Floods have been identified as one of the world's most common and widely distributed natural disasters over the last few decades. Floods' negative impacts could be significantly reduced if accurately predicted or forecasted in advance. Apart from large-scale spatiotemporal data and greater attention to data from the Internet of Things, the worldwide volume of digital data is increasing. Artificial intelligence plays a vital role in analyzing and developing the corresponding flood mitigation plan, flood prediction, or forecast. Machine learning (ML)-based models have recently received much attention due to their self-learning capabilities from data without incorporating any complex physical processes. This study provides a comprehensive review of ML approaches used in flood prediction, forecasting, and classification tasks, serving as a guide for future challenges. The importance and challenges of applying these techniques to flood prediction are discussed. Finally, recommendations and future directions of ML models in flood analysis are presented.
Citation: Vijendra Kumar, Kul Vaibhav Sharma, Nikunj K. Mangukiya, Deepak Kumar Tiwari, Preeti Vijay Ramkar, Upaka Rathnayake. Machine learning applications in flood forecasting and predictions, challenges, and way-out in the perspective of changing environment[J]. AIMS Environmental Science, 2025, 12(1): 72-105. doi: 10.3934/environsci.2025004
Floods have been identified as one of the world's most common and widely distributed natural disasters over the last few decades. Floods' negative impacts could be significantly reduced if accurately predicted or forecasted in advance. Apart from large-scale spatiotemporal data and greater attention to data from the Internet of Things, the worldwide volume of digital data is increasing. Artificial intelligence plays a vital role in analyzing and developing the corresponding flood mitigation plan, flood prediction, or forecast. Machine learning (ML)-based models have recently received much attention due to their self-learning capabilities from data without incorporating any complex physical processes. This study provides a comprehensive review of ML approaches used in flood prediction, forecasting, and classification tasks, serving as a guide for future challenges. The importance and challenges of applying these techniques to flood prediction are discussed. Finally, recommendations and future directions of ML models in flood analysis are presented.
| [1] |
Tehrany MS, Pradhan B, Jebur MN (2015) Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stoch Environ Res Risk Assess 29: 1149–1165. https://doi.org/10.1007/s00477-015-1021-9 doi: 10.1007/s00477-015-1021-9
|
| [2] |
Lin Q, Leandro J, Gerber S, et al. (2020) Multistep flood inundation forecasts with resilient backpropagation neural networks: Kulmbach case study. Water 12. https://doi.org/10.3390/w12123568 doi: 10.3390/w12123568
|
| [3] |
Ritter J, Berenguer M, Corral C, et al. (2020) ReAFFIRM: Real-time Assessment of Flash Flood Impacts – a Regional high-resolution Method. Environ Int 136: 105375. https://doi.org/10.1016/j.envint.2019.105375 doi: 10.1016/j.envint.2019.105375
|
| [4] |
Abdelhady AU, Xu D, Ouyang Z, et al. (2022) A framework for estimating water ingress due to hurricane rainfall. J Wind Eng Ind Aerodyn 221: 104891. https://doi.org/10.1016/j.jweia.2021.104891 doi: 10.1016/j.jweia.2021.104891
|
| [5] |
Sankaranarayanan S, Prabhakar M, Satish S, et al. (2020) Flood prediction based on weather parameters using deep learning. J Water Clim Change 11: 1766–1783. https://doi.org/10.2166/wcc.2019.321 doi: 10.2166/wcc.2019.321
|
| [6] |
Kolen B, Slomp R, Jonkman SN (2013) The impacts of storm Xynthia February 27-28, 2010 in France: Lessons for flood risk management. J Flood Risk Manag 6: 261–278. https://doi.org/10.1111/jfr3.12011 doi: 10.1111/jfr3.12011
|
| [7] |
Berndtsson R, Becker P, Persson A, et al. (2019) Drivers of changing urban flood risk: A framework for action. J Environ Manag 240: 47–56. https://doi.org/10.1016/j.jenvman.2019.03.094 doi: 10.1016/j.jenvman.2019.03.094
|
| [8] |
Kwon SH, Kim JH (2021) Machine learning and urban drainage systems: State-of-the-art review. Water (Switzerland) 13: 1–14. https://doi.org/10.3390/w13243545 doi: 10.3390/w13243545
|
| [9] |
Jain SK, Mani P, Jain SK, et al. (2018) A Brief review of flood forecasting techniques and their applications. Int J River Basin Manag 16: 329–344. https://doi.org/10.1080/15715124.2017.1411920 doi: 10.1080/15715124.2017.1411920
|
| [10] |
Moore RJ, Bell VA, Jones DA (2005) Forecasting for flood warning. C R Geosci 337: 203–217. https://doi.org/10.1016/j.crte.2004.10.017 doi: 10.1016/j.crte.2004.10.017
|
| [11] |
Difrancesco KN, Tullos DD (2014) Flexibility in Water Resour Manag: Review of Concepts and Development of Assessment Measures for Flood Management Systems. J Am Water Resour Assoc 50: 1527–1539. https://doi.org/10.1111/jawr.12214 doi: 10.1111/jawr.12214
|
| [12] |
