{2}}(s, t)\right|^{\lambda} d_{\alpha}sd_{\alpha}t $ |
$ +(∫a0∫b0(st)α(λ−1)p2(s,t)dαsdαt)∫a0∫b0|∂2∂s∂t(x2)α2(s,t)|λdαsdαt]. $
|
(1.5) |
Here, let's recall the well-known Katugampola derivative formulation of conformable derivative of order for $ \alpha\in(0, 1] $ and $ t\in[0, \infty) $, given by
$ Dα(f)(t)=limε→0f(teεt−α)−f(t)ε, $
|
(2.1) |
and
$ Dα(f)(0)=limt→0Dα(f)(t), $
|
(2.2) |
provided the limits exist. If $ f $ is fully differentiable at $ t $, then
$ {\cal D}_{\alpha}(f)(t) = t^{1-\alpha}\frac{df}{dt}(t). $ |
A function $ f $ is $ \alpha $-differentiable at a point $ t\geq 0 $, if the limits in (2.1) and (2.2) exist and are finite. Inspired by this, we propose a new concept of $ \alpha $-conformable partial derivative. In the way of (1.4), $ \alpha $-conformable partial derivative is defined in as follows:
Definition 2.1 [20] ($ \alpha $-conformable partial derivative) Let $ \alpha\in (0, 1] $ and $ s, t\in[0, \infty) $. Suppose $ f(s, t) $ is a continuous function and partial derivable, the $ \alpha $-conformable partial derivative at a point $ s\geq 0 $, denoted by $ \frac{\partial}{\partial s}(f)_{\alpha}(s, t) $, defined by
$ ∂∂s(f)α(s,t)=limε→0f(seεs−α,t)−f(s,t)ε, $
|
(2.3) |
provided the limits exist, and call $ \alpha $-conformable partial derivable.
Recently, Katugampola conformable partial derivative is defined in as follows:
Definition 2.2 [20] (Katugampola conformable partial derivatives) Let $ \alpha\in (0, 1] $ and $ s, t\in[0, \infty) $. Suppose $ f(s, t) $ and $ \frac{\partial}{\partial s}(f)_{\alpha}(s, t) $ are continuous functions and partial derivable, the Katugampola conformable partial derivative, denoted by $ \frac{\partial^{2}}{\partial s\partial t}(f)_{\alpha^{2}}(s, t) $, defined by
$ ∂2∂s∂t(f)α2(s,t)=limε→0∂∂s(f)α(s,teεt−α)−∂∂s(f)α(s,t)ε, $
|
(2.4) |
provided the limits exist, and call Katugampola conformable partial derivable.
Definition 2.3 [20] ($ \alpha $-conformable integral) Let $ \alpha\in (0, 1] $, $ 0\leq a < b $ and $ 0\leq c < d $. A function $ f(x, y):[a, b]\times[c, d]\rightarrow {\Bbb R} $ is $ \alpha $-conformable integrable, if the integral
$ ∫ba∫dcf(x,y)dαxdαy:=∫ba∫dc(xy)α−1f(x,y)dxdy $
|
(2.5) |
exists and is finite.
Theorem 3.1 Let $ \lambda\geq 1 $ be a real number and $ \alpha\in (0, 1] $, and let $ p(s, t) $ be a nonnegative and continuous functions on $ [0, a]\times [0, b] $. Further, let $ x(s, t) $ be an absolutely continuous function and Katugampola partial derivable on $ [0, a]\times [0, b] $, with $ x(s, 0) = x(0, t) = x(0, 0) = 0 $ and $ x(a, b) = x(a, t) = x(s, b) = 0 $. If $ p > 1, $ $ \frac{1}{p}+\frac{1}{q} = 1 $ Then
$ \int_{0}^{a}\int_{0}^{b}p(s, t)|x(s, t)|^{\lambda}d_{\alpha}sd_{\alpha}t\leq\frac{p+q}{pq} \left(\frac{1}{\alpha^{2}}\right)^{\lambda-1}\left(\int_{0}^{a}\int_{0}^{b}\Gamma_{abpq\lambda\alpha}(s, t)\cdot p(s, t)d_{\alpha}sd_{\alpha}t\right) $ |
$ ×∫a0∫b0|∂2∂s∂t(x)α2(s,t)|λdαsdαt, $
|
(3.1) |
where
$ \Gamma_{abpq\lambda\alpha}(s, t) = \left\{(st)^{1/p}[(a-s)(b-t)]^{1/q}\right\}^{\alpha(\lambda-1)}. $ |
Proof From (2.4) and (2.5), we have
$ x(s, t) = \int_{0}^{s}\int_{0}^{t}\frac{\partial^{2}}{\partial s\partial t}(x)_{\alpha^{2}}(s, t)d_{\alpha}sd_{\alpha}t. $ |
By using Hölder's inequality with indices $ \lambda $ and $ \lambda/(\lambda-1) $, we have
$ |x(s, t)|^{\lambda/p}\leq \left[\left(\int_{0}^{s}\int_{0}^{t}\left|\frac{\partial^{2}}{\partial s\partial t} (x)_{\alpha^{2}}(s, t)\right|d_{\alpha}sd_{\alpha}t\right)^{\lambda}\right]^{1/p}\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; $ |
$ ≤(1α2(st)α)(λ−1)/p(∫s0∫t0|∂2∂s∂t(x)α2(s,t)|λdαsdαt)1/p. $
|
(3.2) |
Similarly, from
$ x(s, t) = \int_{s}^{a}\int_{t}^{b}\frac{\partial^{2}}{\partial s\partial t}(x)_{\alpha^{2}}(s, t)d_{\alpha}sd_{\alpha}t, $ |
we obtain
$ |x(s,t)|λ/q≤(1α2[(a−s)(b−t)]α)(λ−1)/q(∫as∫bt|∂q∂s∂t(x)α2(s,t)|λdαsdαt)1/q. $
|
(3.3) |
Now a multiplication of (3.2) and (3.3), and by using the well-known Young inequality gives
$ |x(s,t)|λ≤(1α2)λ−1⋅Γabpqλα(s,t)⋅(∫s0∫t0|∂2∂s∂t(x)α2(s,t)|λdαsdαt)1/p×(∫as∫bt|∂2∂s∂t(x)α2(s,t)|λdαsdαt)1/q≤(1α2)λ−1⋅Γabpqλα(s,t)⋅(1p∫s0∫t0|∂2∂s∂t(x)α2(s,t)|λdαsdαt+1q∫as∫bt|∂2∂s∂t(x)α2(s,t)|λdαsdαt) $
|
$ =p+qpq(1α2)λ−1⋅Γabpqλα(s,t)∫a0∫b0|∂2∂s∂t(x)α2(s,t)|λdαsdαt, $
|
(3.4) |
where
$ \Gamma_{abpq\lambda\alpha}(s, t) = \Big\{(st)^{1/p}[(a-s)(b-t)]^{1/q}\Big\} ^{\alpha(\lambda-1)}. $ |
Multiplying the both sides of (3.4) by $ p(s, t) $ and $ \alpha $–conformable integrating both sides over $ t $ from $ 0 $ to $ b $ first and then integrating the resulting inequality over $ s $ from $ 0 $ to $ a $, we obtain
$ \int_{0}^{a}\int_{0}^{b}p(s, t)|x(s, t)|^{\lambda}d_{\alpha}sd_{\alpha}t\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; $ |
$ \leq\frac{p+q}{pq}\left(\frac{1}{\alpha^{2}}\right)^{\lambda-1}\cdot\int_{0}^{a}\int_{0}^{b}\Gamma_{abpq\lambda\alpha}(s, t)\cdot p(s, t)\left(\int_{0}^{a}\int_{0}^{b}\left|\frac{\partial^{2}}{\partial s\partial t}(x)_{\alpha^{2}}(s, t)\right|^{\lambda}d_{\alpha}sd_{\alpha}t\right)d_{\alpha}sd_{\alpha}t $ |
$ = \frac{p+q}{pq}\left(\frac{1}{\alpha^{2}}\right)^{\lambda-1}\cdot\left(\int_{0}^{a}\int_{0}^{b}\Gamma_{abpq\lambda\alpha}(s, t)\cdot p(s, t)d_{\alpha}sd_{\alpha}t\right)\int_{0}^{a}\int_{0}^{b}\left|\frac{\partial^{2}}{\partial s\partial t}(x)_{\alpha^{2}}(s, t)\right|^{\lambda}d_{\alpha}sd_{\alpha}t. $ |
This completes the proof.