Zounemat-Kermani M, Matta E, Cominola A, et al. (2020) Neurocomputing in surface water hydrology and hydraulics: A review of two decades retrospective, current status and future prospects. J Hydrol 588: 125085. https://doi.org/10.1016/j.jhydrol.2020.125085 doi: 10.1016/j.jhydrol.2020.125085
|
| [13] |
Dazzi S, Vacondio R, Mignosa P (2021) Flood stage forecasting using machine-learning methods: A case study on the parma river (italy). Water 13. https://doi.org/10.3390/w13121612 doi: 10.3390/w13121612
|
| [14] |
Kratzert F, Klotz D, Brenner C, et al. (2018) Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks. Hydrol Earth Syst Sci 22: 6005–6022. https://doi.org/10.5194/hess-22-6005-2018 doi: 10.5194/hess-22-6005-2018
|
| [15] |
Mosavi A, Ozturk P, Chau K (2018) Flood Prediction Using Machine Learning Models: Literature Review. Water 10: 1536. https://doi.org/10.3390/w10111536 doi: 10.3390/w10111536
|
| [16] |
Han S, Coulibaly P (2017) Bayesian flood forecasting methods: A review. J Hydrol 551: 340–351. https://doi.org/10.1016/j.jhydrol.2017.06.004 doi: 10.1016/j.jhydrol.2017.06.004
|
| [17] |
Badjana HM, Fink M, Helmschrot J, et al. (2017) Hydrological system analysis and modelling of the Kara River basin (West Africa) using a lumped metric conceptual model. Hydrol Sci J 62: 1094–1113. https://doi.org/10.1080/02626667.2017.1307571 doi: 10.1080/02626667.2017.1307571
|
| [18] |
Dal Molin M, Schirmer M, Zappa M, et al. (2020) Understanding dominant controls on streamflow spatial variability to set up a semi-distributed hydrological model: The case study of the Thur catchment. Hydrol Earth Syst Sci 24: 1319–1345. https://doi.org/10.5194/hess-24-1319-2020 doi: 10.5194/hess-24-1319-2020
|
| [19] |
Wang J, Shi P, Jiang P, et al. (2017) Application of BP neural network algorithm in traditional hydrological model for flood forecasting. Water 9: 1–16. https://doi.org/10.3390/w9010048 doi: 10.3390/w9010048
|
| [20] |
Sarker IH (2021) Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science 2: 1–21. https://doi.org/10.1007/s42979-021-00592-x doi: 10.1007/s42979-021-00592-x
|
| [21] |
Liakos KG, Busato P, Moshou D, et al. (2018) Machine learning in agriculture: A review. Sensors 18: 1–29. https://doi.org/10.3390/s18082674 doi: 10.3390/s18082674
|
| [22] | Sene K (2016) Hydrometeorology, Cham, Springer International Publishing. https://doi.org/10.1007/978-3-319-23546-2 |
| [23] |
Mosavi A, Ozturk P, Chau KW (2018) Flood prediction using machine learning models: Literature review. Water (Switzerland) 10: 1–40. https://doi.org/10.3390/w10111536 doi: 10.3390/w10111536
|
| [24] |
Ighile EH, Shirakawa H, Tanikawa H (2022) A Study on the Application of GIS and Machine Learning to Predict Flood Areas in Nigeria. Sustainability14. https://doi.org/10.3390/su14095039 doi: 10.3390/su14095039
|
| [25] |
Nayak M, Das S, Senapati MR (2022) Improving Flood Prediction with Deep Learning Methods. J Inst Eng India Ser B. https://doi.org/10.1007/s40031-022-00720-y doi: 10.1007/s40031-022-00720-y
|
| [26] |
Sankaranarayanan S, Prabhakar M, Satish S, et al. (2020) Flood prediction based on weather parameters using deep learning. J Water Clim Change 11: 1766–1783. https://doi.org/10.2166/wcc.2019.321 doi: 10.2166/wcc.2019.321
|
| [27] |
Jabbari A, Bae DH (2018) Application of Artificial Neural Networks for accuracy enhancements of real-time flood forecasting in the Imjin basin. Water10. https://doi.org/10.3390/w10111626 doi: 10.3390/w10111626
|
| [28] |
Elsafi SH (2014) Artificial Neural Networks (ANNs) for flood forecasting at Dongola Station in the River Nile, Sudan. Alex Eng J 53: 655–662. https://doi.org/10.1016/j.aej.2014.06.010 doi: 10.1016/j.aej.2014.06.010
|
| [29] |
Chen JC, Ning SK, Chen HW, et al. (2008) Flooding probability of urban area estimated by decision tree and artificial neural networks. J Hydroinform 10: 57–67. https://doi.org/10.2166/hydro.2008.009 doi: 10.2166/hydro.2008.009
|
| [30] |
Tehrany MS, Pradhan B, Jebur MN (2013) Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J Hydrol 504: 69–79. https://doi.org/10.1016/j.jhydrol.2013.09.034 doi: 10.1016/j.jhydrol.2013.09.034
|
| [31] |
Tehrany MS, Pradhan B, Mansor S, et al. (2015) Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena 125: 91–101. https://doi.org/10.1016/j.catena.2014.10.017 doi: 10.1016/j.catena.2014.10.017
|
| [32] |
Liu M, Huang Y, Li Z, et al. (2020) The applicability of lstm-knn model for real-time flood forecasting in different climate zones in China. Water 12: 1–21. https://doi.org/10.3390/w12020440 doi: 10.3390/w12020440
|
| [33] |
Boateng EY, Otoo J, Abaye DA (2020) Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review. J Data Anal Inf Process 08: 341–357. https://doi.org/10.4236/jdaip.2020.84020 doi: 10.4236/jdaip.2020.84020
|
| [34] |
Modaresi F, Araghinejad S, Ebrahimi K (2018) A Comparative Assessment of Artificial Neural Network, Generalized Regression Neural Network, Least-Square Support Vector Regression, and K-Nearest Neighbor Regression for Monthly Streamflow Forecasting in Linear and Nonlinear Conditions. Water Resour Manag 32: 243–258. https://doi.org/10.1007/s11269-017-1807-2 doi: 10.1007/s11269-017-1807-2
|
| [35] |