Remark 3.1 Let $ x(s, t) $ reduce to $ s(t) $ and with suitable modifications, (3.1) becomes the following result.
$ ∫a0p(t)|x(t)|λdαt≤p+qpq(1α2)λ−1⋅∫a0Γapqλα(t)p(t)dαt∫a0|Dα(x)(t)|λdαt, $
|
(3.5) |
where $ {\cal D}_{\alpha}(x)(t) $ is Katugampola derivative (2.1) stated in the introduction, and
$ \Gamma_{apq\lambda\alpha}(t) = \Big\{t^{1/p}(a-t)^{1/q}\Big\} ^{\alpha(\lambda-1)}. $ |
Putting $ p = q = 2 $ and $ \alpha = 1 $ in (3.5), (3.5) becomes inequality (1.2) established by Agarwal and Pang [3] stated in the introduction.
Taking for $ \alpha = 1 $, $ p = q = 2 $ and $ p(s, t) = {\rm constant} $ in (3.1), we have the following interesting result.
$ \int_{0}^{a}\int_{0}^{b}|x(s, t)|^{\lambda}dsdt\leq \frac{1}{2}(ab)^{\lambda}\left[B\left(\frac{\lambda+1}{2}, \frac{\lambda+1}{2}\right)\right] ^{2}\int_{0}^{a}\int_{0}^{b}\left|\frac{\partial^{2}}{\partial s\partial t}x(s, t)\right|^{\lambda}dsdt, $ |
where $ B $ is the Beta function.
Theorem 3.2 Let $ j = 1, 2 $ and $ \lambda\geq 1 $ be a real number, and let $ p_{j}(s, t) $ be a nonnegative and continuous functions on $ [0, a]\times [0, b] $. Further, let $ x_{j}(s, t) $ be an absolutely continuous function and Katugampola partial derivable on $ [0, a]\times [0, b] $, with $ x_{j}(s, 0) = x_{j}(0, t) = x_{j}(0, 0) = 0 $ and $ x_{j}(a, b) = x_{j}(a, t) = x_{j}(s, b) = 0 $. Then for $ \alpha\in(0, 1] $
$ \int_{0}^{a}\int_{0}^{b}\left(p_{1}(s, t)|x_{1}(s, t)|^{\lambda}+p_{2}(s, t)|x_{2}(s, t)|^{\lambda}\right)d_{\alpha}sd_{\alpha}t\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; $ |
$ \leq\frac{1}{2^{\lambda}}\left(\frac{1}{\alpha^{2}}\right)^{\lambda-1}\Bigg[\left(\int_{0}^{a}\int_{0}^{b}(st)^{\alpha(\lambda-1)}p_{1}(s, t) d_{\alpha}sd_{\alpha}t\right)\int_{0}^{a}\int_{0}^{b}\left|\frac{\partial^{2}}{\partial s\partial t}(x_{1})_{\alpha^{2}}(s, t)\right|^{\lambda} d_{\alpha}sd_{\alpha}t $ |
$ +(∫a0∫b0(st)α(λ−1)p2(s,t)dαsdαt)∫a0∫b0|∂2∂s∂t(x2)α2(s,t)|λdαsdαt]. $
|
(3.6) |
Proof Because
$ x_{1}(s, t) = \int_{0}^{s}\int_{0}^{t}\frac{\partial^{2}}{\partial s\partial t}(x_{1})_{\alpha^{2}}(s, t)d_{\alpha}sd_{\alpha}t = \int_{s}^{a}\int_{t}^{b}\frac{\partial^{2}}{\partial s\partial t}(x_{1})_{\alpha^{2}}(s, t)d_{\alpha}sd_{\alpha}t. $ |
Hence
$ |x_{1}(s, t)|\leq\frac{1}{2}\int_{0}^{a}\int_{0}^{b}\left|\frac{\partial^{2}}{\partial s\partial t}(x_{1})_{\alpha^{2}}(s, t)\right|d_{\alpha}sd_{\alpha}t. $ |
By Hölder's inequality with indices $ \lambda $ and $ \lambda/(\lambda-1) $, it follows that
$ p_{1}(s, t)|x_{1}(s, t)|^{\lambda}\leq\frac{1}{2^{\lambda}}p_{1}(s, t)\left(\int_{0}^{a}\int_{0}^{b}\left|\frac{\partial^{2}}{\partial s\partial t} (x_{1})_{\alpha^{2}}(s, t)\right|d_{\alpha}sd_{\alpha}t \right)^{\lambda}\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; $ |
$ ≤12λ(1α2)λ−1(st)α(λ−1)p1(s,t)∫a0∫b0|∂2∂s∂t(x1)α2(s,t)|λdαsdαt, $
|
(3.7) |
Similarly
$ p2(s,t)|x2(s,t)|λ≤12λ(1α2)λ−1(st)α(λ−1)p2(s,t)∫a0∫b0|∂2∂s∂t(x2)α2(s,t)|λdαsdαt, $
|
(3.8) |
Taking the sum of (3.7) and (3.8) and $ \alpha $-integrating the resulting inequalities over $ t $ from $ 0 $ to $ b $ first and then over $ s $ from $ 0 $ to $ a $, we obtain
$ \int_{0}^{a}\int_{0}^{b}\left(p_{1}(s, t)|x_{1}(s, t)|^{\lambda}+p_{2}(s, t)|x_{2}(s, t)|^{\lambda}\right)d_{\alpha}s d_{\alpha}t\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; $ |
$ ≤12λ(1α2)λ−1{∫a0∫b0((st)α(λ−1)p1(s,t)∫a0∫b0|∂2∂s∂t(x1)α2(s,t)|λdαsdαt)dαsdαt+∫a0∫b0((st)α(λ−1)p2(s,t)∫a0∫b0|∂2∂s∂t(x2)α2(s,t)|λdαsdαt)dαsdαt}=12λ(1α2)λ−1[(∫a0∫b0(st)α(λ−1)p1(s,t)dαsdαt)∫a0∫b0|∂2∂s∂t(x1)α2(s,t)|λdαsdαt+(∫a0∫b0(st)α(λ−1)p2(s,t)dαsdαt)∫a0∫b0|∂2∂s∂t(x2)α2(s,t)|λdαsdαt]. $
|
Remark 3.2 Taking for $ x_{1}(s, t) = x_{2}(s, t) = x(s, t) $ and $ p_{1}(s, t) = p_{2}(s, t) = p(s, t) $ in (3.6), (3.6) changes to the following inequality.