Ghorbani MA, Zadeh HA, Isazadeh M, et al. (2016) A comparative study of artificial neural network (MLP, RBF) and support vector machine models for river flow prediction. Environ Earth Sci 75: 1–14. https://doi.org/10.1007/s12665-015-5096-x doi: 10.1007/s12665-015-5096-x
|
| [36] |
Sarker IH, Kayes ASM, Badsha S, et al. (2020) Cybersecurity data science: an overview from machine learning perspective. J Big Data 7. https://doi.org/10.1186/s40537-020-00318-5 doi: 10.1186/s40537-020-00318-5
|
| [37] |
Janiesch C, Zschech P, Heinrich K (2021) Machine learning and deep learning. Electron Mark 31: 685–695. https://doi.org/10.1007/s12525-021-00475-2 doi: 10.1007/s12525-021-00475-2
|
| [38] | Xu T, Liang F (2021) Machine learning for hydrologic sciences: An introductory overview. Wiley Interdisciplinary Reviews: Water 8: 1–29. https://doi.org/10.1002/wat2.1533 |
| [39] | Mohammed M, Khan MB, Bashier EBM (2016) Machine Learning algorithms and applications, Dordrecht, CRC Press. https://doi.org/10.1201/9781315371658 |
| [40] |
Shen C (2018) A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists. Water Resour Res 54: 8558–8593. https://doi.org/10.1029/2018WR022643 doi: 10.1029/2018WR022643
|
| [41] |
Gnecco G, Morisi R, Roth G, et al. (2017) Supervised and semi-supervised classifiers for the detection of flood-prone areas. Soft Comput 21: 3673–3685. https://doi.org/10.1007/s00500-015-1983-z doi: 10.1007/s00500-015-1983-z
|
| [42] |
Wagenaar D, De Jong J, Bouwer LM (2017) Multi-variable flood damage modelling with limited data using supervised learning approaches. Nat Hazards Earth Syst Sci 17: 1683–1696. https://doi.org/10.5194/nhess-17-1683-2017 doi: 10.5194/nhess-17-1683-2017
|
| [43] |
Oppel H, Fischer S (2020) A New Unsupervised Learning Method to Assess Clusters of Temporal Distribution of Rainfall and Their Coherence with Flood Types. Water Resour Res 56. https://doi.org/10.1029/2019WR026511 doi: 10.1029/2019WR026511
|
| [44] | Gentleman R, Carey VJ (2008) Unsupervised Machine Learning, Bioconductor Case Studies, New York. NY, Springer., 137–157. https://doi.org/10.1007/978-0-387-77240-0_10 |
| [45] |
Usama M, Qadir J, Raza A, et al. (2019) Unsupervised Machine Learning for Networking: Techniques, Applications and Research Challenges. IEEE Access 7: 65579–65615. https://doi.org/10.1109/ACCESS.2019.2916648 doi: 10.1109/ACCESS.2019.2916648
|
| [46] |
Vamplew P, Dazeley R, Berry A, et al. (2011) Empirical evaluation methods for multiobjective reinforcement learning algorithms. Mach Learn 84: 51–80. https://doi.org/10.1109/ACCESS.2019.2916648 doi: 10.1109/ACCESS.2019.2916648
|
| [47] |
Santiago Júnior VA de, Özcan E, Carvalho VR de (2020) Hyper-Heuristics based on Reinforcement Learning, Balanced Heuristic Selection and Group Decision Acceptance. Appl Soft Comput 97: 106760. https://doi.org/10.1007/s10994-010-5232-5 doi: 10.1007/s10994-010-5232-5
|
| [48] | Babbar-sebens M, Mukhopadhyay S (2009) Reinforcement Learning for Human-Machine Collaborative Optimization. Appl Ground Water Monit October 3563–3568. |
| [49] |
Jain SK, Mani P, Jain SK, et al. (2018) A Brief review of flood forecasting techniques and their applications. Int J River Basin Manag 16: 329–344. https://doi.org/10.1080/15715124.2017.1411920 doi: 10.1080/15715124.2017.1411920
|
| [50] |
Rözer V, Müller M, Bubeck P, et al. (2016) Coping with pluvial floods by private households. Water 8. https://doi.org/10.3390/W8070304 doi: 10.3390/W8070304
|
| [51] |
Nachappa T, Meena SR (2020) A novel per pixel and object-based ensemble approach for flood susceptibility mapping. Geom Nat Hazards Risk 11: 2147–2175. https://doi.org/10.1080/19475705.2020.1833990 doi: 10.1080/19475705.2020.1833990
|
| [52] |
Wu J, Liu H, Wei G, et al. (2019) Flash flood forecasting using support vector regression model in a small mountainous catchment. Water 11. https://doi.org/10.3390/w11071327 doi: 10.3390/w11071327
|
| [53] |
Yariyan P, Janizadeh S, Van Phong T, et al. (2020) Improvement of Best First Decision Trees Using Bagging and Dagging Ensembles for Flood Probability Mapping. Water Resour Manag 34: 3037–3053. https://doi.org/10.1007/s11269-020-02603-7 doi: 10.1007/s11269-020-02603-7
|
| [54] |
Landuyt L, Verhoest NEC, Van Coillie FMB (2020) Flood mapping in vegetated areas using an unsupervised clustering approach on sentinel-1 and-2 imagery. Remote Sens 12: 1–20. https://doi.org/10.3390/rs12213611 doi: 10.3390/rs12213611
|
| [55] |
Li W, Kiaghadi A, Dawson C (2021) Exploring the best sequence LSTM modeling architecture for flood prediction. Neural Comput Appl 33: 5571–5580. https://doi.org/10.1007/s00521-020-05334-3 doi: 10.1007/s00521-020-05334-3
|
| [56] |
Ahmed AN, Van Lam T, Hung ND, et al. (2021) A comprehensive comparison of recent developed meta-heuristic algorithms for streamflow time series forecasting problem. Appl Soft Comput 105: 107282. https://doi.org/10.1016/j.asoc.2021.107282 doi: 10.1016/j.asoc.2021.107282
|
| [57] |
Liu K, Li Z, Yao C, et al. (2016) Coupling the k-nearest neighbor procedure with the Kalman filter for real-time updating of the hydraulic model in flood forecasting. Int J Sediment Res 31: 149–158. https://doi.org/10.1016/j.ijsrc.2016.02.002 doi: 10.1016/j.ijsrc.2016.02.002