$ \int_{0}^{a}\int_{0}^{b}p(s, t)|x(s, t)|^{\lambda}d_{\alpha}sd_{\alpha}t\leq\frac{1}{2^{\lambda}}\left(\frac{1} {\alpha^{2}}\right)^{\lambda-1}\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; $ |
$ ×(∫a0∫b0(st)α(λ−1)p(s,t)dαsdαt)∫a0∫b0|∂2∂s∂t(x)α2(s,t)|λdαsdαt. $
|
(3.9) |
Putting $ \alpha = 1 $ in (3.9), we have
$ ∫a0∫b0p(s,t)|x(s,t)|λdsdt≤12λ(∫a0∫b0(st)λ−1p(s,t)dsdt)∫a0∫b0|∂2∂s∂tx(s,t)|λdsdt. $
|
(3.10) |
Let $ x(s, t) $ reduce to $ s(t) $ and with suitable modifications, and $ \lambda = 1 $, (2.10) becomes the following result.
$ ∫a0p(t)|x(t)|dt≤12(∫a0p(t)dt)∫a0|x′(t)|dt. $
|
(3.11) |
This is just a new inequality established by Agarwal and Pang [4]. For $ \lambda = 2 $ the inequality (3.11) has appear in the work of Traple [14], Pachpatte [13] proved it for $ \lambda = 2m $ ($ m\geq 1 $ an integer).
Remark 3.3 Let $ x_{j}(s, t) $ reduce to $ x_{j}(t) $ ($ j = 1, 2 $) and $ p_{j}(s, t) $ reduce to $ p_{j}(t) $ ($ j = 1, 2 $) with suitable modifications, (3.6) becomes the following interesting result.
$ \int_{0}^{a}\left(p_{1}(t)|x_{1}(t)|^{\lambda}+p_{2}(t)|x_{2}(t)|^{\lambda}\right)d_{\alpha}t\leq\frac{1}{2^{\lambda}}\left(\frac{1} {\alpha^{2}}\right)^{\lambda-1}\Bigg[\left(\int_{0}^{a}t^{\alpha(\lambda-1)}p_{1}(t)d_{\alpha}t\right)\int_{0}^{a}\left|{\cal D }_{\alpha}(x'_{1})(t)\right|^{\lambda} d_{\alpha}t $ |
$ +(∫a0tα(λ−1)p2(t)dαt)∫a0|Dα(x′2)(t)|λdαt]. $
|
(3.12) |
Putting $ \lambda = 1 $ and $ \alpha = 1 $ in (3.12), we have the following interesting result.
$ \int_{0}^{a}\left(p_{1}(t)|x_{1}(t)|+p_{2}(t)|x_{2}(t)|\right)dt\leq\frac{1}{2}\Bigg(\int_{0}^{a}p_{1}(t)dt\int_{0}^{a}\left|x'_{1}(t)\right| dt+\int_{0}^{a}p_{2}(t)dt\int_{0}^{a}\left|x'_{2}(t)\right|dt\Bigg). $ |
Finally, we give an example to verify the effectiveness of the new inequalities. Estimate the following double integrals:
$ \int_{0}^{1}\int_{0}^{1}\Big[st(s-1)(t-1)\Big]^{\lambda}dsdt, $ |
where $ \lambda\geq 1 $.
Let $ x_{1}(s,t)=x_{2}(s,t)= x(s, t) = st(s-1)(t-1) $, $ p_{1}(s,t)=p_{2}(s,t)= p(s, t) = (st)^{1-\alpha} $, $ a = b = 1 $ and $ 0 < \alpha\leq 1 $, and by using Theorem 3.2, we obtain
$ \int_{0}^{1}\int_{0}^{1}\Big[st(s-1)(t-1)\Big]^{\lambda}dsdt\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; $ |
$ =∫10∫10p(s,t)|x(s,t)|λdαsdαt≤12λ(1α2)λ−1(∫10∫10(st)α(λ−1)p(s,t)dαsdαt)∫10∫10|∂2∂s∂t(x)α2(s,t)|λdαsdαt=12λ(1α2)λ−1(1α(λ−1)+1)2∫10∫10[(2s−1)(2t−1)]λ(st)α−1dsdt=12λ(1α2)λ−1(1α(λ−1)+1)2(12α−1∫1−1tλ1(t+1)1−αdt)2≤12λ(1α2)λ−1(1α(λ−1)+1)2(12α−12αα)2=22−λα2λ(α(λ−1)+1)2. $
|
We have introduced a general version of Opial-Wirtinger's type integral inequality for the Katugampola partial derivatives. The established results are generalization of some existing Opial type integral inequalities in the previous published studies. For further investigations we propose to consider the Opial-Wirtinger's type inequalities for other partial derivatives.
I would like to thank that research is supported by National Natural Science Foundation of China(11471334, 10971205).
The author declares no conflicts of interest.
[1] |
Dupont C, Armant DR, Brenner CA (2009) Epigenetics: Definition, mechanisms and clinical perspective. Semin Reprod Med 27: 351-357. doi: 10.1055/s-0029-1237423
![]() |
[2] |
Dawson MA, Kouzarides T (2012) Cancer epigenetics: From mechanism to therapy. Cell 150: 12-27. doi: 10.1016/j.cell.2012.06.013
![]() |
[3] |
Esteller M (2008) Molecular origins of cancer: Epigenetics in cancer. New Engl J Med 358: 1148-1159+1096. doi: 10.1056/NEJMra072067
![]() |
[4] |
Laird PW (2005) Cancer epigenetics. Hum Mol Genet 14: R65-R76. doi: 10.1093/hmg/ddi113
![]() |
[5] |
Okugawa Y, Grady WM, Goel A (2015) Epigenetic Alterations in Colorectal Cancer: Emerging Biomarkers. Gastroenterology 149: 1204-1225e1212. doi: 10.1053/j.gastro.2015.07.011
![]() |
[6] | Deng D, Liu Z, Du Y (2010) Epigenetic Alterations as Cancer Diagnostic, Prognostic, and Predictive Biomarkers. Adv Genet 71: 126-176. |
[7] |
Herceg Z, Hainaut P (2007) Genetic and epigenetic alterations as biomarkers for cancer detection, diagnosis and prognosis. Mol Oncol 1: 26-41. doi: 10.1016/j.molonc.2007.01.004
![]() |
[8] |
Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 2: 209-215. doi: 10.1038/nnano.2007.27
![]() |
[9] |
Keyser UF (2011) Controlling molecular transport through nanopores. J R Soc Interface 8: 1369-1378. doi: 10.1098/rsif.2011.0222
![]() |
[10] |
Siwy ZS, Howorka S (2010) Engineered voltage-responsive nanopores. Chem Soc Rev 39: 1115-1132. doi: 10.1039/B909105J
![]() |
[11] |
Garaj S, Hubbard W, Reina A, et al. (2010) Graphene as a subnanometre trans-electrode membrane. Nature 467: 190-193. doi: 10.1038/nature09379
![]() |
[12] |
Siwy ZS, Davenport M (2010) Nanopores: Graphene opens up to DNA. Nat Nanotechnol 5: 697-698. doi: 10.1038/nnano.2010.198
![]() |
[13] |
Tada K, Haruyama J, Yang HX, et al. (2011) Graphene magnet realized by hydrogenated graphene nanopore arrays. Appl Phys Lett 99: 183111. doi: 10.1063/1.3653286
![]() |
[14] |
Ding S, Gao C, Gu LQ (2009) Capturing single molecules of immunoglobulin and ricin with an aptamer-encoded glass nanopore. Anal Chem 81: 6649-6655. doi: 10.1021/ac9006705
![]() |
[15] |
Gu LQ, Shim JW (2010) Single molecule sensing by nanopores and nanopore devices. Analyst 135: 441-451. doi: 10.1039/B907735A
![]() |
[16] | Fertig N, Meyer C, Blick RH, et al. (2001) Microstructured glass chip for ion-channel electrophysiology. Phys Rev E Stat Nonlin Soft Matter Phys 64: 409011-409014. |
[17] |
Li J, Stein D, McMullan C, et al. (2001) Ion-beam sculpting at nanometre length scales. Nature 412: 166-169. doi: 10.1038/35084037
![]() |
[18] |
Storm AJ, Chen JH, Ling XS, et al. (2003) Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater 2: 537-540. doi: 10.1038/nmat941
![]() |
[19] |
Kasianowicz JJ, Brandin E, Branton D, et al. (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A 93: 13770-13773. doi: 10.1073/pnas.93.24.13770
![]() |
[20] |
Laszlo AH, Derrington IM, Brinkerhoff H, et al. (2013) Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore MspA. Proc Natl Acad Sci U S A 110: 18904-18909. doi: 10.1073/pnas.1310240110
![]() |
[21] | Laszlo AH, Derrington IM, Ross BC, et al. (2014) Decoding long nanopore sequencing reads of natural DNA. Nat Biotechnol 32: 829-833. |
[22] |
Wang Y, Montana V, Grubišić V, et al. (2015) Nanopore sensing of botulinum toxin type B by discriminating an enzymatically cleaved peptide from a synaptic protein synaptobrevin 2 derivative. ACS Appl Mater Inter 7: 184-192. doi: 10.1021/am5056596
![]() |
[23] |
Liu J, Eren E, Vijayaraghavan J, et al. (2012) OccK channels from Pseudomonas aeruginosa exhibit diverse single-channel electrical signatures but conserved anion selectivity. Biochemistry 51: 2319-2330. doi: 10.1021/bi300066w
![]() |
[24] |
Mohammad MM, Iyer R, Howard KR, et al. (2012) Engineering a rigid protein tunnel for biomolecular detection. J Am Chem Soc 134: 9521-9531. doi: 10.1021/ja3043646
![]() |
[25] |
Cheneke BR, van den Berg B, Movileanu L (2015) Quasithermodynamic contributions to the fluctuations of a protein nanopore. ACS Chem Biol 10: 784-794. doi: 10.1021/cb5008025
![]() |
[26] |
Wang HY, Li Y, Qin LX, et al. (2013) Single-molecule DNA detection using a novel SP1 protein nanopore. Chem Commun (Camb) 49: 1741-1743. doi: 10.1039/c3cc38939a
![]() |
[27] |
Wang S, Haque F, Rychahou PG, et al. (2013) Engineered nanopore of phi29 dna-packaging motor for real-time detection of single colon cancer specific antibody in serum. ACS Nano 7: 9814-9822. doi: 10.1021/nn404435v
![]() |
[28] |
Wu D, Bi S, Zhang L, et al. (2014) Single-molecule study of proteins by biological nanopore sensors. Sensors (Basel) 14: 18211-18222. doi: 10.3390/s141018211
![]() |
[29] |
Venkatesan BM, Bashir R (2011) Nanopore sensors for nucleic acid analysis. Nat Nanotechnol 6: 615-624. doi: 10.1038/nnano.2011.129
![]() |
[30] |
Hall AR, Scott A, Rotem D, et al. (2010) Hybrid pore formation by directed insertion of +Ý-haemolysin into solid-state nanopores. Nat Nanotechnol 5: 874-877. doi: 10.1038/nnano.2010.237
![]() |
[31] |
Bell NA, Engst CR, Ablay M, et al. (2012) DNA origami nanopores. Nano Lett 12: 512-517. doi: 10.1021/nl204098n
![]() |
[32] |
Iqbal SM, Akin D, Bashir R (2007) Solid-state nanopore channels with DNA selectivity. Nat Nanotechnol 2: 243-248. doi: 10.1038/nnano.2007.78
![]() |
[33] |
Tinazli A, Tang J, Valiokas R, et al. (2005) High-affinity chelator thiols for switchable and oriented immobilization of histidine-tagged proteins: a generic platform for protein chip technologies. Chemistry 11: 5249-5259. doi: 10.1002/chem.200500154
![]() |
[34] |
Wei R, Pedone D, Zurner A, et al. (2010) Fabrication of metallized nanopores in silicon nitride membranes for single-molecule sensing. Small 6: 1406-1414. doi: 10.1002/smll.201000253
![]() |
[35] |
Yusko EC, Johnson JM, Majd S, et al. (2011) Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat Nanotechnol 6: 253-260. doi: 10.1038/nnano.2011.12
![]() |
[36] | Wang D, Harrer S, Luan B, et al. (2014) Regulating the transport of DNA through Biofriendly Nanochannels in a thin solid membrane. Sci Rep 4: 3985. |
[37] | Branton D, Deamer DW, Marziali A, et al. (2008) The potential and challenges of nanopore sequencing. Nat Nanotechnol 26: 1146-1153. |
[38] |