|
| [58] |
Kabir S, Patidar S, Xia X, et al. (2020) A deep convolutional neural network model for rapid prediction of fluvial flood inundation. J Hydrol 590: 125481. https://doi.org/10.1016/j.jhydrol.2020.125481 doi: 10.1016/j.jhydrol.2020.125481
|
| [59] |
Costache R, Arabameri A, Blaschke T, et al. (2021) Flash-flood potential mapping using deep learning, alternating decision trees and data provided by remote sensing sensors. Sensors 21: 1–21. https://doi.org/10.3390/s21010280 doi: 10.3390/s21010280
|
| [60] |
Ateeq-ur-Rauf, Ghumman AR, Ahmad S, et al. (2018) Performance assessment of artificial neural networks and support vector regression models for stream flow predictions. Environ Monit Assess 190. https://doi.org/10.1007/s10661-018-7012-9 doi: 10.1007/s10661-018-7012-9
|
| [61] | Al-Fawa'reh M, Hawamdeh A, Alrawashdeh R, et al. (2021) Intelligent Methods for flood forecasting in Wadi al Wala, Jordan. International Congress of Advanced Technology and Engineering, ICOTEN. https://doi.org/10.1109/ICOTEN52080.2021.9493425 |
| [62] |
Parizi E, Bagheri-Gavkosh M, Hosseini SM, et al. (2021) Linkage of geographically weighted regression with spatial cluster analyses for regionalization of flood peak discharges drivers: Case studies across Iran. J Clean Prod 310. https://doi.org/10.1016/j.jclepro.2021.127526 doi: 10.1016/j.jclepro.2021.127526
|
| [63] |
Tsakiri K, Marsellos A, Kapetanakis S (2018) Artificial neural network and multiple linear regression for flood prediction in Mohawk River, New York. Water 10. https://doi.org/10.3390/w10091158 doi: 10.3390/w10091158
|
| [64] |
Wu CL, Chau KW (2010) Data-driven models for monthly streamflow time series prediction. Eng. Appl. Artif. Intell. 23: 1350–1367. https://doi.org/10.1016/j.engappai.2010.04.003 doi: 10.1016/j.engappai.2010.04.003
|
| [65] |
Zounemat-Kermani M, Kisi O, Rajaee T (2013) Performance of radial basis and LM-feed forward artificial neural networks for predicting daily watershed runoff. Appl Soft Comput 13: 4633–4644. https://doi.org/10.1016/j.asoc.2013.07.007 doi: 10.1016/j.asoc.2013.07.007
|
| [66] | Sulaiman J, Wahab SH (2018) Heavy Rainfall Forecasting Model Using Artificial Neural Network for Flood Prone Area, In: Kim KJ, Kim H, Baek N (Eds.), IT Convergence and Security. Singap, Springer, 68–76. https://doi.org/10.1007/978-981-10-6451-7_9 |
| [67] |
Jain A, Indurthy SKVP (2003) Comparative Analysis of Event-based Rainfall-runoff Modeling Techniques—Deterministic, Statistical, and Artificial Neural Networks. J Hydrol Eng 8: 93–98. https://doi.org/10.1061/(asce)1084-0699(2003)8:2(93) doi: 10.1061/(asce)1084-0699(2003)8:2(93)
|
| [68] | Cruz FRG, Binag MG, Ga MRG, et al. (2019) Flood Prediction Using Multi-Layer Artificial Neural Network in Monitoring System with Rain Gauge, Water Level, Soil Moisture Sensors. IEEE Region 10 Annual International Conference, Proceedings/TENCON 2499–2503. https://doi.org/10.1109/TENCON.2018.8650387 |
| [69] |
Kim H Il, Han KY (2020) Urban flood prediction using deep neural network with data augmentation. Water 12. https://doi.org/10.3390/w12030899 doi: 10.3390/w12030899
|
| [70] |
Ni JR, Xue A (2003) Application of artificial neural network to the rapid feedback of potential ecological risk in flood diversion zone. Eng Appl Artif Intell 16: 105–119. https://doi.org/10.1016/S0952-1976(03)00059-9 doi: 10.1016/S0952-1976(03)00059-9
|
| [71] |
Wu CL, Chau KW, Fan C (2010) Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. J Hydrol 389: 146–167. https://doi.org/10.1016/j.jhydrol.2010.05.040 doi: 10.1016/j.jhydrol.2010.05.040
|
| [72] |
Feng LH, Lu J (2010) The practical research on flood forecasting based on artificial neural networks. Expert Syst Appl 37: 2974–2977. https://doi.org/10.1016/j.eswa.2009.09.037 doi: 10.1016/j.eswa.2009.09.037
|
| [73] |
Dtissibe FY, Ari AAA, Titouna C, et al. (2020) Flood forecasting based on an artificial neural network scheme. Natural Hazards 104: 1211–1237. https://doi.org/10.1007/s11069-020-04211-5 doi: 10.1007/s11069-020-04211-5
|
| [74] |
Deo RC, Şahin M (2015) Application of the Artificial Neural Network model for prediction of monthly Standardized Precipitation and Evapotranspiration Index using hydrometeorological parameters and climate indices in eastern Australia. Atmos Res 161–162: 65–81. https://doi.org/10.1016/j.atmosres.2015.03.018 doi: 10.1016/j.atmosres.2015.03.018
|
| [75] |
Sahoo A, Samantaray S, Ghose DK (2022) Multilayer perceptron and support vector machine trained with grey wolf optimiser for predicting floods in Barak river, India. J Earth Syst Sci 131. https://doi.org/10.1007/s12040-022-01815-2 doi: 10.1007/s12040-022-01815-2
|
| [76] |
Linh NTT, Ruigar H, Golian S, et al. (2021) Flood prediction based on climatic signals using wavelet neural network. Acta Geophys 69: 1413–1426. https://doi.org/10.1007/s11600-021-00620-7 doi: 10.1007/s11600-021-00620-7
|
| [77] |
Panahi M, Jaafari A, Shirzadi A, et al. (2021) Deep learning neural networks for spatially explicit prediction of flash flood probability. Geosci Front 12: 101076. https://doi.org/10.1016/j.gsf.2020.09.007 doi: 10.1016/j.gsf.2020.09.007
|
| [78] |
Wang JH, Lin GF, Chang MJ, et al. (2019) Real-Time Water-Level Forecasting Using Dilated Causal Convolutional Neural Networks. Water Resour Manag 33: 3759–3780. https://doi.org/10.1007/s11269-019-02342-4 doi: 10.1007/s11269-019-02342-4
|
| [79] |
Song T, Ding W, Wu J, et al. (2020) Flash flood forecasting based on long short-term memory networks. Water 12. https://doi.org/10.3390/w12010109 doi: 10.3390/w12010109
|
| [80] |
Wang HW, Lin GF, Hsu CT, et al. (2022) Long-Term Temporal Flood Predictions Made Using Convolutional Neural Networks. Water 14. https://doi.org/10.3390/w14244134 doi: 10.3390/w14244134
|
| [81] |
Cho M, Kim C, Jung K, et al. (2022) Water Level Prediction Model Applying a Long Short-Term Memory (LSTM)–Gated Recurrent Unit (GRU) Method for Flood Prediction. Water 14: 2221. https://doi.org/10.3390/w14142221 doi: 10.3390/w14142221
|
| [82] |
De Vos NJ (2013) Echo state networks as an alternative to traditional artificial neural networks in rainfall-runoff modelling. Hydrol Earth Syst Sci 17: 253–267. https://doi.org/10.5194/hess-17-253-2013 doi: 10.5194/hess-17-253-2013
|
| [83] |
Raghavendra S, Deka PC (2014) Support vector machine applications in the field of hydrology: A review. Appl Soft Comput 19: 372–386. https://doi.org/10.1016/j.asoc.2014.02.002 doi: 10.1016/j.asoc.2014.02.002
|
| [84] |
Xiang Y, Gou L, He L, et al. (2018) A SVR–ANN combined model based on ensemble EMD for rainfall prediction. Appl Soft Comput 73: 874–883. https://doi.org/10.1016/j.asoc.2018.09.018 doi: 10.1016/j.asoc.2018.09.018
|
| [85] |
Üstün B, Melssen WJ, Buydens LMC (2007) Visualisation and interpretation of Support Vector Regression models. Anal Chim Acta 595: 299–309. https://doi.org/10.1016/j.aca.2007.03.023 doi: 10.1016/j.aca.2007.03.023
|
| [86] |
Mosavi A, Rabczuk T, Varkonyi-Koczy AR (2018) Reviewing the novel machine learning tools for materials design. Adv Intell Syst Comput 660: 50–58. https://doi.org/10.1007/978-3-319-67459-9_7 doi: 10.1007/978-3-319-67459-9_7
|
| [87] |
Choubin B, Moradi E, Golshan M, et al. (2019) An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci Total Environ 651: 2087–2096. https://doi.org/10.1016/j.scitotenv.2018.10.064 doi: 10.1016/j.scitotenv.2018.10.064
|
| [88] |
Panahi M, Dodangeh E, Rezaie F, et al. (2021) Flood spatial prediction modeling using a hybrid of meta-optimization and support vector regression modeling. Catena 199: 105114. https://doi.org/10.1016/j.catena.2020.105114 doi: 10.1016/j.catena.2020.105114
|
| [89] |
Liu Y, Pender G (2015) A flood inundation modelling using v-support vector machine regression model. Eng Appl Artif Intell 46: 223–231. https://doi.org/10.1016/j.engappai.2015.09.014 doi: 10.1016/j.engappai.2015.09.014
|
| [90] |
Shirzadi A, Asadi S, Shahabi H, et al. (2020) A novel ensemble learning based on Bayesian Belief Network coupled with an extreme learning machine for flash flood susceptibility mapping. Eng Appl Artif Intell 96: 103971. https://doi.org/10.1016/j.engappai.2020.103971 doi: 10.1016/j.engappai.2020.103971
|
| [91] |
Young CC, Liu WC, Wu MC (2017) A physically based and machine learning hybrid approach for accurate rainfall-runoff modeling during extreme typhoon events. Appl Soft Comput 53: 205–216. https://doi.org/10.1016/j.asoc.2016.12.052 doi: 10.1016/j.asoc.2016.12.052
|
| [92] |
Yan J, Jin J, Chen F, et al. (2018) Urban flash flood forecast using support vector machine and numerical simulation. J Hydroinform 20: 232–245. https://doi.org/10.2166/hydro.2017.175 doi: 10.2166/hydro.2017.175
|
| [93] |
Bermúdez M, Cea L, Puertas J (2019) A rapid flood inundation model for hazard mapping based on least squares support vector machine regression. J Flood Risk Manag 12: 1–14. https://doi.org/10.1111/jfr3.12522 doi: 10.1111/jfr3.12522
|
| [94] |
Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, et al. (2020) A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing. https://doi.org/10.1016/j.neucom.2019.10.118 doi: 10.1016/j.neucom.2019.10.118
|
| [95] |
Li PH, Kwon HH, Sun L, et al. (2010) A modified support vector machine based prediction model on streamflow at the Shihmen Reservoir, Taiwan. Int J Climatol 30: 1256–1268. https://doi.org/10.1002/joc.1954 doi: 10.1002/joc.1954
|
| [96] |
Sahoo A, Samantaray S, Ghose DK (2021) Prediction of Flood in Barak River using Hybrid Machine Learning Approaches: A Case Study. J Geol Soc India 97: 186–198. https://doi.org/10.1007/s12594-021-1650-1 doi: 10.1007/s12594-021-1650-1
|
| [97] |
Costache R (2019) Flash-flood Potential Index mapping using weights of evidence, decision Trees models and their novel hybrid integration. Stoch Environ Res Risk Assess33: 1375–1402. https://doi.org/10.1007/s00477-019-01689-9 doi: 10.1007/s00477-019-01689-9
|
| [98] | Lawal ZK, Yassin H, Zakari RY (2021) Flood Prediction Using Machine Learning Models: A Case Study of Kebbi State Nigeria. IEEE Asia-Pacific Conference on Computer Science and Data Engineering, CSDE. https://doi.org/10.1109/CSDE53843.2021.9718497 |