Cherf GM, Lieberman KR, Rashid H, et al. (2012) Automated forward and reverse ratcheting of DNA in a nanopore at 5-A precision. Nat Biotechnol 30: 344-348. doi: 10.1038/nbt.2147
![]() |
[39] |
Kasianowicz JJ, Brandin E, Branton D, et al. (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A 93: 13770-13773. doi: 10.1073/pnas.93.24.13770
![]() |
[40] |
Manrao EA, Derrington IM, Laszlo AH, et al. (2012) Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat Biotechnol 30: 349-353. doi: 10.1038/nbt.2171
![]() |
[41] |
An N, Fleming AM, White HS, et al. (2012) Crown ether-electrolyte interactions permit nanopore detection of individual DNA abasic sites in single molecules. Proc Natl Acad Sci U S A 109: 11504-11509. doi: 10.1073/pnas.1201669109
![]() |
[42] |
Wallace EV, Stoddart D, Heron AJ, et al. (2010) Identification of epigenetic DNA modifications with a protein nanopore. Chem Commun(Camb) 46: 8195-8197. doi: 10.1039/c0cc02864a
![]() |
[43] |
Shim J, Kim Y, Humphreys GI, et al. (2015) Nanopore-based assay for detection of methylation in double-stranded DNA fragments. ACS Nano 9: 290-300. doi: 10.1021/nn5045596
![]() |
[44] |
Bayley H, Cremer PS (2001) Stochastic sensors inspired by biology. Nature 413: 226-230. doi: 10.1038/35093038
![]() |
[45] |
Gu LQ, Shim JW (2010) Single molecule sensing by nanopores and nanopore devices. Analyst 135: 441-451. doi: 10.1039/B907735A
![]() |
[46] |
Howorka S, Siwy Z (2009) Nanopore analytics: sensing of single molecules. Chem Soc Rev 38: 2360-2384. doi: 10.1039/b813796j
![]() |
[47] | Luan B, Peng H, Polonsky S, et al. (2010) Base-by-base ratcheting of single stranded DNA through a solid-state nanopore. Phys Rev Lett 104. |
[48] |
Asandei A, Chinappi M, Lee JK, et al. (2015) Placement of oppositely charged aminoacids at a polypeptide termini determines the voltage-controlled braking of polymer transport through nanometer-scale pores. Sci Rep 5: 10419. doi: 10.1038/srep10419
![]() |
[49] | Mereuta L, Roy M, Asandei A, et al. (2014) Slowing down single-molecule trafficking through a protein nanopore reveals intermediates for peptide translocation. Sci Rep 4: 3885. |
[50] |
Deamer D (2010) Nanopore analysis of nucleic acids bound to exonucleases and polymerases. Annu Rev Biophys 39: 79-90. doi: 10.1146/annurev.biophys.093008.131250
![]() |
[51] |
Olasagasti F, Lieberman KR, Benner S, et al. (2010) Replication of individual DNA molecules under electronic control using a protein nanopore. Nat Nanotechnol 5: 798-806. doi: 10.1038/nnano.2010.177
![]() |
[52] |
Chu J, Gonzalez-Lopez M, Cockroft SL, et al. (2010) Real-time monitoring of DNA polymerase function and stepwise single-nucleotide DNA strand translocation through a protein nanopore. Angew Chem Int Ed Engl 49: 10106-10109. doi: 10.1002/anie.201005460
![]() |
[53] |
Benner S, Chen RJ, Wilson NA, et al. (2007) Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore. Nat Nanotechnol 2: 718-724. doi: 10.1038/nnano.2007.344
![]() |
[54] |
Asandei A, Iftemi S, Mereuta L, et al. (2014) Probing of various physiologically relevant metals: Amyloid-β peptide interactions with a lipid membrane-immobilized protein nanopore. J Membrane Biol 247: 523-530. doi: 10.1007/s00232-014-9662-z
![]() |
[55] |
Asandei A, Schiopu I, Iftemi S, et al. (2013) Investigation of Cu2+ binding to human and rat amyloid fragments Aβ (1-16) with a protein nanopore. Langmuir 29: 15634-15642. doi: 10.1021/la403915t
![]() |
[56] |
Ying YL, Wang HY, Sutherland TC, et al. (2011) Monitoring of an ATP-binding aptamer and its conformational changes using an α-hemolysin nanopore. Small 7: 87-94. doi: 10.1002/smll.201001428
![]() |
[57] |
Clarke J, Wu HC, Jayasinghe L, et al. (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4: 265-270. doi: 10.1038/nnano.2009.12
![]() |
[58] |
Branton D, Deamer DW, Marziali A, et al. (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26: 1146-1153. doi: 10.1038/nbt.1495
![]() |
[59] |
Bayley H (2006) Sequencing single molecules of DNA. Curr Opin Chem Biol 10: 628-637. doi: 10.1016/j.cbpa.2006.10.040
![]() |
[60] |
Bartel DP (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 116: 281-297. doi: 10.1016/S0092-8674(04)00045-5
![]() |
[61] |
Carthew RW, Sontheimer EJ (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell 136: 642-655. doi: 10.1016/j.cell.2009.01.035
![]() |
[62] |
Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6: 857-866. doi: 10.1038/nrc1997
![]() |
[63] |
Chen X, Ba Y, Ma L, et al. (2008) Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18: 997-1006. doi: 10.1038/cr.2008.282
![]() |
[64] |
Mitchell PS, Parkin RK, Kroh EM, et al. (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105: 10513-10518. doi: 10.1073/pnas.0804549105
![]() |
[65] |
Wang Y, Zheng D, Tan Q, et al. (2011) Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat Nanotechnol 6: 668-674. doi: 10.1038/nnano.2011.147
![]() |
[66] |
Tian K, He Z, Wang Y, et al. (2013) Designing a polycationic probe for simultaneous enrichment and detection of microRNAs in a nanopore. ACS Nano 7: 3962-3969. doi: 10.1021/nn305789z
![]() |
[67] |
Zhang X, Wang Y, Fricke BL, et al. (2014) Programming nanopore ion flow for encoded multiplex microRNA detection. ACS Nano 8: 3444-3450. doi: 10.1021/nn406339n
![]() |
[68] |
Cao C, Ying YL, Gu Z, et al. (2014) Enhanced resolution of low molecular weight poly(ethylene glycol) in nanopore analysis. Anal Chem 86: 11946-11950. doi: 10.1021/ac504233s
![]() |
[69] |
Baral A, Kumar P, Pathak R, et al. (2013) Emerging trends in G-quadruplex biology-role in epigenetic and evolutionary events. Mol BioSyst 9: 1568-1575. doi: 10.1039/c3mb25492e
![]() |
[70] |
Frees S, Menendez C, Crum M, et al. (2014) QGRS-Conserve: A computational method for discovering evolutionarily conserved G-quadruplex motifs. Human Genomics 8: 8. doi: 10.1186/1479-7364-8-8
![]() |
[71] |
Paeschke K, Bochman ML, Daniela Garcia P, et al. (2013) Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature 497: 458-462. doi: 10.1038/nature12149
![]() |
[72] |
Qiu J, Wang M, Zhang Y, et al. (2015) Biological function and medicinal research significance of g-quadruplex interactive proteins. Curr Top Med Chem 15: 1971-1987. doi: 10.2174/1568026615666150515150803
![]() |
[73] |
Fleming AM, Burrows CJ (2013) G-quadruplex folds of the human telomere sequence alter the site reactivity and reaction pathway of guanine oxidation compared to duplex DNA. Chem Res Toxicol 26: 593-607. doi: 10.1021/tx400028y