| [99] |
De'Ath G, Fabricius KE (2000) Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 81: 3178–3192. https://doi.org/10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO; 2 doi: 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
|
| [100] |
Chen W, Li Y, Xue W, et al. (2020) Modeling flood susceptibility using data-driven approaches of naï ve Bayes tree, alternating decision tree, and random forest methods. Sci Total Environ 701: 134979. https://doi.org/10.1016/j.scitotenv.2019.134979 doi: 10.1016/j.scitotenv.2019.134979
|
| [101] |
Yariyan P, Janizadeh S, Van Phong T, et al. (2020) Improvement of Best First Decision Trees Using Bagging and Dagging Ensembles for Flood Probability Mapping. Water Resour Manag 34: 3037–3053. https://doi.org/10.1007/s11269-020-02603-7 doi: 10.1007/s11269-020-02603-7
|
| [102] |
Zahiri A, Azamathulla HM (2014) Comparison between linear genetic programming and M5 tree models to predict flow discharge in compound channels. Neural Comput Appl 24: 413–420. https://doi.org/10.1007/s00521-012-1247-0 doi: 10.1007/s00521-012-1247-0
|
| [103] |
Singh KK, Pal M, Singh VP (2010) Estimation of mean annual flood in indian catchments using backpropagation neural network and M5 model tree. Water Resour Manag 24: 2007–2019. https://doi.org/10.1007/s11269-009-9535-x doi: 10.1007/s11269-009-9535-x
|
| [104] |
Nguyen DT, Chen ST (2020) Real-time probabilistic flood forecasting using multiple machine learning methods. Water 12: 1–13. https://doi.org/10.3390/w12030787 doi: 10.3390/w12030787
|
| [105] |
Alizadeh Z, Yazdi J, Kim JH, et al. (2018) Assessment of machine learning techniques for monthly flow prediction. Water 10: 1–24. https://doi.org/10.3390/w10111676 doi: 10.3390/w10111676
|
| [106] |
Hou J, Zhou N, Chen G, et al. (2021) Rapid forecasting of urban flood inundation using multiple machine learning models. Nat Hazards 108: 2335–2356. https://doi.org/10.1007/s11069-021-04782-x doi: 10.1007/s11069-021-04782-x
|
| [107] |
Sankaranarayanan S, Prabhakar M, Satish S, et al. (2020) Flood prediction based on weather parameters using deep learning. J Water Clim Change 11: 1766–1783. https://doi.org/10.2166/wcc.2019.321 doi: 10.2166/wcc.2019.321
|
| [108] |
El-Magd SAA, Pradhan B, Alamri A (2021) Machine learning algorithm for flash flood prediction mapping in Wadi El-Laqeita and surroundings, Central Eastern Desert, Egypt. Arab J Geosci 14. https://doi.org/10.1007/s12517-021-06466-z doi: 10.1007/s12517-021-06466-z
|
| [109] |
Huang M, Lin R, Huang S, et al. (2017) A novel approach for precipitation forecast via improved K-nearest neighbor algorithm. Adv Eng Inform 33: 89–95. https://doi.org/10.1016/j.aei.2017.05.003 doi: 10.1016/j.aei.2017.05.003
|
| [110] |
Cuomo S, Di Cola VS, Giampaolo F, et al. (2022) Scientific Machine Learning Through Physics–Informed Neural Networks: Where we are and What's Next. J Sci Comput 92: 88. https://doi.org/10.1007/s10915-022-01939-z doi: 10.1007/s10915-022-01939-z
|
| [111] |
Michele A, Colin V, Santika DD (2019) MobileNet Convolutional Neural Networks and Support Vector Machines for Palmprint Recognition. Procedia Comput Sci 157: 110–117. https://doi.org/10.1016/j.procs.2019.08.147 doi: 10.1016/j.procs.2019.08.147
|
| [112] |
Gao X, Shan C, Hu C, et al. (2019) An Adaptive Ensemble Machine Learning Model for Intrusion Detection. IEEE Access 7: 82512–82521. https://doi.org/10.1109/ACCESS.2019.2923640 doi: 10.1109/ACCESS.2019.2923640
|
| [113] |
Shanmugasundar G, Vanitha M, Čep R, et al. (2021) A Comparative Study of Linear, Random Forest and AdaBoost Regressions for Modeling Non-Traditional Machining. Processes 9: 2015. https://doi.org/10.3390/pr9112015 doi: 10.3390/pr9112015
|
| [114] |
Triguero I, García‐Gil D, Maillo J, et al. (2019) Transforming big data into smart data: An insight on the use of the k‐nearest neighbors algorithm to obtain quality data. WIREs Data Min Knowl Discov. https://doi.org/10.1002/widm.1289 doi: 10.1002/widm.1289
|
| [115] |
Senthilnath J, Shreyas PB, Rajendra R, et al. (2019) Hierarchical clustering approaches for flood assessment using multi-sensor satellite images. Int J Image Data Fusion 10: 28–44. https://doi.org/10.1080/19479832.2018.1513956 doi: 10.1080/19479832.2018.1513956
|
| [116] |
Rahman AS, Rahman A (2020) Application of principal component analysis and cluster analysis in regional flood frequency analysis: A case study in new South Wales, Australia. Water 12: 1–26. https://doi.org/10.3390/w12030781 doi: 10.3390/w12030781
|
| [117] |
Engelen JE, Hoos HH (2020) A survey on semi-supervised learning. Mach Learn 109: 373–440. https://doi.org/10.1007/s10994-019-05855-6 doi: 10.1007/s10994-019-05855-6
|
| [118] |
Inyang UG, Akpan EE, Akinyokun OC (2020) A Hybrid Machine Learning Approach for Flood Risk Assessment and Classification. Int J Comput Intell Appl 19: 1–20. https://doi.org/10.1142/S1469026820500121 doi: 10.1142/S1469026820500121
|
| [119] |
Devi G, Sharma M, Sarma P, et al. (2022) Flood Frequency Modeling and Prediction of Beki and Pagladia Rivers Using Deep Learning Approach. Neural Process Lett. https://doi.org/10.1007/s11063-022-10773-1 doi: 10.1007/s11063-022-10773-1