![]() |
[74] |
An N, Fleming AM, Middleton EG, et al. (2014) Single-molecule investigation of G-quadruplex folds of the human telomere sequence in a protein nanocavity. Proc Natl Acad Sci U S A 111: 14325-14331. doi: 10.1073/pnas.1415944111
![]() |
[75] |
An N, Fleming AM, Burrows CJ (2013) Interactions of the human telomere sequence with the nanocavity of the α-hemolysin ion channel reveal structure-dependent electrical signatures for hybrid folds. J Am Chem Soc 135: 8562-8570. doi: 10.1021/ja400973m
![]() |
[76] |
Wolna AH, Fleming AM, Burrows CJ (2014) Single-molecule analysis of thymine dimer-containing G-quadruplexes formed from the human telomere sequence. Biochemistry 53: 7484-7493. doi: 10.1021/bi501072m
![]() |
[77] |
Shim JW, Gu LQ (2008) Encapsulating a single G-quadruplex aptamer in a protein nanocavity. J Phys Chem B 112: 8354-8360. doi: 10.1021/jp0775911
![]() |
[78] |
Shim JW, Tan Q, Gu LQ (2009) Single-molecule detection of folding and unfolding of the G-quadruplex aptamer in a nanopore nanocavity. Nucleic Acids Res 37: 972-982. doi: 10.1093/nar/gkn968
![]() |
[79] |
Shim J, Gu LQ (2012) Single-molecule investigation of G-quadruplex using a nanopore sensor. Methods 57: 40-46. doi: 10.1016/j.ymeth.2012.03.026
![]() |
[80] | Yang J, Xu ZP, Huang Y, et al. (2004) ATM and ATR: Sensing DNA damage. World J Gastroentero 10: 155-160. |
[81] |
Diculescu VC, Paquim AMC, Brett AMO (2005) Electrochemical DNA sensors for detection of DNA damage. Sensors 5: 377-393. doi: 10.3390/s5060377
![]() |
[82] |
Fojta M (2002) Electrochemical sensors for DNA interactions and damage. Electroanalysis 14: 1449-1463. doi: 10.1002/1521-4109(200211)14:21<1449::AID-ELAN1449>3.0.CO;2-Z
![]() |
[83] |
Paleček E, Bartošík M (2012) Electrochemistry of nucleic acids. Chem Rev 112: 3427-3481. doi: 10.1021/cr200303p
![]() |
[84] |
An N, Fleming AM, White HS, et al. (2015) Nanopore detection of 8-oxoguanine in the human telomere repeat sequence. ACS Nano 9: 4296-4307. doi: 10.1021/acsnano.5b00722
![]() |
[85] |
Boiteux S, Guillet M (2004) Abasic sites in DNA: Repair and biological consequences in Saccharomyces cerevisiae. DNA Repair 3: 1-12. doi: 10.1016/j.dnarep.2003.10.002
![]() |
[86] |
Wilson Iii DM, Barsky D (2001) The major human abasic endonuclease: Formation, consequences and repair of abasic lesions in DNA. Mutat Res-DNA Repair 485: 283-307. doi: 10.1016/S0921-8777(01)00063-5
![]() |
[87] | Reardon JT, Sancar A (2005) Nucleotide Excision Repair. In: Moldave K, editor. Progress in Nucleic Acid Research and Molecular Biology, 183-235. |
[88] |
Gates KS (2009) An overview of chemical processes that damage cellular DNA: Spontaneous hydrolysis, alkylation, and reactions with radicals. Chem Res Toxicol 22: 1747-1760. doi: 10.1021/tx900242k
![]() |
[89] |
Greco NJ, Tor Y (2005) Simple fluorescent pyrimidine analogues detect the presence of DNA abasic sites. J Am Chem Soc 127: 10784-10785. doi: 10.1021/ja052000a
![]() |
[90] |
Lucotti A, Tommasini M, Pezzoli D, et al. (2014) Molecular interactions of DNA with transfectants: A study based on infrared spectroscopy and quantum chemistry as aids to fluorescence spectroscopy and dynamic light scattering analyses. RSC Adv 4: 49620-49627. doi: 10.1039/C4RA08845J
![]() |
[91] |
Sun HB, Qian L, Yokota H (2001) Detection of abasic sites on individual DNA molecules using atomic force microscopy. Anal Chem 73: 2229-2232. doi: 10.1021/ac0013249
![]() |
[92] |
Bowler FR, Diaz-Mochon JJ, Swift MD, et al. (2010) DNA analysis by dynamic chemistry. Angew Chem Int Edit 49: 1809-1812. doi: 10.1002/anie.200905699
![]() |
[93] |
Atamna H, Cheung I, Ames BN (2000) A method for detecting abasic sites in living cells: Age-dependent changes in base excision repair. Proc Natl Acad Sci U S A 97: 686-691. doi: 10.1073/pnas.97.2.686
![]() |
[94] |
Kojima N, Takebayashi T, Mikami A, et al. (2009) Construction of highly reactive probes for abasic site detection by introduction of an aromatic and a guanidine residue into an aminooxy group. J Am Chem Soc 131: 13208-13209. doi: 10.1021/ja904767k
![]() |
[95] |
Zeglis BM, Boland JA, Barton JK (2008) Targeting abasic sites and single base bulges in DNA with metalloinsertors. J Am Chem Soc 130: 7530-7531. doi: 10.1021/ja801479y
![]() |
[96] |
Wang Y, Liu L, Wu C, et al. (2009) Direct detection and quantification of abasic sites for in vivo studies of DNA damage and repair. Nucl Med Biol 36: 975-983. doi: 10.1016/j.nucmedbio.2009.07.007
![]() |
[97] |
Hada M, Sutherland BM (2006) Spectrum of complex DNA damages depends on the incident radiation. Radiat Res 165: 223-230. doi: 10.1667/RR3498.1
![]() |
[98] |
An N, Fleming AM, White HS, et al. (2012) Crown ether-electrolyte interactions permit nanopore detection of individual DNA abasic sites in single molecules. Proc Natl Acad Sci U S A 109: 11504-11509. doi: 10.1073/pnas.1201669109
![]() |
[99] |
Jin Q, Fleming AM, Johnson RP, et al. (2013) Base-excision repair activity of uracil-DNA glycosylase monitored using the latch zone of α-hemolysin. J Am Chem Soc 135: 19347-19353. doi: 10.1021/ja410615d
![]() |
[100] |
Johnson RP, Fleming AM, Jin Q, et al. (2014) Temperature and electrolyte optimization of the α-hemolysin latch sensing zone for detection of base modification in double-stranded DNA. Biophys J 107: 924-931. doi: 10.1016/j.bpj.2014.07.006
![]() |
[101] | Lin YH, Tseng WL (2009) Highly sensitive and selective detection of silver ions and silver nanoparticles in aqueous solution using an oligonucleotide-based fluorogenic probe. Chem Commun (Camb): 6619-6621. |
[102] | Ono A, Cao S, Togashi H, et al. (2008) Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes. Chem Commun (Camb): 4825-4827. |
[103] |
Wen Y, Xing F, He S, et al. (2010) A graphene-based fluorescent nanoprobe for silver(I) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem Commun (Camb) 46: 2596-2598. doi: 10.1039/b924832c
![]() |
[104] |
Torigoe H, Okamoto I, Dairaku T, et al. (2012) Thermodynamic and structural properties of the specific binding between Ag(+) ion and C:C mismatched base pair in duplex DNA to form C-Ag-C metal-mediated base pair. Biochimie 94: 2431-2440. doi: 10.1016/j.biochi.2012.06.024
![]() |
[105] |
Miyake Y, Togashi H, Tashiro M, et al. (2006) MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes. J Am Chem Soc 128: 2172-2173. doi: 10.1021/ja056354d
![]() |
[106] |
Tanaka Y, Oda S, Yamaguchi H, et al. (2007) 15N-15N J-coupling across Hg(II): direct observation of Hg(II)-mediated T-T base pairs in a DNA duplex. J Am Chem Soc 129: 244-245. doi: 10.1021/ja065552h
![]() |
[107] |
Torigoe H, Ono A, Kozasa T (2010) Hg(II) ion specifically binds with T:T mismatched base pair in duplex DNA. Chemistry 16: 13218-13225. doi: 10.1002/chem.201001171
![]() |
[108] |
Wen S, Zeng T, Liu L, et al. (2011) Highly sensitive and selective DNA-based detection of mercury(II) with alpha-hemolysin nanopore. J Am Chem Soc 133: 18312-18317. doi: 10.1021/ja206983z
![]() |
[109] |
Ono A, Torigoe H, Tanaka Y, et al. (2011) Binding of metal ions by pyrimidine base pairs in DNA duplexes. Chem Soc Rev 40: 5855-5866. doi: 10.1039/c1cs15149e
![]() |
[110] |
Brena RM, Huang TH, Plass C (2006) Quantitative assessment of DNA methylation: Potential applications for disease diagnosis, classification, and prognosis in clinical settings. J Mol Med (Berl) 84: 365-377. doi: 10.1007/s00109-005-0034-0
![]() |
[111] |
Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324: 929-930. doi: 10.1126/science.1169786
![]() |
[112] |
Lister R, Pelizzola M, Dowen RH, et al. (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462: 315-322. doi: 10.1038/nature08514
![]() |
[113] | Li WW, Gong L, Bayley H (2013) Single-molecule detection of 5-hydroxymethylcytosine in DNA through chemical modification and nanopore analysis. Angew Chem Int Ed 52: 4350-4355. |
[114] | Shim J, Humphreys GI, Venkatesan BM, et al. (2013) Detection and quantification of methylation in DNA using solid-state nanopores. Sci Rep 3: 1389. |
[115] |
Wallace EV, Stoddart D, Heron AJ, et al. (2010) Identification of epigenetic DNA modifications with a protein nanopore. Chem Commun (Camb) 46: 8195-8197. doi: 10.1039/c0cc02864a
![]() |
[116] |
Wanunu M, Cohen-Karni D, Johnson RR, et al. (2011) Discrimination of methylcytosine from hydroxymethylcytosine in DNA molecules. J Am Chem Soc 133: 486-492. doi: 10.1021/ja107836t
![]() |
[117] |
Yu M, Hon GC, Szulwach KE, et al. (2012) Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat Protoc 7: 2159-2170. doi: 10.1038/nprot.2012.137
![]() |
[118] |
Yu M, Hon GC, Szulwach KE, et al. (2012) Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149: 1368-1380. doi: 10.1016/j.cell.2012.04.027
![]() |
[119] |
Booth MJ, Branco MR, Ficz G, et al. (2012) Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336: 934-937. doi: 10.1126/science.1220671
![]() |
[120] | Wang Y, Luan BQ, Yang Z, et al. (2014) Single Molecule Investigation of Ag+ Interactions with Single Cytosine-, Methylcytosine- and Hydroxymethylcytosine-Cytosine Mismatches in a Nanopore. Sci Rep 4: 5883. |
[121] |
Torigoe H, Miyakawa Y, Ono A, et al. (2011) Thermodynamic properties of the specific binding between Ag+ ions and C:C mismatched base pairs in duplex DNA. Nucleos Nucleot Nucl 30: 149-167. doi: 10.1080/15257770.2011.553210
![]() |
[122] |
Kistenmacher TJ, Rossi M, Marzilli LG (1979) Crystal and molecular structure of (nitrato)(1-methylcytosine)silver(I): An unusual cross-linked polymer containing a heavy metal and a modified nucleic acid constituent. Inorg Chem 18: 240-244. doi: 10.1021/ic50192a007
![]() |
[123] |
Urata H, Yamaguchi E, Nakamura Y, et al. (2011) Pyrimidine-pyrimidine base pairs stabilized by silver(I) ions. Chem Commun (Camb) 47: 941-943. doi: 10.1039/C0CC04091F
![]() |
[124] |
Wang Y, Ritzo B, Gu L-Q (2015) Silver (i) ions modulate the stability of DNA duplexes containing cytosine, methylcytosine and hydroxymethylcytosine at different salt concentrations. RSC Adv 5: 2655-2658. doi: 10.1039/C4RA14490B
![]() |
[125] |
Egger G, Liang G, Aparicio A, et al. (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429: 457-463. doi: 10.1038/nature02625
![]() |
[126] |
Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9: 2395-2402. doi: 10.1093/hmg/9.16.2395
![]() |
[127] | Kang I, Wang Y, Reagan C, et al. (2013) Designing DNA interstrand lock for locus-specific methylation detection in a nanopore. Sci Rep 3: 2381. |
[128] |
Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6: 857-866. doi: 10.1038/nrc1997
![]() |
[129] |
Vlassov VV, Laktionov PP, Rykova EY (2010) Circulating nucleic acids as a potential source for cancer biomarkers. Curr Mol Med 10: 142-165. doi: 10.2174/156652410790963295
![]() |
[130] |
Mitchell PS, Parkin RK, Kroh EM, et al. (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105: 10513-10518. doi: 10.1073/pnas.0804549105
![]() |
[131] | Oremek GM, Sapoutzis N (2003) Pro-gastrin-releasing peptide (Pro-GRP), a tumor marker for small cell lung cancer. Anticancer Res 23: 895-898. |
[132] |
Molina R, Auge JM, Bosch X, et al. (2009) Usefulness of serum tumor markers, including progastrin-releasing peptide, in patients with lung cancer: correlation with histology. Tumour Biol 30: 121-129. doi: 10.1159/000224628
![]() |
[133] |
Albrethsen J, Moller CH, Olsen J, et al. (2006) Human neutrophil peptides 1, 2 and 3 are biochemical markers for metastatic colorectal cancer. Eur J Cancer 42: 3057-3064. doi: 10.1016/j.ejca.2006.05.039
![]() |
[134] |
Bassani-Sternberg M, Barnea E, Beer I, et al. (2010) Soluble plasma HLA peptidome as a potential source for cancer biomarkers. Proc Natl Acad Sci U S A 107: 18769-18776. doi: 10.1073/pnas.1008501107
![]() |
[135] |
Stella Tsai CS, Chen HC, Tung JN, et al. (2010) Serum cellular apoptosis susceptibility protein is a potential prognostic marker for metastatic colorectal cancer. Am J Pathol 176: 1619-1628. doi: 10.2353/ajpath.2010.090467
![]() |
[136] |
Stoeva SI, Lee JS, Smith JE, et al. (2006) Multiplexed detection of protein cancer markers with biobarcoded nanoparticle probes. J Am Chem Soc 128: 8378-8379. doi: 10.1021/ja0613106
![]() |
[137] |
Zheng W, He L (2010) Multiplexed detection of protein cancer markers on Au/Ag-barcoded nanorods using fluorescent-conjugated polymers. Anal Bioanal Chem 397: 2261-2270. doi: 10.1007/s00216-010-3834-1
![]() |
[138] | Jin H, Liu GL (2012) Fabrication and optical characterization of light trapping silicon nanopore and nanoscrew devices. Nanotechnology 23. |