|
| [120] |
He W, Jiang Z (2022) Semi-Supervised Learning With the EM Algorithm: A Comparative Study Between Unstructured and Structured Prediction. IEEE Trans Knowl Data Eng 34: 2912–2920. https://doi.org/10.1109/TKDE.2020.3019038 doi: 10.1109/TKDE.2020.3019038
|
| [121] |
Zhao G, Pang B, Xu Z, et al. (2019) Assessment of urban flood susceptibility using semi-supervised machine learning model. Sci Total Environ 659: 940–949. https://doi.org/10.1016/j.scitotenv.2018.12.217 doi: 10.1016/j.scitotenv.2018.12.217
|
| [122] |
Silver D, Singh S, Precup D, et al. (2021) Reward is enough. Artificial Intelligence 299: 103535. https://doi.org/10.1016/j.artint.2021.103535 doi: 10.1016/j.artint.2021.103535
|
| [123] |
Serrano W (2022) Deep Reinforcement Learning with the Random Neural Network. Eng Appl Artif Intell 110: 104751. https://doi.org/10.1016/j.engappai.2022.104751 doi: 10.1016/j.engappai.2022.104751
|
| [124] |
Bowes BD, Tavakoli A, Wang C, et al. (2021) Flood mitigation in coastal urban catchments using real-time stormwater infrastructure control and reinforcement learning. J Hydroinform 23: 529–547. https://doi.org/10.2166/HYDRO.2020.080 doi: 10.2166/HYDRO.2020.080
|
| [125] |
Baldazo D, Parras J, Zazo S (2019) Decentralized multi-agent deep reinforcement learning in swarms of drones for flood monitoring. Eur Signal Process Conf. https://doi.org/10.23919/EUSIPCO.2019.8903068 doi: 10.23919/EUSIPCO.2019.8903068
|
| [126] |
Hapuarachchi HAP, Wang QJ, Pagano TC (2011) A review of advances in flash flood forecasting. Hydrol Process 25: 2771–2784. https://doi.org/10.1002/hyp.8040 doi: 10.1002/hyp.8040
|
| [127] |
Sood A, Smakhtin V (2015) Global hydrological models: a review. Hydrol Sci J 60: 549–565. https://doi.org/10.1080/02626667.2014.950580 doi: 10.1080/02626667.2014.950580
|
| [128] |
Grimaldi S, Li Y, Pauwels VRN, et al. (2016) Remote Sensing-Derived Water Extent and Level to Constrain Hydraulic Flood Forecasting Models: Opportunities and Challenges. Surv Geophys 37: 977–1034. https://doi.org/10.1007/s10712-016-9378-y doi: 10.1007/s10712-016-9378-y
|
| [129] |
Munawar HS, Hammad AWA, Waller ST (2022) Remote Sensing Methods for Flood Prediction: A Review. Sensors 22. https://doi.org/10.3390/s22030960 doi: 10.3390/s22030960
|
| [130] |
Yuan Q, Shen H, Li T, et al. (2020) Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens Environ 241: 111716. https://doi.org/10.1016/j.rse.2020.111716 doi: 10.1016/j.rse.2020.111716
|
| [131] |
Maggioni V, Massari C (2018) On the performance of satellite precipitation products in riverine flood modeling: A review. J Hydrol 558: 214–224. https://doi.org/10.1016/j.jhydrol.2018.01.039 doi: 10.1016/j.jhydrol.2018.01.039
|
| [132] |
Olson D, Anderson J (2021) Review on unmanned aerial vehicles, remote sensors, imagery processing, and their applications in agriculture. Agron J 113: 971–992. https://doi.org/10.1002/agj2.20595 doi: 10.1002/agj2.20595
|
| [133] |
Justice CO, Townshend JRG, Vermote EF, et al. (2002) An overview of MODIS Land data processing and product status. Remote Sens Environ 83: 3–15. https://doi.org/10.1016/S0034-4257(02)00084-6 doi: 10.1016/S0034-4257(02)00084-6
|
| [134] |
Qi W, Ma C, Xu H, et al. (2021) A review on applications of urban flood models in flood mitigation strategies. Nat Hazards 108: 31–62. https://doi.org/10.1007/s11069-021-04715-8 doi: 10.1007/s11069-021-04715-8
|
| [135] |
Tien Bui D, Hoang ND, Martínez-Álvarez F, et al. (2020) A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area. Sci Total Environ 701: 134413. https://doi.org/10.1016/j.scitotenv.2019.134413 doi: 10.1016/j.scitotenv.2019.134413
|
| [136] | Xu T, Liang F (2021) Machine learning for hydrologic sciences: An introductory overview. Wiley Interdisciplinary Reviews: Water 8: 1–29. https://doi.org/10.1002/wat2.1533 |
| [137] | Shen C, Lawson K (2021) Applications of Deep Learning in Hydrology. Deep Learn Earth Sci, Wiley 283–297. https://doi.org/10.1002/9781119646181.ch19 |
| [138] |
Sit M, Demiray BZ, Xiang Z, et al. (2020) A comprehensive review of deep learning applications in hydrology and water resources. Water Sci Technol 82: 2635–2670. https://doi.org/10.2166/wst.2020.369. doi: 10.2166/wst.2020.369
|
| [139] |
Zounemat-Kermani M, Batelaan O, Fadaee M, et al. (2021) Ensemble machine learning paradigms in hydrology: A review. J Hydrol 598: 126266. https://doi.org/10.1016/j.jhydrol.2021.126266 doi: 10.1016/j.jhydrol.2021.126266
|
| [140] |
Merz B, Kreibich H, Schwarze R, et al. (2010) Review article Assessment of economic flood damage. Nat Hazards Earth Syst Sci 10: 1697–1724. https://doi.org/10.5194/nhess-10-1697-2010 doi: 10.5194/nhess-10-1697-2010
|
| [141] |
Tarasova L, Merz R, Kiss A, et al. (2019) Causative classification of river flood events. WIREs Water 6. https://doi.org/10.1002/wat2.1353 doi: 10.1002/wat2.1353
|
| [142] |
Mahmoodi N, Wagner PD, Kiesel J, et al. (2021) Modeling the impact of climate change on streamflow and major hydrological components of an Iranian Wadi system. J Water Clim Change 12: 1598–1613. https://doi.org/10.2166/wcc.2020.098 doi: 10.2166/wcc.2020.098