[139] | Merchant CA, Drndić M (2012) Graphene nanopore devices for DNA sensing. In: Gracheva ME, editor. Methods in Molecular Biology, 211-226. |
[140] |
Park S, Lim J, Pak YE, et al. (2013) A solid state nanopore device for investigating the magnetic properties of magnetic nanoparticles. Sensors (Basel, Switzerland) 13: 6900-6909. doi: 10.3390/s130606900
![]() |
[141] |
Wu GS, Zhang Y, Si W, et al. (2014) Integrated solid-state nanopore devices for third generation DNA sequencing. Sci China Technol Sc 57: 1925-1935. doi: 10.1007/s11431-014-5644-8
![]() |
[142] | Inoue K, Kawano R, Yasuga H, et al. Logic operation in DNA nano device: Electrical input/output through biological nanopore; 2013; Freiburg. Chemical and Biological Microsystems Society. 1881-1883. |
[143] |
Lim MC, Lee MH, Kim KB, et al. (2015) A mask-free passivation process for low noise nanopore devices. J Nanosci Nanotechno 15: 5971-5977. doi: 10.1166/jnn.2015.10500
![]() |
[144] |
Mulero R, Prabhu AS, Freedman KJ, et al. (2010) Nanopore-Based Devices for Bioanalytical Applications. J Assoc Lab Automat 15: 243-252. doi: 10.1016/j.jala.2010.01.009
![]() |
[145] |
Cockroft SL, Chu J, Amorin M, et al. (2008) A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J Am Chem Soc 130: 818-820. doi: 10.1021/ja077082c
![]() |
[146] |
Kawano R, Osaki T, Sasaki H, et al. (2010) A polymer-based nanopore-integrated microfluidic device for generating stable bilayer lipid membranes. Small 6: 2100-2104. doi: 10.1002/smll.201000997
![]() |
[147] |
Shim JW, Gu LQ (2007) Stochastic sensing on a modular chip containing a single-ion channel. Anal Chem 79: 2207-2213. doi: 10.1021/ac0614285
![]() |
[148] |
Kang XF, Cheley S, Rice-Ficht AC, et al. (2007) A storable encapsulated bilayer chip containing a single protein nanopore. J Am Chem Soc 129: 4701-4705. doi: 10.1021/ja068654g
![]() |
[149] |
Eisenstein M (2012) Oxford Nanopore announcement sets sequencing sector abuzz. Nat Biotechnol 30: 295-296. doi: 10.1038/nbt0412-295
![]() |
[150] |
Quick J, Quinlan AR, Loman NJ (2014) A reference bacterial genome dataset generated on the MinIONTM portable single-molecule nanopore sequencer. GigaScience 3: 22. doi: 10.1186/2047-217X-3-22
![]() |
[151] | Ashton PM, Nair S, Dallman T, et al. (2015) MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol 33: 296-302. |
[152] | Madoui MA, Engelen S, Cruaud C, et al. (2015) Genome assembly using Nanopore-guided long and error-free DNA reads. BMC Genomics 16. |
[153] |
Loman NJ, Quick J, Simpson JT (2015) A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 12: 733-735. doi: 10.1038/nmeth.3444
![]() |
[154] | Palshikar P, Sharma A, Chauhan CS, et al. (2013) Biophotonics: A novel approach biomedical diagnosis. Int J Pharm Sci Rev Res 21: 350-354. |
[155] | Liu A, Ye B (2013) Application of gold nanoparticles in biomedical researches and diagnosis. Clin Lab 59: 23-36. |
[156] |
Nahar J, Imam T, Tickle KS, et al. (2012) Computational intelligence for microarray data and biomedical image analysis for the early diagnosis of breast cancer. Expert Syst Appl 39: 12371-12377. doi: 10.1016/j.eswa.2012.04.045
![]() |
[157] |
Kang JW, Lue N, Kong CR, et al. (2011) Combined confocal Raman and quantitative phase microscopy system for biomedical diagnosis. Biomed Opt Express 2: 2484-2492. doi: 10.1364/BOE.2.002484
![]() |
[158] |
Chen KI, Li BR, Chen YT (2011) Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 6: 131-154. doi: 10.1016/j.nantod.2011.02.001
![]() |
[159] |
Balas C (2009) Review of biomedical optical imaging - A powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis. Meas Sci Technol 20: 104020. doi: 10.1088/0957-0233/20/10/104020
![]() |
[160] |
Ellis DI, Goodacre R (2006) Metabolic fingerprinting in disease diagnosis: Biomedical applications of infrared and Raman spectroscopy. Analyst 131: 875-885. doi: 10.1039/b602376m
![]() |
[161] |
Bottiroli G, Croce AC (2004) Autofluorescence spectroscopy of cells and tissues as a tool for biomedical diagnosis. Photoch Photobio Sci 3: 189-210. doi: 10.1039/b310627f
![]() |
[162] | Urbanova M, Plzak J, Strnad H, et al. (2010) Circulating nucleic acids as a new diagnostic tool. Cell Mol Biol Lett 15: 242-259. |
[163] |
Liu KJ, Brock MV, Shih Ie M, et al. (2010) Decoding circulating nucleic acids in human serum using microfluidic single molecule spectroscopy. J Am Chem Soc 132: 5793-5798. doi: 10.1021/ja100342q
![]() |
[164] |
Thompson L, Turko I, Murad F (2006) Mass spectrometry-based relative quantification of human neutrophil peptides 1, 2, and 3 from biological samples. Mol Immunol 43: 1485-1489. doi: 10.1016/j.molimm.2005.08.001
![]() |
[165] |
Wanunu M, Dadosh T, Ray V, et al. (2010) Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat Nanotechnol 5: 807-814. doi: 10.1038/nnano.2010.202
![]() |
[166] |
Squires A, Meller A (2013) DNA Capture and Translocation through Nanoscale Pores-a Fine Balance of Electrophoresis and Electroosmosis. Biophys J 105: 543-544. doi: 10.1016/j.bpj.2013.06.008
![]() |
[167] |
Wanunu M, Morrison W, Rabin Y, et al. (2010) Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat Nanotechnol 5: 160-165. doi: 10.1038/nnano.2009.379
![]() |
[168] |
Hatlo MM, Panja D, van Roij R (2011) Translocation of DNA molecules through nanopores with salt gradients: the role of osmotic flow. Phys Rev Lett 107: 068101. doi: 10.1103/PhysRevLett.107.068101
![]() |
[169] |
He Y, Tsutsui M, Scheicher RH, et al. (2013) Mechanism of How Salt-Gradient-Induced Charges Affect the Translocation of DNA Molecules through a Nanopore. Biophys J 105: 776-782. doi: 10.1016/j.bpj.2013.05.065
![]() |
[170] |
Chou T (2009) Enhancement of charged macromolecule capture by nanopores in a salt gradient. J Chem Phys 131: 034703. doi: 10.1063/1.3170952
![]() |
1. | Jana Cox, Marcel van der Perk, Tatjana Edler, Hans Middelkoop, The effects of changing channel retention: Unravelling the mechanisms behind the spatial and temporal trends of suspended sediment in the Rhine basin, 2024, 0197-9337, 10.1002/esp.5929 | |
2. | Daniele Fabrizio Bignami, Christian Ambrosi, Manuel Bertulessi, Giovanni Menduni, Maurizio Pozzoni, Federica Zambrini, Governance Strategies and Tools Towards the Improvement of Emergency Management of Natural Disasters in Transboundary Areas, 2024, 22124209, 104704, 10.1016/j.ijdrr.2024.104704 |