|
| [143] |
Mangukiya NK, Sharma A (2022) Flood risk mapping for the lower Narmada basin in India: a machine learning and IoT-based framework. Nat Hazards 113: 1285–1304. https://doi.org/10.1007/s11069-022-05347-2 doi: 10.1007/s11069-022-05347-2
|
| [144] |
Alipour MH (2015) Risk-Informed Decision Making Framework for Operating a Multi-Purpose Hydropower Reservoir During Flooding and High Inflow Events, Case Study: Cheakamus River System. Water Resour Manag 29: 801–815. https://doi.org/10.1007/s11269-014-0844-3 doi: 10.1007/s11269-014-0844-3
|
| [145] |
Coates G, Li C, Ahilan S, et al. (2019) Agent-based modeling and simulation to assess flood preparedness and recovery of manufacturing small and medium-sized enterprises. Eng Appl Artif Intell 78: 195–217. https://doi.org/10.1016/j.engappai.2018.11.010 doi: 10.1016/j.engappai.2018.11.010
|
| [146] |
Kienzler S, Pech I, Kreibich H, et al. (2015) After the extreme flood in 2002: changes in preparedness, response and recovery of flood-affected residents in Germany between 2005 and 2011. Nat Hazards Earth Syst Sci 15: 505–526. https://doi.org/10.5194/nhess-15-505-2015 doi: 10.5194/nhess-15-505-2015
|
| [147] | Packer C, Gao K, Kos J, et al. (2018) Assessing Generalization in Deep Reinforcement Learning. |
| [148] |
Ma K, Feng D, Lawson K, et al. (2021) Transferring Hydrologic Data Across Continents – Leveraging Data‐Rich Regions to Improve Hydrologic Prediction in Data‐Sparse Regions. Water Resour Res 57: e2020WR028600. https://doi.org/10.1029/2020WR028600 doi: 10.1029/2020WR028600
|
| [149] |
Weiss K, Khoshgoftaar TM, Wang D (2016) A survey of transfer learning. J Big Data 3: 9. https://doi.org/10.1186/s40537-016-0043-6 doi: 10.1186/s40537-016-0043-6
|
| [150] |
Boelee L, Lumbroso DM, Samuels PG, et al. (2019) Estimation of uncertainty in flood forecasts—A comparison of methods. J Flood Risk Manag 12. https://doi.org/10.1111/jfr3.12516 doi: 10.1111/jfr3.12516
|
| [151] | Nevo S, Anisimov V, Elidan G, et al. (2019) ML for Flood Forecasting at Scale. |
| [152] |
Hardy J, Gourley JJ, Kirstetter P-E, et al. (2016) A method for probabilistic flash flood forecasting. J Hydrol 541: 480–494. https://doi.org/10.1016/j.jhydrol.2016.04.007 doi: 10.1016/j.jhydrol.2016.04.007
|
| [153] |
Han S, Coulibaly P (2019) Probabilistic Flood Forecasting Using Hydrologic Uncertainty Processor with Ensemble Weather Forecasts. J Hydrometeorol 20: 1379–1398. https://doi.org/10.1175/JHM-D-18-0251.1 doi: 10.1175/JHM-D-18-0251.1
|
| [154] |
Zhan X, Qin H, Liu Y, et al. (2020) Variational Bayesian Neural Network for Ensemble Flood Forecasting. Water 12: 2740. https://doi.org/10.3390/w12102740 doi: 10.3390/w12102740
|
| [155] |
Ivanov VY, Xu D, Dwelle MC, et al. (2021) Breaking Down the Computational Barriers to Real‐Time Urban Flood Forecasting. Geophys Res Lett 48. https://doi.org/10.1029/2021GL093585 doi: 10.1029/2021GL093585
|
| [156] |
Wang H, Chen Y (2019) Identifying Key Hydrological Processes in Highly Urbanized Watersheds for Flood Forecasting with a Distributed Hydrological Model. Water 11: 1641. https://doi.org/10.3390/w11081641 doi: 10.3390/w11081641
|
| [157] |
Liu Z, Felton T, Mostafavi A (2024) Interpretable machine learning for predicting urban flash flood hotspots using intertwined land and built-environment features. Comput Environ Urban Syst110: 102096. https://doi.org/10.1016/j.compenvurbsys.2024.102096 doi: 10.1016/j.compenvurbsys.2024.102096
|
| [158] |
Ding Y, Zhu Y, Feng J, et al. (2020) Interpretable spatio-temporal attention LSTM model for flood forecasting. Neurocomputing 403: 348–359. https://doi.org/10.1016/j.neucom.2020.04.110 doi: 10.1016/j.neucom.2020.04.110
|
| [159] | Vollert S, Atzmueller M, Theissler A (2021) Interpretable Machine Learning: A brief survey from the predictive maintenance perspective, 26th IEEE Int Conf Emerg Technol Fact Autom (ETFA) 01–08. https://doi.org/10.1109/ETFA45728.2021.9613467 |
| [160] |
Motta M, de Castro Neto M, Sarmento P (2021) A mixed approach for urban flood prediction using Machine Learning and GIS. Int J Disaster Risk Reduct 56: 102154. https://doi.org/10.1016/j.ijdrr.2021.102154 doi: 10.1016/j.ijdrr.2021.102154
|
| [161] |
Qiao L, Livsey D, Wise J, et al. (2024) Predicting flood stages in watersheds with different scales using hourly rainfall dataset: A high-volume rainfall features empowered machine learning approach. Sci Total Environ 950: 175231. https://doi.org/10.1016/j.scitotenv.2024.175231 doi: 10.1016/j.scitotenv.2024.175231
|
| [162] |
Khaniya B, Gunathilake MB, Rathnayake U (2021) Ecosystem-Based adaptation for the impact of climate change and variation in the water management sector of Sri Lanka. Math Probl Eng, 2021: 1–10. https://doi.org/10.1155/2021/8821329 doi: 10.1155/2021/8821329
|
| [163] |
Islam ARMT, Talukdar S, Mahato S, et al. (2021) Flood susceptibility modelling using advanced ensemble machine learning models. Geosci Front, 12(3): 101075. https://doi.org/https://doi.org/10.1016/j.gsf.2020.09.006 doi: 10.1016/j.gsf.2020.09.006
|